
Differential Synchronization

Neil Fraser
Google

1600 Amphitheatre Parkway
Mountain View, CA, 94043

fraser@google.com

ABSTRACT
This paper describes the Differential Synchronization (DS)
method for keeping documents synchronized. The key feature of
DS is that it is simple and well suited for use in both novel and
existing state-based applications without requiring application
redesign. DS uses deltas to make efficient use of bandwidth, and
is fault-tolerant, allowing copies to converge in spite of occasional
errors. We consider practical implementation of DS and describe
some techniques to improve its performance in a browser
environment.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Collaborative
computing
I.7.1 [Document and Text Processing]: Version control

General Terms: Algorithms, Performance, Reliability.

Keywords: Synchronization, Collaboration.

1. INTRODUCTION
The increased availability of always-on Internet connections has
increased the demand for applications which allow multiple users
to collaborate with each other in real-time. Many such
applications exist, including Google Docs, SubEthaEdit and
Mozilla Bespin. At the heart of each application is a choice of
synchronization algorithm. In our experience this choice is
usually made early in the development cycle, is very difficult to
change later, and has a major impact on all the operating
characteristics of the application.

In this paper we present Differential Synchronization (DS), which
is a minimalistic synchronization mechanism, whose design goal
is to have minimal impact on application design. This goal also
makes DS suited for use in existing applications.

DS is a state-based optimistic synchronization algorithm.[13] The
synchronization topology is a tree, with changes converging on
inner nodes, and thus no elaborate versioning model is needed to
capture causality. Concurrent changes are reconciled by patching
the changes from one peer into the copy on another. Changes are
detected by differencing the current state against the previously

established state, yielding a diff. Updates are propagated between
peers as that diff.

This algorithm's main attributes are:

• Symmetrical with (nearly) identical code running on both
client and server.

• It is state-based and does thus not require that applications
maintain a history of edits.

• Asynchronous, which eliminates blocking user input while
waiting for a response over the network.

• Forgiving of unreliable and high-latency networks.

• Convergent, errors do not cause different copies to diverge.

• Suitable for any content for which semantic diff and patch
algorithms exist.

• Highly scalable.

As of this writing, the major users of DS are the set of code
editors which use or are compatible with MobWrite[4], such as
Eclipse, Bespin1 and Gedit2. Using DS as a standard
synchronization system between them allows users of one editor
to collaborate with users of any other editor. Typical use cases
include pair programming between distributed sites, the ability to
invite a remote expert to debug some code in an active session,
and enabling employers to watch and interact with code being
written by a candidate during a telephone job interview.

One unexpected use for DS involves online applications desiring
autosave functionality. In such applications it is not uncommon
for a user to inadvertently end up collaborating with himself:

1. User makes changes using a desktop. System autosaves.

2. User opens application with a laptop. System restores from
autosave.

3. User makes changes from the laptop. System autosaves.

4. User switches back to the desktop which had been left open.
System autosaves, destroying work done on the laptop.

With DS keeping all open versions constantly in sync, the user's
keystrokes are mirrored in close to real-time across all his
terminals. Thus the user does not need to be aware of his
workflow and can submit the content from any terminal while
being assured that all edits are present.

1 https://bespin.mozilla.com/
2 http://groups.google.com/group/patchworkeditor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09...$10.00.

https://bespin.mozilla.com/
http://groups.google.com/group/patchworkeditor

2. ALTERNATIVE STRATEGIES
Three common approaches to synchronization are the pessimistic
approach, edit-based and three-way merges. These methods are
conceptually simple, but all have drawbacks.

2.1 Pessimistic
The pessimistic approach is the simplest. In its most basic form, a
shared document may only be edited by one user at a time. A
familiar example is Microsoft Word's behaviour when opening a
document on a networked drive.[9] The first user to open the
document has global write access, while all others have read-only
access. This does not allow for real-time collaboration by
multiple users.

