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Abstract—Static analysis tools help developers find bugs, im-
prove code readability, and ensure consistent style across a
project. However, these tools can be difficult to smoothly in-
tegrate with each other and into the developer workflow, partic-
ularly when scaling to large codebases. We present TRICORDER,
a program analysis platform aimed at building a data-driven
ecosystem around program analysis. We present a set of guiding
principles for our program analysis tools and a scalable archi-
tecture for an analysis platform implementing these principles.
We include an empirical, in-situ evaluation of the tool as it is
used by developers across Google that shows the usefulness and
impact of the platform.

Index Terms—program analysis, static analysis

I. INTRODUCTION

Static analysis tools provide a promising way to find bugs
in programs before they occur in production systems. Devel-
opers can run analyzers on their source code to find issues,
before even checking in the code. In spite of the rich vein of
research on static analysis tools, [3], [14], [16], these tools
are often not used effectively in practice. High false positive
rates, confusing output, and poor integration into the devel-
opers’ workflow all contribute to the lack of use in everyday
development activities [23], [27].

In addition to finding bugs, tools must take into account the
high demands on a developer’s time [26]. Any interruption
generated by an automated tool forces a developer to context-
switch away from her primary objective [27]. Successful static
analysis tools add high value while minimizing the distractions
for already-busy software engineers.

Our past experience with static analysis tools also showed
that many of them are not scalable to a codebase of Google’s
size. Analyses cannot presume that they have access to the
entire source repository or all the compilation results; there is
simply too much data for a single machine. Therefore, analy-
ses must be shardable and able to run as part of a distributed
computation with only partial information. The sharded analy-
sis must be extremely fast and provide results within a couple
of minutes. In our previous experiences at Google, no existing
analysis platform could scale in this way.

We also found that existing platforms and tools were not
extensible enough. Google has many specialized frameworks
and languages, and an ideal system would provide static analy-
ses for all of them. Our ideal system would let domain experts
write their own analyses, without having to bear the cost of
building or maintaining an entire end-to-end pipeline. For ex-
ample, a team writing C++ libraries can write checks to make
sure developers use those libraries correctly, without worry-

ing about the problems inherent in running a large production
system.

After experimenting with a variety of commercial and open-
source program analysis tools at Google (see Section II for
more details), we repeatedly had problems with tool scalability
or usability. Building off of these experiences, we wanted to
create a static analysis platform that would:

• be widely and actively used by developers to fix problems
in their code, without prompting from a small group of
advocates or management.

• integrate smoothly into the existing developer workflow.
• scale to the size of an industrial codebase.
• empower developers, even non-analysis experts, to write

and deploy their own static analyses.
In this paper, we present TRICORDER, a program analysis

platform aimed at building a data-driven ecosystem around
static analysis. TRICORDER integrates static analysis into the
workflow of developers at Google, provides a feedback loop
between developers and analyzer writers, and simplifies fix-
ing issues discovered by analysis tools. To accomplish this,
TRICORDER leverages a microservices architecture to scale to
Google’s codebase, and generates some 93,000 analysis results
each day. A small team of 2-3 people maintain TRICORDER
and the ecosystem around it, in addition to working on an
open-source version of the platform [35]. TRICORDER’s plug-
in model allows contributors from teams across the company
to become part of the program analysis community at Google.

The contributions of this paper include:
• A set of guiding principles that have resulted in a suc-

cessful, widely used program analysis platform at Google.
(Section III)

• A scalable architecture for a program analysis plat-
form. This platform builds a program analysis ecosystem
through workflow integration, supporting contributors, re-
sponding to feedback, and automatic fixes. (Section IV)

• An empirical, in situ validation of the usefulness of the
platform based upon developers’ responses to the analy-
ses in their normal workflow. (Section V)

II. BACKGROUND

A. Development workflow

At Google, most engineers1 work in an extremely large
codebase, where most software development occurs at head.
Every workday at Google, engineers perform more than 800k

1Some exceptions to this development setup exist; for example, Chrome
and Android have independent open source repositories and developer tools.



builds, run 100M test cases, produce 2PB of build outputs,
and send 30k changelist snapshots (patch diffs) for review.

A large codebase has many benefits, including ease of code
reuse and the ability to do large-scale refactorings atomically.
Because code reuse is common, most code depends upon a
core set of libraries, and making changes to these base li-
braries may impact many projects. To ensure that changes do
not break other projects, Google has a strong testing culture
backed by continuous testing infrastructure [43], [15].

Google engineers use a standardized, distributed build sys-
tem to produce hermetic builds from source code [20]. A team
of dedicated engineers maintains this infrastructure centrally,
providing a common location to insert analysis tools. Because
Google engineers use the same distributed build environment,
they may use their choice of editor. Editor choices include,
but are not limited to, Eclipse, IntelliJ, emacs, and vim [38].

As part of a strong code review culture, every new patch,
called a changelist, is reviewed by someone other than the au-
thor before being checked in. Engineers perform these reviews
using an internal code review tool, similar to Gerrit [19]. This
tool provides the ability to comment on lines of code, reply to
existing comments, upload new snapshots of the code being
reviewed (author), and approve the changelist (reviewer).