A refinement would be to dynamically lock and release
subsections of the document. However this still prevents close
collaboration. Subsection locking also restricts editability when
the document is small. Furthermore, support for fine-grained
locking would have to be explicitly built into the application.

Finally, the pessimistic model is ill-suited for operation in
environments with unreliable connectivity.

2.2 Edit-based
The edit-based approach is also simple. It relies on capturing all
user actions and mirroring them across the network to other users.
Algorithms based on Operation Transformation[1] are currently
popular for implementing edit-based collaborative systems.

Obtaining a snapshot of the state is usually trivial, but capturing
edits is a different matter altogether. A practical challenge with
edit-based synchronization is that all user actions must be
captured. Obvious ones include typing, but edits such as cut,
paste, drag, drop, replacements and autocorrect must also be
caught. The richness of modern user interfaces can make this
problematic, especially within a browser-based environment.

Any failure during edit passing results in a fork. Since each edit
changes the location of subsequent edits, one lost edit may cause
subsequent edits to be applied incorrectly, thus increasing the gap
between the two versions. This is further complicated by the best-
effort nature of most networking systems. If a packet gets lost or
significantly delayed, the system must be able to recover
gracefully.

Edit-based collaborative systems are not naturally convergent.

2.3 Three-way merges
Three-way merges are found in Subversion,[12] the Mjølner
Project,[10] Google
Docs[6] and many
other products. An
overview of the
process is shown in
Figure 1:

1. The client
sends the
contents of the
document to
the server.

2. The server
performs a

three-way merge to extract the user's changes and merge
them with changes from other users.

3. The server sends a new copy of the document to the client.

If the user made any changes to the document during the time this
synchronization was in flight, the client is forced to throw the
newly received version away and try again later.3 This is a half-
duplex system: as long as one is typing, no changes are arriving.
Shortly after one stops typing, the input from other users is
integrated and either appears, or else a dialog pops up to let one
know that there was a collision.

This system could be compared to an automobile with a
windshield which becomes opaque while driving. Look at the
road ahead, then drive blindly for a bit, then stop and look again.
Major collisions become commonplace when everyone else on the
road has the same type of "look xor drive" cars.

Server-side three-way merges do not scale well when attempting
real-time collaboration across a network with latency.

3. DIFFERENTIAL
SYNCHRONIZATION OVERVIEW
DS is a symmetrical algorithm employing an unending cycle of
background difference (diff) and patch operations. There is no
requirement that "the chickens stop moving so we can count
them" which plagues server-side three-way merges.
Figure 2 is an idealized data flow diagram for DS. It assumes two
documents (misleadingly called Client Text and Server Text)
which are located on the same computer with no network.

Figure 2: Differential Synchronization without a network.
The following walk-through starts with Client Text, Common
Shadow and Server Text all being equal. Client Text and Server

3 The three-way merges in version control systems (such as
Subversion) usually happen on the clients, not the server.
However this leads to the same issue, merely in reverse. If the
server version updates while the client is merging, the client's
merge will not be accepted.

Figure 1: Three-way merge.

Text may be edited at any time. The goal is to keep these two
texts as close as possible with each other at all times.
1. Client Text is diffed against the Common Shadow.
2. This returns a list of edits which have been performed on

Client Text.
3. Client Text is copied over to Common Shadow. This copy

must be identical to the value of Client Text in step 1, so in a
multi-threaded environment a snapshot of the text should
have been taken.

4. The edits are applied to Server Text on a best-effort basis.
5. Server Text is updated with the result of the patch. Steps 4

and 5 must be atomic, but they do not have to be blocking;
they may be repeated until Server Text stays still long
enough.

The process now repeats symmetrically in the other direction.
This time the Common Shadow is the same as Client Text was in
the previous half of the synchronization, so the resulting diff will
return modifications made to Server Text, not the result of the
patch in step 5.
The enabling feature is that the patch algorithm is fuzzy, meaning
patches may be applied even if the document has changed. Thus
if the client has typed a few keystrokes in the time that the
synchronization took to complete, the patches from the server are
likely to have enough recognizable context that they may still be
applied successfully. However, if some or all of the patches fail
in step 4, they will automatically show up negatively in the
following diff and will be patched out of the Client Text. Here's
an example of actual data flow.
a. Client Text, Common Shadow and Server Text start out with

the same string: "Macs had the original point and click UI."
b. Client Text is edited (by the user) to say: "Macintoshes had

the original point and click interface." (edits underlined)
c. The Diff in step 1 returns the following two edits4:

@@ -1,11 +1,18 @@
 Mac
+intoshe
 s had th
@@ -35,7 +42,14 @@
 ick
-UI
+interface
 .

d. Common Shadow is updated to also say: "Macintoshes had
the original point and click interface."

e. Meanwhile Server Text has been edited (by another user) to
say: "Smith & Wesson had the original point and click UI."
(edits underlined)

f. In step 4 both edits are patched onto Server Text. The first
edit fails since the context has changed too much to insert
"intoshe" anywhere meaningful. The second edit succeeds
perfectly since the context matches.

4 Edits are shown in the standard Unidiff format, but character-
based instead of line-based. Lines starting with '@@' contain the
expected location for the following edit, lines starting with '+'
are insertions, lines starting with '-' are deletions, and the rest is
unchanging context.

g. Step 5 results in a Server Text which says: "Smith & Wesson
had the original point and click interface."

h. Now the reverse process starts. First the Diff compares
Server Text with Common Shadow and returns the following
edit:
@@ -1,15 +1,18 @@
-Macintoshes
+Smith & Wesson
 had

i. Finally this patch is applied to Client Text, thus backing out
the failed "Macs" → "Macintoshes" edit and replacing it with
"Smith & Wesson". The "UI" → "interface" edit is left
untouched. Any changes which have been made to Client
Text in the mean time will be patched around and
incorporated into the next synchronization cycle.

4. DUAL SHADOW METHOD
The method described above is the simplest form of differential
synchronization, but it will not work on client-server systems
since the Common Shadow is, well, common. In order to execute
on two systems, the shadow needs to be split in two and updated
separately. Conceptually the dual shadow method shown in
Figure 3 is the same algorithm as the simpler version presented in
Figure 2.

Figure 3: Differential Synchronization with shadows.
Client Text and Server Shadow (or symmetrically Server Text and
Client Shadow) must be absolutely identical after every half of the
synchronization. This should be the case since "(v1 Diff v2)
Patch v1 == v2". Thus assuming the system starts in a consistent
state, it should remain in a consistent state. Note that the patches
on the shadows should fit perfectly, thus they may be fragile
patches, whereas the patches on the texts are best-effort fuzzy
patches.
However, on a network with best-effort delivery, nothing is
guaranteed. Therefore a simple checksum of Client Shadow
ought to be sent along with the Edits and compared to Server
Shadow after the patches have been applied. If the checksum fails
to match, then something went wrong and one side or the other
must transmit the whole body of the text to get the two parties
back in sync. This will result in data loss equal to one
synchronization cycle.

5. GUARANTEED DELIVERY
METHOD
In the event of a transitory network failure, an outbound or a
return packet may get lost. In this case the client might stop
synchronizing for a while until the connection times out. When
the connection is restored on the following synchronization, the
shadows will be out of sync which requires a transmission of the
full text to get back in sync. This will destroy all changes since
the previous successful synchronization. If this form of data-loss
is unacceptable, a further refinement shown in Figure 4 adds
guaranteed delivery.