Instead of using a separate QA process, busy engineers test
(and analyze!) their own code. This means that analysis results
must target engineers, and it must be easy for those engineers
to run and respond to analyzers. Because most code being
shipped is server code, the cost of pushing a new version is
very low, making it relatively easy to fix bugs after code has
shipped.

B. Program analysis at Google

Several attempts have been made to integrate program
analysis tools into the Google development workflow. Find-
Bugs [18] in particular has a long history of experimentation
at Google [5], [3], [4], along with other analysis tools such as
Coverity [12], Klocwork [24], and fault prediction [28]. All
of these tools have largely fallen out of use due to problems
with workflow integration, scaling, and false positives. Some
tools displayed results too late, making developers less likely
to fix problems after they had submitted their code. Others
displayed results too early, while developers were still exper-
imenting with their code in the editor. Editor-based tools also
hit scaling problems: their latency requirements for interactive
use were not able to keep up with the size of the codebase.
Nearly all tools had to be run as a distinct step, and were dif-
ficult to integrate with the standard compiler toolchains. We
have repeatedly found that when developers have to navigate
to a dashboard or run a standalone command line tool, analysis
usage drops off.

Even when developers ran these tools, they often produced
high false positive rates and inactionable results [28]. These
experiences match prior research showing why developers do
not use static analysis tools [23]. In the end, very few devel-
opers used any of the tools we previously experimented with,
and even for the analysis that got the most traction, FindBugs,

the command-line tool was used by only 35 developers in
2014 (and by 20 of those only once). We did previously show
FindBugs results in code review [3], but this attempt ran into
scaling problems (resulting in stale or delayed results) and
produced many results developers were uninterested in ad-
dressing. In contrast, TRICORDER has seen success as a part
of the standard developer workflow.

III. GOOGLE PHILOSOPHY ON PROGRAM ANALYSIS

A. No false positives

“No” may be a bit of an overstatement, but we severely limit
the number of false positives we allow analyses to produce.
False positives are bad for both usability and adoption [8],
[23], [33].

There is a disconnect around what exactly the term “false
positive” means. To an analysis writer, a false positive is an
incorrect report produced by their analysis tool. However, to a
developer, a false positive is any report that they did not want
to see [5].

We prefer to use the term effective false positive to cap-
ture the developer’s perspective. We define an effective false
positive as any report from the tool where a user chooses not
to take action to resolve the report. As an example of this,
some Google developers use static annotation checking sys-
tems (e.g. for data race detection [34]). When an annotation
checking tool correctly reports an issue, it could mean that
either there is a bug in the source code (e.g. a variable is not
actually protected by a lock), or that the code is actually fine
but the set of annotations is not exhaustive enough for the
tool. Typically, in program analysis research, the latter is not
considered a false positive – the developer needs to supply
additional information to the tool. However, some developers
consider such issues to be “false positives” since they do not
represent a bug in the code [36].

In contrast, we have found that if an analysis incorrectly re-
ports a bug, but making the suggested fix would improve code
readability, this is not considered a false positive. Readability
and documentation analyses are frequently accepted by devel-
opers, especially if they come with a suggested improvement.

It is also noteworthy that some analyses may have false pos-
itives in theory, but not in practice. For example, an analysis
may have false positives only when a program is constructed
in an unusual way, but in practice, such a program is never
seen. Such an analysis might have theoretical false positives,
but in an environment with a strictly-enforced style guide, it
would effectively have zero false positives.

The bottom line is that developers will decide whether an
analysis tool has high impact, and what a false positive is.

B. Empower users to contribute

In a company using a diverse set of languages and cus-
tom APIs, no single team has the domain knowledge to write
all needed analyses. Relevant expertise and motivation exists
among developers throughout the company, and we want to
leverage this existing knowledge by empowering developers
to contribute their own analyses. Developer contributions both



enrich the set of available analyses and make users more re-
sponsive to analysis results.

However, while these contributors are experts in their do-
mains, they may not have the knowledge, or skill set, to ef-
fectively integrate their analyses into the developer workflow.
Ideally, workflow integration and the boilerplate needed to
get an analysis up and running should not be the concern
of the analysis writer. This is where TRICORDER comes in,
as a pluggable program analysis platform supporting analysis
contributors throughout the company.

In order to keep the quality of analyzers high, we have a
“contract” with analyzer writers about when we may remove
their analyzer from TRICORDER. That is, we reserve the right
to disable analyzers if:

• No one is fixing bugs filed against the analyzer.
• Resource usage (e.g. CPU/disk/memory) is affecting TRI-

CORDER performance. In this case, the analyzer writer
needs to start maintaining a standalone service that TRI-
CORDER calls out to (see Section IV-A for more details).

• The analyzer results are annoying developers (see Sec-
tion IV-E for how we calculate this).

Our experience is that pride-in-work combined with the threat
of disabling an analyzer makes the authors highly motivated
to fix problems in their analyzers.

C. Make data-driven usability improvements

Responding to feedback is important. Developers build trust
with analysis tools, and this trust is quickly lost if they do not
understand the tool’s output [8]. We also have found (by ex-
amining bug reports filed against analyzers) that many analysis
results have confusingly worded messages; this is typically an
easy problem to fix. For instance, for one analyzer 75% of
all bugs filed against the tool from TRICORDER were due to
misinterpretations of the result wording and were fixed by up-
dating the message text and/or linking to additional documen-
tation. Establishing a feedback loop to improve the usability
of analysis results significantly increases the utility of analysis
tools.

D. Workflow integration is key

Integration into developer workflow is a key aspect in mak-
ing program analysis tools effective [23]. If an analysis tool is
a standalone binary that developers are expected to run, it just
will not be run as frequently as intended. We posit that analy-
ses should be automatically triggered by developer events such
as editing code, running a build, creating/updating a changelist,
or submitting a changelist. Analysis results should be shown
before code is checked in, because the tradeoffs are different
when an engineer has to modify (potentially working) sub-
mitted code. As one example of this, we surveyed developers
when sending them changelists to fix an error in their code we
were planning to turn on as a compiler error, and also when
they encountered those errors as compiler errors. Developers
were twice as likely to say the error represented a significant
bug when encountered as a compiler error. The importance of

showing results early matches previous experience with Find-
Bugs [3].

When possible, we integrate static analysis into the build [2].
We support a variety of analyses built on top of the ErrorProne
javac extension [17] and the Clang compiler [10]. These anal-
yses break the build when they find an issue, so the effective
false positive rate must be essentially zero. They also cannot
significantly slow down compiles, so must have < 5% over-
head. Ideally, we only show results that cause builds to fail,
as we have found warnings shown when building are often
ignored. However, build integration is not always practical,
e.g. when the false positive rate is too high, the analysis is too
time consuming, or it is only worthwhile to show results on
newly edited lines of code.

TRICORDER introduces an effective place to show warn-
ings. Given that all developers at Google use code review
tools before submitting changes, TRICORDER’s primary use
is to provide analysis results at code review time. This has
the added benefit of enabling peer accountability, where the
reviewer will see if the author chose to ignore analysis results.
We still enforce a very low effective false positive rate here (<
10%). Additionally, we only display results for most analyses
on changed lines by default; this keeps analysis results rele-
vant to the code review at hand.2 Analyses done at code review
time can take longer than analyses that break the build, but the
results must be available before the review is over. The mean
time for a review of more than one line is greater than 1 hour;
we typically expect analyses to complete in less than 5 − 10
minutes (ideally much less), as developers may be waiting for
results.

There are other potential integration points for program
analysis. Many IDEs include a variety of static analyses. How-
ever, most Google developers do not use IDEs, or do not use
IDEs for all tasks [38] – making IDE-only integration unten-
able. Still, IDE-integration is not precluded as an IDE can issue
RPCs to the TRICORDER service. We also leverage testing
to run dynamic analysis tools such as ThreadSanitizer [39],
[40] or AddressSanitizer [1]. These tools typically have no
false positives and < 10x slowdowns. TRICORDER also shows
nightly results from some analyses in Google’s code search
tool as an optional layer. While most developers do not use
this feature, it is effective for analyses that have higher false
positive rates and have a dedicated cleanup team to sift through
the results.

E. Project customization, not user customization

Past experiences at Google showed that allowing user-
specific customization caused discrepancies within and across
teams, and resulted in declining usage of tools. We observed
teams where a developer abandons a tool they were initially
using after discovering teammates were committing new in-
stances of code containing warnings flagged by the tool. We

2We do show some analyses on all lines by default; as an example, warnings
about unused variables can occur on an unchanged line when the block of code
using the variable is deleted by the changelist. Developers have the option of
also viewing results for unchanged lines during a review if they want to.



have worked to eliminate per-user customization of analysis
results.

To achieve this, we got rid of all priority or severity ratings
for analysis results. Instead, we try to only show high prior-
ity/severity results, and we improve our analysis tools when
results are flagged as not important. In cases where there was
some debate as to whether an analysis had useful results, we
made the analysis optional. Developers still have the ability to
explicitly trigger optional analyzers, but they will not run by
default. Getting rid of priority ratings had several benefits:

• We were able to remove or improve low-priority checks
that had little benefit.

• Instead of having developers filter out analyzer results,
we started getting bug reports about broken analyzers.
For example, we discovered that the C++ linter was also
linting Objective-C files and fixed this issue; previously
Objective-C developers had just hidden all linter results.

• We dramatically reduced complaints about why certain
results appeared, or why different views were inconsis-
tent.

We do allow limited customization, but the customization
is project-based rather than user based. For example, a team
can choose to run optional analyses by default on all of their
code. We also disable analyzers where they do not apply; for
example, we don’t run code style checkers on third-party open
source code with different code conventions.

IV. IMPLEMENTATION

A. Architecture
To efficiently serve analysis results on changelist creation

and editing, TRICORDER leverages a microservices architec-
ture [29]. Thinking in terms of services creates a mindset
that encourages scalability and modularity. In addition, TRI-
CORDER is designed with the assumption that parts of the
system will go down, which means analysis workers are de-
signed to be replicated and stateless in order to make the sys-
tem robust and scalable. Analysis results appear in code review
as robot comments (robocomments for short), using the code
review tool’s commenting system.