Figure 4: Differential Synchronization with guaranteed
delivery.
In a nutshell: Normal operation works identically to the Dual
System Method described above. However in the case of packet
loss, the edits are queued up in a stack and are retransmitted to the
remote party on every sync until the remote party returns an
acknowledgment of receipt. The server keeps two copies of the
shadow, "Server Shadow" is the most up to date copy, and
"Backup Shadow" is the previous version for use in the event that
the previous transmission was not received.
Normal operation: Client Text is changed by the user. A Diff is
computed between Client Text and Client Shadow to obtain a set
of edits which were made by the user. These edits are tagged with
a client version number ('n') relating to the version of Client
Shadow they were created from. Client Shadow is updated to
reflect the current value of Client Text, and the client version
number is incremented. The edits are sent to the server along with
the client's acknowledgment of the current server version number
('m') from the previous connection. The server's Server Shadow
should match both the provided client version number and the
provided server version number. The server patches the edits onto
Server Shadow, increments the client version number of Server
Shadow and takes a backup of Server Shadow into Backup
Shadow. Finally the server then patches the edits onto Server
Text. The process then repeats symmetrically from the server to
the client, with the exception that the client doesn't take a backup
shadow. During the return communication the server will inform
the client that it received the edits for version 'n', whereupon the
client will delete edits 'n' from the stack of edits to send.

Duplicate packet5: The client appears to send Edits 'n' to the server
twice. The first communication is processed normally and the
response sent. Server Shadow's 'n' is incremented. The second
communication contains an 'n' smaller than the 'n' recorded on
Server Shadow. The server has no interest in edits it has already
processed, so does nothing and sends back a normal response.
Lost outbound packet: The client sends Edits 'n' to the server. The
server never receives it. The server never acknowledges receipt of
the edit. The client leaves the edits in the outbound stack. After
the connection times out, the client takes another diff, updates the
'n' again, and sends both sets of edits to the server. The stack of
edits transmitted keeps increasing until the server eventually
responds with acknowledgment that it got a certain version.
Lost return packet: The client sends Edits 'n' to the server. The
server receives it, but the response is lost. The client leaves the
edits in the outbound stack. After the connection times out, the
client takes another diff, updates the 'n' again, and sends both sets
of edits to the server. The server observes that the server version
number 'm' which the client is sending does not match the server
version number on Server Shadow. But both server and client
version numbers do match the Backup Shadow. This indicates
that the previous response must have been lost. Therefore the
server deletes its edit stack and copies the Backup Shadow into
Shadow Text (step 4)6. The server throws away the first edit
because it already processed (same as a duplicate packet). The
normal workflow is restored: the server applies the second edit,
then computes and transmits a fresh diff to the client.
Out of order packet: The server appears to lose a packet, and one
(or both) of the lost packet scenarios is played out. Then the lost
packet arrives, and the duplicate packet scenario is played out.
Data corruption in memory or network: There are too many
potential failure points to list,[14] however if the shadow
checksums become out of sync, or one side's version number
skips into the future, the system will reinitialize itself. This will
result in data loss for one side, but it will never result in an
infinite loop of polling.

5.1 Asymmetry
An obvious question is that given the otherwise perfect symmetry
between client and server, why does the server have a Backup
Shadow whereas the client does not? The source of this
asymmetry is the asymmetrical nature of the connections. In a
web-based client-server configuration, the client is the only entity
which can initiate a connection. Depending on data losses, there
are only three possible outcomes: 1) client sends data which is
lost before reaching the server, 2) client sends data to server, but
server's response is lost before reaching client, 3) client and server
complete a successful round-trip. Notably missing is the
possibility that the client's data is lost but the server's data is
received. Every time the server sends information to the client,
that implies a successful connection must have been established

5 If using TCP/IP, duplicate and out of order packets should
theoretically be impossible. However experience shows that
there are a lot of routers and proxies on the Internet which take
shortcuts and make mistakes.

6 An alternative strategy would be to use the diffs in the edit
stack to reverse patch the shadow back to the required version.
This obviates the need for the backup shadow. While saving
storage space, this is somewhat more computationally complex.

from the client to the server. Thus the server cannot get into a
situation where it repeatedly sends packets to the client which
don't arrive — while not obtaining any packets from the client.