Analysis services implement the same API (Section IV-B).
This API is defined with protocol buffers [31] as a multi-
language serialization protocol, and uses a Google-specific
RPC library for communication. TRICORDER includes a se-
ries of analyzer worker services written in different lan-
guages (Java, C++, Python and Go) implementing this com-
mon language-agnostic protocol buffer API. These services
provide a language-specific interface for analyzers to imple-
ment that abstract away details of handling RPCs; analysis
writers can implement analyzers in the language that makes
the most sense. TRICORDER also includes compiler-specific
analyzer services providing a way to plug into jscompiler,
javac, and Clang. We additionally have a binary multiplexor
Linter Worker service supporting linters written in arbitrary
languages.

TRICORDER has three stages at which it calls out to anal-
ysis services; each stage has successively more information.

Java Analyzer 
Worker

Changelist 
Snapshot 
Notifier

Build ServiceDependencies 
Service

Analysis Driver

Build 
Listener

Targets
Listener

Snapshot 
Listener

javac 
Analyzer WorkerC++ Analyzer 

Worker

go Analyzer 
Worker

Python Analyzer 
Worker

Clang 
Analyzer Worker

jscompiler 
Analyzer Worker

Codereview

Linter Worker

FILES DEPS COMPILATION

Fig. 1: Overview of the TRICORDER architecture. Solid
boxes correspond to microservices running as jobs and dashed
boxes distinguish separate parts of a job. Solid arrows corre-
spond to RPCs being sent within TRICORDER, while dashed
edges refer to RPC to external systems and services.

At the FILES stage, analyzers can access the contents of files
that make up the change. For example, linters that check prop-
erties like "line is over 80 characters" can run at this stage.
At the DEPS (short for build dependencies) stage, analyzers
additionally know a list of all the build targets that are af-
fected by the change. For example, an analyzer that reports
when a large number of targets are affected can be run at this
stage. Finally, at the COMPILATION stage, analyzers have
access to the complete AST for the entire program with fully
resolved types and implicit expressions. Dividing the analyses
into multiple stages has several practical benefits:

• We can provide faster results for analyses at earlier stages,
since they do not need to wait for a build.

• We can decrease resource usage by rate limiting analyses
at costlier stages.

• Problems with infrastructure we depend on (such as the
build service) will not affect analyses from earlier stages.

The overall architecture of TRICORDER is depicted in Fig-
ure 1. The main loop of TRICORDER happens in the Analysis
Driver. The driver calls out to language- or compiler-specific
Analyzer Workers to run the analyses, then sends results as
comments to the code review system. In each worker, incom-
ing analysis requests are dispatched to a set of analyzers. In
addition, analysis writers can choose to implement their own
standalone service with the analyzer worker API. The analysis
driver is divided into separate sections for the different stages
of the pipeline: the Snapshot Listener sends requests to FILES
analyzers, the Targets Listener sends requests to DEPS analyz-
ers, and the Build Listener sends requests to COMPILATION
analyzers. The process is as follows:



1) When a new changelist snapshot is generated, the
changelist snapshot notifier signals to TRICORDER (via
a publisher/subscriber model) that there is a new snap-
shot. This message contains metadata about the snapshot
(such as the author, changelist description, and list of
files), and a source context (repository name, revision,
etc) that can be used to both read the edited files inside
the change and post robot comments about the change
later. When TRICORDER receives a snapshot notifica-
tion, it fires off several asynchronous calls:

• TRICORDER sends analyze requests to the FILES
analyzers. When it receives results, it forwards the
results to the code review system.

• TRICORDER makes a request to the dependencies
service to calculate which build targets are affected
by the change.3

2) The Dependencies Service notifies TRICORDER when
it has finished calculating the dependencies, and TRI-
CORDER makes the following asynchronous calls:

• TRICORDER sends analyze requests to the DEPS an-
alyzers, complete with the list of dependencies tran-
sitively affected by the change. When TRICORDER
receives analysis results, it forwards them to the
code review service.

• TRICORDER requests that the Build Service starts a
build of all targets directly affected by the change.

3) The build service notifies TRICORDER as each inde-
pendent compilation unit is built. The builds are instru-
mented to capture all inputs needed for each compiler
invocation in all supported languages. This set of in-
puts (e.g. jar files, compiler arguments, headers, etc) is
preserved for later use by analyzers.
When a message arrives that signals a finished compi-
lation unit, TRICORDER sends RPCs to the COMPILA-
TION analyzers. The compiler-specific workers replay
the compilation (using the inputs generated during the
build) with analysis passes added. COMPILATION ana-
lyzers have access to the AST and all other information
provided by the compiler. When TRICORDER receives
results from the analyzers, they are forwarded to the
code review service.

The use of asynchronous communication allows TRI-
CORDER to make more efficient use of its machine resources.
Earlier analyses can run in parallel to running a build, and the
compilation units are all analyzed in parallel as well. Even the
slowest analyses provide results within a few minutes.

B. Plug-in model

TRICORDER supports a plug-in model across languages.
Analyzers may be written in any language; currently C++,
Java, Python, and Go have the best support. Analyzers may
analyze any language, and there are even a variety of analyzers

3Since the Google codebase is quite large, and projects may have far reach-
ing dependencies, this is important to calculate. For smaller codebases, this
stage can likely be skipped in favor of building the entire project.

focused on the development process and not a programming
language (Section IV-C).

All analyzer services implement the Analyzer RPC API.
Most analyzers are running as part of one of the Analyzer
Workers and implement a language-specific interface. Each
analyzer must support the following operations:

1) GetCategory returns the set of categories produced by
that analyzer. The category of an analyzer is a unique
human-readable name displayed as part of the robocom-
ments it produces.

2) GetStage returns the stage in which this analyzer
should run.

3) Analyze takes in information about the change and re-
turns a list of Notes.

Notes contain key information about the analysis result includ-
ing:

• The category (and optionally subcategory) of the analysis
result.

• The location of the analysis result in the code, e.g. file
and range (line/column) within that file.

• The error message.
• A URL with more detailed information about the analyzer

and/or the message.
• An ordered list of fixes.

The Notes produced are then posted to Google’s internal code
review tool as robocomments. Since the structured output is
flexible, they may also be used in additional contexts (such
as when browsing source code). A more detailed look at this
API is available in the open-source version of Tricorder, Ship-
shape [35]. Shipshape has a different architecture to support
the needs of open-source projects, but the API and design was
heavily influenced by TRICORDER.

C. Analyzers

Figure 2 shows a selection of 16 analyzers currently run-
ning in TRICORDER (there are currently about 30, with more
coming online every month).

Six of the analyzers in this table are themselves frameworks.
For example, ErrorProne [17] and ClangTidy [11] both find
bug patterns based on AST matching for Java and C++ pro-
grams, respectively. They each have a variety of individual
checks enabled, each implemented as a plugin. Another ex-
ample is the Linter analyzer. This analyzer is comprised of
more than 35 individual linters, all called via a linter binary
multiplexor. Linters can be implemented in any language. The
multiplexor uses a configuration file to determine which linter
to send a particular file to (based on the file extension and path)
and how to parse linter output (via a regex). The linter ana-
lyzer includes Google-configured versions of popular external
linters such as the Java Checkstyle linter [9] and the Pylint
Python linter [32], as well as many custom internal linters.

Several TRICORDER analyzers (7 currently) are domain-
specific; they are targeted at only a portion of the code

4The AffectedTargets and Builder analyzers are informational, and so do
not have a "Please fix" option.



Analyzer Description Stage Impl.
Lang.

Analyzed
Lang.

# of
Plugins

Avg.
Results
/ day

PLEASE
FIX
Users

NOT
USEFUL
Users

AffectedTargets How many targets are affected DEPS Java All 440 -4 13

AndoidLint Scans android projects for likely bugs COMP. Java Android 57 109 71

AutoRefaster Implementation of Refaster [42] COMP. Java Java >60 122 3630 670

BuildDeprecation Identify deprecated build targets DEPS Java Build
files

1689 1890 381

Builder Checks if a changelist builds COMP. Java All 4927 -4 491

ClangTidy Bug patterns based on AST matching COMP. C++ C++ >30 4908 5823 1823

DocComments Errors in javadoc COMP. Java Java 1121 3694 954

ErrorProne Bug patterns based on AST matching COMP. Java Java >80 80 2638 206

Formatter Errors in Java format strings COMP. Java Java 6 561 35

Golint Style checks for go programs FILES Go Go 1711 1528 486

Govet Suspicious constructs in go programs FILES Go Go 101 754 156

JavacWarnings Curated set of warnings from javac COMP. Java Java 288 1631 152

JscompilerWarnings Warnings produced by jscompiler COMP. Java Javascript 876 733 338

Linter Style issues in code FILES All All >35 79079 18675 8316

Unused Unused variable detection COMP. Java Java 606 5904 833

UnusedDeps Flag unused dependencies COMP. Java Build
files

1419 5018 986

Fig. 2: 16 of 30 analyzers run in TRICORDER. The fourth and fifth columns report the implmenentation language and the target
language, respectively. The sixth column reports the number of plugins for analyzers providing an internal plugin mechanism.
The seventh column shows the average number of results per day. The final two columns report the number of unique users
who clicked on either PLEASE FIX or NOT USEFUL (see Section IV-E) in the year 2014.

base. This includes AndroidLint, which finds both bugs and
style violations specifically in Android projects, as well as
validators for several project-specific configuration schemas.
Several other analyzers (another 7) are about metadata rele-
vant to the changelist. For example, one analyzer warns if a
changelist needs to be merged with head, while another warns
if a changelist will transitively affect a large percentage of
Google’s code.

To decide whether an analyzer makes sense to include in
TRICORDER, we have criteria for new analyzers, drawn from
our experience and philosophy on static analysis (Section III):

1) The warning should be easy to understand and the
fix should be clear. The problem should be obvious and
actionable when pointed out. For example, cyclomatic
complexity or location-based fault prediction does not
meet this bar.

2) The warning should have very few false positives.
Developers should feel that we are pointing out an actual
issue at least 90% of the time.5 To measure this, we
run analyzers on existing code and manually check a
statistically sound sample size of the results.

3) The warning should be for something that has the
potential for significant impact. We want the warnings
to be important enough so that when developers see them
they take them seriously and often choose to fix them.
To determine this, language-focused analyzers are vetted
by language experts.

5This 10% false positive threshold matches that used by other analysis
platforms such as Coverity [13].

4) The warning should occur with a small but notice-
able frequency. There is no point in detecting warnings
that never actually occur, but if a warning occurs too
frequently, it’s likely that it’s not causing any real prob-
lems. We don’t want to overwhelm people with too many
warnings.