The client could implement a Backup Shadow, but it would never
get used when run on a web-based client-server architecture. For
symmetrical architectures (e.g. peer-to-peer or server-to-server)
where either side can initiate a connection to the other, then a
Backup Shadow would be required on both sides.

6. TOPOLOGY
The above diagrams demonstrate synchronization between two
parties, either a user and a server, or a pair of users. Figure 5
illustrates how the same synchronization strategy can be
multiplied to service any number of additional clients in a server-
centric network. The Server Text for each synchronization loop is
common with all the other loops. When Client 1 changes his
document, Server Text is updated upon the next synchronization
cycle, and those changes are passed on to all other clients on the
following cycle.

Figure 5: Six client, one server synchronization network.
Scalability may become an issue as the number of clients increase.
Diff and patch can be expensive operations, thus a server may
become overloaded. There are two simple methods of distributing
the system onto multiple servers.

One method illustrated in Figure 6 is to separate the database from
the algorithm. Thus one database would service any number of
load-balanced servers. A client could hit any server, and as long
as the view of the shared database is identical across all servers,
the system remains consistent.

Figure 6: Many servers, single database.
Another method illustrated in Figure 7 is to introduce a server-to-
server topology. In the diagram below, the clients are divided
equally between two servers and the two servers are linked to each
other with exactly the same type of connection as between the
servers and the clients. Additional servers may be added
seamlessly whenever capacity is exceeded. Servers may only be
removed when all their clients depart and they only have a single
connection to another server.

Figure 7: Six client, two server synchronization network.
As the network expands, a potential problem is latency. Each link
might synchronize every five seconds (see section 8). Thus it
would take a change from Client 1 up to fifteen seconds to appear
for Client 4. As latency increases, so does the potential for non-
trivial collisions. Accordingly it is important to avoid a long
chain of servers; a balanced tree offers the shortest path between
clients, and thus the least latency.

Latency may also be reduced by significantly increasing the
synchronization frequency between servers. If the servers are
located next to each other, then there is no bandwidth cost in
synchronizing several times a second.

7. DIFF AND PATCH
All the examples in this paper have shown synchronization of
plain text. DS can handle any content (plain text, rich text,
bitmaps, vector graphics, etc) as long as a difference algorithm
and a fuzzy patch algorithm are available for the content.

As the only computationally expensive components of DS,
improving the efficiency of these algorithms dramatically
improves the responsiveness and scalability of the system.
Likewise, improving the accuracy of these algorithms greatly
reduces the number and severity of collisions.

7.1 Diff
The diff operation is fulfilling two very different roles within the
synchronization cycle. The first is to update Server Shadow with
the current content of Client Text and Client Shadow. The result
should make all three texts identical. This is a simple task which
could use any form of synchronization; diff, delta edits[7] or even
transmission of the full text. The second operation is more of a
challenge: updating Server Text with the changes made to Client
Text. Server Text may have changed in the mean time, which
means that the diff must be semantically meaningful.

For instance, if the word "cat" was deleted and replaced with
"hag", then technically one could think of it as the replacement of
the first and third letters, with the second letter being preserved.
This would be the minimal diff.

Client Text: The cat is here.
Client Shadow: The hag is here.
Minimal Diff: The chatg is here.
Semantic Diff: The cathag is here.

But this was not the semantic intent of the user. The user changed
the word, not two letters. The fact that 'a' was the same in both
words was completely coincidental. This distinction matters
because if in the mean time another user changed the server's text
from "cat" to "cut", the result when applying the first user's patch
should be either "hag" (client wins) or "cut" (server wins), but
certainly not "hug" (merged differences). An algorithm must be
used to expand minimal diffs into semantically meaningful diffs.
[2]

Another issue with diff is its lack of scalability. The leading
plain-text diff algorithm is O(nd) where n is the length of the text
and d is the length of the changes.[11] Clearly this does not scale
for long documents or large edits. Fortunately the general-
purpose diff algorithm can be wrapped inside a number of
shortcuts which typically obviate the need to run this expensive
algorithm at all.[2] The following three shortcuts apply
specifically to plain-text differencing, but variations of them may
be applicable to other content.

7.1.1 Equality
The overwhelming majority of diffs in DS are comparing two
identical texts with each other. Detecting this special case can be
done with a single == operation.

7.1.2 Common Prefix/Suffix
If there is any commonality at all between the texts, it is likely that
they will share a common substring at the start and/or the end.

Text1: The cat.
Text2: The black cat.

After removing the common prefix and suffix in this example one
gets "" (the empty string) and "black " respectively. Identifying
the common prefix or suffix can be done in linear time with a
simple loop, or by comparing substrings in a binary search.
Figure 8 shows a test of the running time of these two algorithms
as n increases geometrically.

Figure 8: Performance of Linear vs. Binary search algorithms.
The linear search scales at O(n) as expected. The binary search
scales at O(log n). This result is counter-intuitive given that the
binary search ought to be O(n log n) when one considers that an
equality operation itself is likely to be O(n). However within the
context of a high-level language, the performance of low-level
operations such as "==" effectively becomes O(1). The data
graphed above comes from timings of a JavaScript
implementation; tests in Python show the same pattern.
Obviously in a low-level language such as C the linear search
would be superior to the binary search.

7.1.3 Singular Insertion/Deletion
After the common prefix and suffix are trimmed off, it is very
common that one or the other strings is empty. The above
example resulted in "" (the empty string) and "black " which
clearly represents an insertion of "black ". In the case where the
second string is the empty string, then the operation is a deletion.
Neither case requires running the general-purpose difference
algorithm.
The net result of these three shortcuts is that if a diff is executed
frequently enough to catch each change individually (where one
change can be an insertion or a deletion of arbitrary length), then
the general-purpose difference algorithm is never executed and
performance becomes O(log n) for languages where string
equality is a constant time operation and O(n) for languages where
string equality is linear.
Of course there remains the pathological case of an instantaneous
change of the whole document. Consider selecting all the existing
text then pasting new text from the clipboard. To guard against
this case the difference algorithm can be equipped with a timeout
which if reached will cause it to simply return a deletion of the old
text and an insertion of the new text. While this may not be the
minimal difference, it is likely in such cases to be the semantic
intent of the user and thus preferred in the context of DS.

7.2 Patch
The patch operation is just as critical to the operation of the
system. This system requires that patches be applied in and

around text which may not exactly match the expected text.
Furthermore, patches must be applied 'delicately', taking care not
to overwrite changes which do not need to be overwritten.

Patch must look at two (potentially conflicting) variables when
attempting to find the correct place to make an insertion. The first
is to find text with the smallest Levenshtein distance between the
expected text (based on the context of the patch) and the actual
text.[5] The second is to find a location reasonably close to the
expected location of the patch. It is probably more correct to
apply a patch onto a near-match at the expected location than to a
perfect match at the other end of the document.

The Bitap algorithm offers a remarkably efficient method of
locating near-matches in plain-text.[15] Once the best match
location is identified, a diff can be run against the expected text
and the actual text, thus creating an accurate translation matrix of
indices from one text to the other.[3] The index of the patch may
then be updated, and finally the patch may be applied.

User complaints identified one necessary exception to the
requirement of delicate patching. In cases where the shared
content is entirely numeric or part of a limited set of allowable
values, the patches should not be merged. Consider the following
text merge:

Base: cat
User1: Cat
User2: cats
Merge: Cats

While this is an ideal merge of the users' combined intentions, the
same merge when done with numbers is clearly not correct:

Base: 145
User1: 845
User2: 1459
Merge: 8459

A similar case is found when collaborating a field that has
enumerated types, such as a dropdown list of the days of the week
('Monturday' is not usually acceptable). In cases of non-mergable
content, patching should simply be skipped, and a "last user wins"
approach taken.