Analysis developers can try out new analyses on a small set
of whitelisted users first who have volunteered to view experi-
mental results. Some analyses can also be run in a MapReduce
over all existing code to check false positive rates before being
deployed.

D. Fixes

Two common issues with analysis tools are that they may
not produce actionable results, and that it takes effort for busy
developers to fix the issues highlighted. To address these prob-
lems, we encourage analysis writers to provide fixes with their
analysis results. These fixes can be both viewed and applied
from within the code review tool. Figure 3 shows an example
comment produced by TRICORDER. The fix is visible after
clicking the “show” link (Figure 4). Note that the fixes here
are not tied to a particular IDE, they are part of each analysis
and are language-agnostic. Having analyzers supply fixes has
several benefits: fixes can provide additional clarification for
analysis results, being able to apply the fix directly means that
dealing with analysis results does not entail changing context,
and tool-provided fixes lower the bar to fixing issues in code.

In order to apply fixes, we leverage the availability of a sys-
tem that makes the content of a changelist available for edits.
That is, edits, like applying fixes, can be made directly to the



Fig. 4: Screenshot of the preview fix view for the ErrorProne warning from Figure 3

Fig. 3: Screenshot of analysis results; changelist reviewer
view. In this case there are two results: one from the Java
Lint tool (configured version of checkstyle [9]), and one from
ErrorProne [17]. Reviewers can click on the NOT USEFUL link
if they have a problem with the analysis results. They can also
click on PLEASE FIX to indicate that the author should fix the
result. They can also view the attached fix (Figure 4).

code in the changelist and the changed code will appear in the
workspace of the changelist owner. To implement something
similar with Gerrit, one could leverage existing APIs to apply
fixes as a patch to the code under review.

E. Feedback

In order to respond quickly to issues with analyzers, we
have built in a feedback mechanism that tracks how developers
interact with the robocomments TRICORDER generates in code
reviews. As seen in Figure 3 and Figure 4, there are four links
that developers can click:

• NOT USEFUL gives the developers the opportunity to file
a bug about the robocomment.

• PLEASE FIX creates a review comment asking the author
to fix the robocomment and is only available to reviewers.

• PREVIEW FIX (“show” in Figure 3) shows a diff view of
the suggested fix and is available when a robocomment
comes with a fix.

• APPLY FIX (“Apply” in Figure 4) applies the suggested
fix to the code and is available only to authors when a
robocomment comes with a fix. This option can only be
seen after using PREVIEW FIX.

We define the “not-useful rate” of an analyzer as:
NOT USEFUL/(NOT USEFUL + PLEASE FIX + APPLY FIX)

Analysis writers are expected to check these numbers
through a dashboard we provide. A rate ≥ 10% puts the ana-

lyzer on probation, and the analysis writer must show progress
toward addressing the issue. If the rate goes above 25%, we
may decide to turn the analyzer off immediately. In practice,
we typically work with the analyzer writers to fix the problem
instead of immediately disabling an analyzer. Some analyzers
only affect a small percentage of developers and so we are
not as concerned about a temporary increase in false positives.
Nonetheless, having a policy in place has proven invaluable
in making expectations clear with analyzer writers.

V. RESULTS

a) Usability: We measure the usability of TRICORDER
through the not-useful click rates and numbers of clicks of
each type, both for TRICORDER as a whole and for specific
analyzers.

Figure 2 shows that developers actively engage with the
analyses through clicks. Figure 2 lists the number of unique
users in 2014 who clicked on either PLEASE FIX or NOT
USEFUL at least once for each analyzer. As can be seen, the
Linter has received PLEASE FIX clicks from over 18K users
in 2014. The number of people who have ever clicked NOT
USEFUL is substantially lower across all categories.

Our click rates show that developers are generally happy
with the results from the static analysis tools. Figure 5 shows
the week-over-week across all of the TRICORDER analyzers;
in recent months it is typically at around 5%. When we re-
move analyzers that are on probation, the number goes down
to under 4%.

Figure 6 shows a comparison of the not-useful rates for sev-
eral Java analyzers. The Checkstyle, ErrorProne, and Unused-
Deps analyses are all fairly stable and have a low not-useful
rate; the data for ErrorProne has more variance due to the
fewer number of findings that it produces. DocComments is
more interesting; this analyzer was initially on probation and
the developer worked to get the not-useful rate under 10%.
However, there was a bug introduced in week 24, which re-
sulted in a sharp increase in NOT USEFUL clicks. The devel-
oper was able to use our provided bug reports and click logs to
identify the source of the problem, the fix was finally released
in week 33.

Analysis writers can also investigate the raw numbers of
clicks each week. Figure 7 shows the breakdown for the type
of clicks for the ErrorProne analysis. It is interesting to note
how correlated PLEASE FIX is with PREVIEW FIX; we hy-
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Fig. 5: Not useful click rate for all of TRICORDER, by week for
2014. The probationary analyzers are have either been turned
off for having a high not useful rate, or are being actively
improved upon. While the probationary analyzers have a high
rate, there are few enough of them relative to the rest of the
analyzers that they have only minor effect on the total rate.

pothesize that many times, a reviewer clicks PLEASE FIX, and
then the author clicks PREVIEW FIX to see what the problem
was. The APPLY FIX clicks are much lower. Based on devel-
oper observations, we hypothesize that many authors choose to
fix the code in their own editor rather than use the code review
tool for this purpose, especially if they are already addressing
other reviewer comments in their editor. Notice that providing
a fix has two purposes; one is to make it easy for developers
to apply the fix, but the other is as a further explanation of an
analysis result.