7.2.1 Handling Collisions
Implementations of DS must consider the consequences of patch
errors. This is a usability issue, not an algorithmic one. Some
applications may choose synchronize very frequently and quietly
drop patches which don't fit. The advantage of this option is that
in the event of a collision there are at least two users whose
attention is currently focused on the offending area, and either one
of them can correct the content which they typed in the past
second or two.

Other applications may choose to synchronize less frequently and
require user interaction on failed patches. This might be in the
form of inline annotations that the users can resolve when they
wish. The advantage of this option is that users' content is never
dropped or mangled.

8. ADAPTIVE TIMING
The frequency of each client's update cycle is a key factor in
determining the responsiveness of the system. Insufficiently
frequent updates result in more computationally expensive diff
and patch operations, major edit collisions, merge failures, and
frustration when attempting to interact with other users. Overly

frequent updates result in higher network traffic and increased
system load.

An advantage of the Guaranteed Delivery Method described
above is that it decouples the differencing operation from the
network transmission. Diffs can be taken at frequent intervals (to
conserve CPU resources), added to the edit stack, then transmitted
in batches at a slower rate (to conserve network resources).

An adaptive system can continuously modify the network
synchronization frequency for each client based on current
activity. Hard-coded upper and lower limits would be defined to
keep the cycle within a reasonable range (e.g. 1 second and 10
seconds respectively). User activity and remote activity would
both decrease the time between updates (e.g. halving the period).
Sending and receiving an empty update would increase the time
between updates (e.g. increasing the period by one second). This
adaptive timing automatically tunes the update frequency so that
each client gradually backs off when activity is low, and quickly
reengages when activity is high.

9. FUTURE WORK
The fuzzy patch operation is actually a simple implementation of a
three-way merge. The two branches (Server Text and the post-
update Server Shadow) and the base version (the pre-update
Server Shadow) are all available on the server. Thus one could
choose instead to use one of the many other three-way merge
algorithms which are available.[8] Naturally the same
opportunity applies on the client side.

One limitation of DS as described here is that only one
synchronization packet may be in flight at any given time. This
would be a problem if there was very significant latency in the
connection. An example would be a client on Mars and a server
on Earth. A half hour for the round trip at the speed of light is
unavoidable, however it would be better to send a continuous
stream of updates in each direction, not waiting for the reply to
arrive. The algorithm does not currently support this feature.

Another avenue for exploration would be to keep track of which
user was responsible for which edits. Currently the edits from all
users are blended together on the server, making attribution
difficult. Untangling this blend would allow incoming edits to be
visually attributed to specific users, as well as potentially allowing
rollbacks of individual contributions and other features available
in source control systems.

10. CONCLUSIONS
Differential Synchronization builds upon existing difference and
patch algorithms to produce a robust collaborative platform. The
use of differences eliminates the need to detect edit events directly
and makes the system naturally convergent. The guaranteed
synchronization method solves both the problem of network
failures and the problem of batching small (more efficient) edits
into one connection.

Differential Synchronization has proven itself to work extremely
well as implemented by MobWrite and compatible systems. It is
impressively accommodating of multiple users who are working
on the same text. Tests consistently show that MobWrite's
technical scalability far exceeds the point where social scalability
breaks down. The limits of social scalability depend on the nature

of the collaborators, the size of the document and the nature of the
tasks being performed. For example a dozen coworkers
simultaneously fixing OCR errors in a large document works well,
whereas a single anonymous web user on an open wiki can render
it unusable. By contrast, the limit of technical scalability on an
existing single-server implementation has been load tested as
lying in the 100 edits per second range.