Clicks are an imperfect measure of analyzer quality:
• Many developers report fixing issues before their reviewer

sees them, so PLEASE FIX counts are known to be low.
• Many developers report fixing issues in their own editor,

rather than via APPLY FIX, so those counts are also low.
• Developers may ignore findings they do not plan to fix,

rather than clicking NOT USEFUL. This may be a signal
only of how strongly the developer feels about the issue.

• Developers may click on NOT USEFUL by accident.
Despite these drawbacks, clicks have been a good signal for
“developer annoyance”. Our most successful analyzers have
not-useful rate between 0-3%.

When a developer clicks on NOT USEFUL, a link appears
to file a bug in our issue tracking system against the project
responsible for that analyzer; the bug is pre-populated with all
the necessary information about the robocomment and gives
the developer an opportunity to comment on why they clicked
NOT USEFUL. The rate of filing bugs per NOT USEFUL clicks
is between 10-60%, depending on the analyzer.

b) Codebase Impact: TRICORDER reduces the number
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Fig. 6: Weekly not-useful rate for a selection of Java-based
analyzers in 2014.

of instances of violations in the codebase over time. For
the ClangTidy analyzer, we are able to see that showing re-
sults in code review not only prevents new problems from
entering the codebase, but also decreases the total num-
ber of problems as people learn about the new check. Fig-
ure 8 shows the number of occurrences of the ClangTidy
misc-redundant-smartptr-get check per week; this check
identifies cases where there is an unneeded “.get()” call on
a smart pointer. The vertical line is when this check began
being shown in TRICORDER. After adding the check to TRI-
CORDER the number of instances in the codebase decreased
dramatically as developers recognized the inappropriate cod-
ing pattern, stopped making such mistakes in new code, and
fixed existing occurrences elsewhere in the code. Figure 8 also
shows a sampling of trend lines for other ClangTidy fixes;
they all show a similar pattern of drop-off or level-off after
the check is enabled in TRICORDER. The checks which only
level-off are typically checks with more complicated, non-local
fixes.

c) Pluggability: TRICORDER is easy to plug into. We
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Fig. 8: Instances in the codebase of violations of several
ClangTidy checks. The large graph shows the number of vio-
lations in the codebase of the check misc-redundant-smartptr-
get, the smaller graphs show similar trends for other ClangTidy
Checks.

evaluate this by demonstrating that a variety of analyses have
successfully plugged in. As discussed in Section IV-C, more
than 30 different analyses are running in TRICORDER. Figure 2
shows a selection of 16 TRICORDER analyzers; these analyz-
ers span a breadth of languages and problems highlighted. 13
of the 16 analyzers in this table (all except Formatter, Build-
Deprecation, Builder) were contributed by members of more
than 10 other teams. Many additional developers contributed
plug-ins to analyzers such as ErrorProne, ClangTidy, or the
Linter.

d) Scalability: TRICORDER scales to a very large code-
base. To evaluate this, we are running TRICORDER against all
changelist snapshots produced each day at Google. Figure 9
shows the average, median, and max counts of several scaling
metrics for TRICORDER.

On an average day we run TRICORDER on 31K snapshots,
each with an average size of 12 files, and we report findings for
several categories and languages. In contrast, ReviewBot [7]

Average Median Max
TRICORDER runs/day 31K 38K 66K
Findings/day 93K 127K 183K
Builds/day 4K 6K 9K
Analyzer runs/day 81K 93K 208K
Files/CL 12 1 333K
Languages/CL 1 1 22
Findings/CL 14 1 5K
“Please fix”/CL 2 1 81
“Not useful”/CL 0.14 0 20
“Please fix”/day 716 907 1786
“Not useful”/day 48 52 123

Fig. 9: Scalability numbers for TRICORDER, in terms of per
day or per changelist (CL), collected over 90 days.

was evaluated on 34 review requests (corresponding to change
lists), compared to the millions we have used to evaluate TRI-
CORDER. On average, each snapshot contains files from one
language, with a max of 22 languages. In total for one day, we
report an average of 93K findings for around 30 categories.
TRICORDER also runs close to 5K builds per day. Each day, re-
viewers click PLEASE FIX on an average of 716 findings (416
from the Linters), but only 48 findings get a not-useful click.
An average CL has two please-fix clicks and no not-useful
clicks. Even though we are producing considerably more find-
ings than are clicked on, most are not actually shown in the
review as they appear on unchanged lines.6

VI. RELATED WORK

A previous study investigated why developers do not use
static analysis tools to find bugs, collecting results from in-
terviews with 20 developers [23]. Many of the conclusions of
this study match our experiences with experimenting with var-
ious program analysis tools. TRICORDER addresses the main
pain points identified by this study. For example, TRICORDER
continuously ensures that tool output improves and results are
understandable by maintaining a tight feedback loop. TRI-
CORDER also enables collaboration around the tool results
by code review integration; reviewers can suggest or com-
ment on static analysis results. This study also highlighted the
importance of workflow integration, a main design point of
TRICORDER.