A finding from user observation is that some form of
communication channel should be available to collaborators. This
may take the form of instant messaging, the telephone or just
talking over a cubical wall. Failure to provide an out-of-band
channel will result in users subverting the system to create an in-
band channel. Documents end up littered with temporary user-to-
user chat messages which they often forget to clean up afterwards.

11. ACKNOWLEDGEMENTS
Tancred Lindholm provided extensive guidance on improving this
paper for which I am deeply grateful.

12. REFERENCES
[1] Ellis, C.A. and Gibbs, S.J. 1989. Concurrency control in

groupware systems. In International Conference on
Management of Data (SIGMOD). Portland, OR.

[2] Fraser, N. Diff Strategies. Retrieved April 13 2009:
http://neil.fraser.name/writing/diff/

[3] Fraser, N. Fuzzy Patch. Retrieved April 13 2009:
http://neil.fraser.name/writing/patch/

[4] Fraser, N. MobWrite. Retrieved April 13 2009:
http://code.google.com/p/google-mobwrite/

[5] Levenshtein V.I., Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady
10 (1966): 707–710.

[6] Lindholm, T. A three-way merge for XML documents. In
Symposium on Document Engineering (DocEng) 2004,
Milwaukee, WI, October 2004.

[7] MacDonald, J. File system support for delta compression.
Masters thesis. Department of Electrical Engineering and
Computer Science, University of California at Berkeley,
2000.

[8] Mens, T., A State-of-the-Art Survey on Software Merging,
IEEE Trans. Software Eng., vol. 28, no. 5, pp. 449-462, May
2002.

[9] Microsoft Knowledge Base: File Locking in Master
Documents, Article ID 176313. Retrieved April 13 2009:
http://support.microsoft.com/default.aspx?scid=kb;EN-
US;176313

[10] Minör, S. and Magnusson, B., A Model for Semi-
(a)Synchronous Collaborative Editing, Proceedings of
ECSCW’93, Third European Conference on Computer
Supported Cooperative Work, Milano, Kluwer Academic
Publishers, 1993.

[11] Myers, E.: An O(ND) Difference Algorithm and its
Variations. Algorithmica 1(2): 251-266 (1986).

[12] Pilato, C.M., Collins-Sussman, B. and Fitzpatrick, B.W.
Version Control with Subversion, 2nd Edition. O'Reilly,
Sebastopol, 2008, 121-122.

[13] Saito, Y. and Shapiro, M., Optimistic Replication, ACM
Computing Surveys (CSUR), vol 37, issue 1, pp. 42-81,
March 2005.

[14] Stone, J. and Partridge, C., When The CRC and TCP
Checksum Disagree, Proceedings of 2000 SIGCOMM,
Stockholm, Sweden, August 28 - September 1, 2000.

[15] Wu, S., and Manber, U., Fast text searching with errors,
Tech. Rep. TR-91-11. Department of Computer Science,
University of Arizona., Tucson, AZ, June 1991.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;176313
http://support.microsoft.com/default.aspx?scid=kb;EN-US;176313
http://code.google.com/p/google-mobwrite/
http://neil.fraser.name/writing/patch/
http://neil.fraser.name/writing/diff/

	1. INTRODUCTION
	2. ALTERNATIVE STRATEGIES
	2.1 Pessimistic
	2.2 Edit-based
	2.3 Three-way merges

	3. DIFFERENTIAL SYNCHRONIZATION OVERVIEW
	4. DUAL SHADOW METHOD
	5. GUARANTEED DELIVERY METHOD
	5.1 Asymmetry

	6. TOPOLOGY
	7. DIFF AND PATCH
	7.1 Diff
	7.1.1 Equality
	7.1.2 Common Prefix/Suffix
	7.1.3 Singular Insertion/Deletion

	7.2 Patch
	7.2.1 Handling Collisions

	8. ADAPTIVE TIMING
	9. FUTURE WORK
	10. CONCLUSIONS
	11. ACKNOWLEDGEMENTS
	12. REFERENCES