There is a wide breadth of research on static analysis
tools; we can only describe a portion of the existing tools
here. FindBugs [18] is a heuristic-based bug finding tool that
runs on Java bytecode. Coverity [12], Klocwork [24], and
Semmle [37], [14] are commercial tools focused on static
analysis. Linting tools such as Checkstyle (java) and Pylint
(Python) are primarily focused on style issues (spacing, where
to break lines, etc) [9], [32].

Analysis results, along with quick-fixes, are also often sur-
faced in IDEs such as Eclipse [41] and Intellij [22]. We could

6Unfortunately, we do not have the ability to measure how many results
are viewed by developers.



surface TRICORDER results here too by calling out to our ser-
vice from within the IDE. Many commercial tools also show
results in a dashboard format [12], [37], [24]; while we do
have dashboards, we found that this was only useful for anal-
ysis writers to help them improve the quality of the analyzers.

Other large companies, such as Microsoft are actively exper-
imenting with ways to integrate static analysis into developer
workflow [25]. Ebay has developed methods for evaluating
and comparing the value of different static analysis tools un-
der experimentation [21]. IBM has also experimented with a
service-based approach to static analysis [30]. This work was
evaluated through a pilot and surveys with several teams at
IBM, and they identified several areas for improvement. TRI-
CORDER addresses each of these improvements: it is integrated
into the developer workflow (instead of running in a batch
mode), it is pluggable and supports analyses written by other
teams, and it includes a feedback loop to analysis writers to
improve the platform and analyzers.

One previously published system, called ReviewBot,
showed static analysis results in code review [6], [7]. Re-
viewBot differs from TRICORDER in that reviewers have to
explicitly call ReviewBot, analysis results are not shown to
reviewers, only three (Java) static analysis tools are currently
supported. ReviewBot also added the ability to provide fixes;
this fix system is completely decoupled from the analysis re-
sults themselves. In contrast, TRICORDER fixes are produced
by analyzers, and our mechanism for applying fixes (from
structured analysis results) is language-agnostic.

Unlike prior work, we evaluated TRICORDER during the
developer workflow, not as a survey of results generated and
seen by developers outside of their work environment. This
evaluation style allows us to see how developers react in prac-
tice, rather than in a lab setting.

VII. DISCUSSION

TRICORDER has been deployed in production since July
2013. Through implementing, launching and monitoring TRI-
CORDER, we have learned several interesting things about how
to make program analysis work. In Section III, we outlined our
philosophy both in terms of goals for our system and lessons
learned from past experiences. We now revisit our goals and
the presented evaluation.

Make data-driven usability improvements. In the end, de-
velopers will decide whether an analysis tool has high impact
and what they consider a false positive to be. Developers do
not like false positives. This is why it is important to listen
to feedback from developers and to act on it. An average of
93K findings per day receive an average of 716 PLEASE FIX
and 48 NOT USEFUL clicks. We pay close attention to these
clicks, and if needed we put analyzers on probation. We dis-
cuss improvements with analyzer writers and encourage them
to improve their analyzer – an improvement that may be as
simple as updating the wording of results.

Empower users to contribute. TRICORDER does this by
providing a pluggable framework which enables developers
to easily contribute analyses within their area of expertise. In

fact, the majority of all analyses running in TRICORDER are
analyses contributed by developers outside the team managing
TRICORDER itself.

Workflow integration is key. As with a previously pre-
sented tool from VMWare [7], we have found that code re-
view is an excellent time to show analysis results. Devel-
opers receive feedback before changes are checked in, and
the mechanism for displaying analysis results is uniform – no
matter which IDE or development environment was previously
used. There is also peer accountability as reviewers can see
and respond to analysis results; reviewers click PLEASE FIX
an average of 5117 times each week.

Project customization, not user customization. Based on
experience, we have found that customization at project level
is most successful, compared to customization down to user
level. This provides flexibility so that teams of developers can
have a joint approach to how the code for a project should
be developed, and avoids disagreements about analysis results
between developers which may lead to results being ignored.

In addition to the above, some things should be mentioned
about sophistication, scalability and fixes. All of the checks
described in Figure 2 are relatively simple. We are not using
any control or data-flow information, pointer analysis, whole-
program analysis, abstract interpretation, or other similar tech-
niques. Nonetheless, they find real problems for developers
and provide a good payoff. That is, there is big impact for
relatively simple checks.7 In general, we have been more
successful with analyses that provide a suggested fix. Analy-
sis tools should fix bugs, not just find them. There is less
confusion about how to address the problem, and the abil-
ity to automatically apply a fix provided by the tool reduces
the need for context switches. Finally, to ensure analyses can
run even at Google’s scale, program analysis tools should
be shardable. Think about an analysis tool as something to
map-reduce across large sets of programs.

Final thoughts. In this paper, we presented a static analysis
platform, but also our philosophy on how to create such a plat-
form. It is our goal to encourage analysis writers to consider
this philosophy when creating new tools and all the tradeoffs
of their tool, not just the technically-defined false positive rate
or the speed of the analysis. We also encourage other compa-
nies, even if they have tried program analysis tools before, to
try again with this philosophy in mind. While we also failed
to use static analysis tools widely for many years, there is a
large payoff for finally getting it right.
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