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Abstract

This thesis describes the applicability of return-oriented programming on the ARM architecture.
In the pursuit to defend against failures in software programs, defence mechanisms have been
developed and are applied to almost all operating systems. One defence mechanism commonly
used to defend against certain types of attacks is the use of non-executable memory regions.
Return-oriented programming is a technique which circumvents this defence mechanism by using
already existing code sequences, which can be chained to form an arbitrary program without
the injection of code. In this thesis, a novel approach for the search for code sequences is
presented that uses the REIL meta-language. With a focus on ARM as the target architecture,
the novel approach presented here enables the analysis of library code to automatically identify
code fragments for use in return-oriented programming. While the focus is on ARM, the work is
largely independent of the underlying architecture. To the best of the author’s knowledge there is
no prior work that presents return-oriented programming on the ARM platform.





1. Introduction

1.1. Introduction

This thesis describes return-oriented programming on the ARM architecture. Furthermore, meth-
ods are discussed that help to automatically identify code fragments (gadgets) that are used in
return-oriented programming. While there has been a reasonable amount of research on both
return-oriented programming and offensive computing on ARM, no public work has combined the
two so far.

Return-oriented programming is a recently-coined term [Shacham, 2007]. It has its origins in
the well-known ”return-into-library”-technique, but extends it to allow the execution of arbitrary
algorithms (including loops and conditional branches). While the ”return-into-library”-technique
is well-known, the publications which have provided the most significant contributions are the
works of Designer [1997a] and Wojtczuk [2001]. The work in Checkoway et al. [2009] shows
that the technique of return-oriented programming is not confined to academic scenarios, but has
practical applications and thus forms a significant addition to the offensive researchers tool chain.

The work presented in the field of offensive computing on the ARM architecture is dominated
by research in the mobile phone area. The publications of Mulliner and Miller [2009a,b], Mulliner
[2008] show a small number of examples of such research. Another field which received attention
is the SOHO 1 router and small network devices area.

This thesis focuses on mobile phones, for which quite some previous offensive work exists
[Hurman, San, 2005, Economou and Ortega, 2008], and furthermore Windows Mobile. Previous
security analysis work on this platform was done in [Mulliner, 2006, 2005, Leidner, 2007, Becher
et al., 2007].

1.2. Motivation

The ARM architecture is used in almost every mobile phone available today and even in some
recently-popularized netbooks. The vast amount of mobile phones which are constantly powered
on and have a constant network connectivity provide an interesting target for security research.

Desktop ! = mobile: Unlike the small number of mainstream operating systems used in mod-
ern desktop systems, the number and diversity of mainstream mobile operating systems is tremen-
dous. Even though modern mobile operating systems are in many ways comparable to modern
desktop operating systems, they still have unique characteristics. One of those characteristics is
that they enable an adversary to generate revenue for himself after an successful attack just with
using the phones capabilities to call premium numbers.

Security measures are often not adopted: Until now the necessity of defending mobile op-
erating systems against adversaries has often been underestimated. This manifests itself in the
limited use of defence mechanisms by mobile operating systems. Even though these defence
mechanism are widely deployed in mainstream desktop operating systems, vendors of mobile
operating systems often only implement one of the possible protection mechanisms into their
devices.

1Small home and office
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Defence mechanisms (Section 2.1) which are employed on operating systems include but are
not limited to:

• stack cookies / heap cookies

• code and data separation (NX bit)

• address space layout randomization

The goal is to develop ”return-oriented programming” which allows to attacker to bypass NX bit
protection.

Portability is a key factor: The focus of this thesis is the ARM architecture. But to be able to
solve similar tasks on other architectures efficiently in the future, algorithms need to be portable
across different architectures and adaptable to similar objectives. All previous work in the field
of return-oriented programming has failed to address portability and adaptability. With the use of
the platform-independent meta-language REIL [Dullien and Porst, 2008] it is possible to address
these issues and provide algorithms which can be used platform-independently and which are
adaptable to different problems.

1.3. Related work

Since the concepts in this thesis are easily ported to other operating systems, the related work
section focuses on the return-oriented programming side.

The first return-into-library exploit: In a mail to the Bugtraq [Focus] mailing list the first public
return-into-library exploit was presented by Solar Designer in August 1997 [Designer, 1997a]. The
exploit, presented for the Linux lpr command, showed that return-into-library exploits are possible
and may even prove to be simpler than exploits using injected shellcode. The most interesting
aspect of the work presented by Solar Designer is that he has always been a researcher involved
on both sides of the security game. Even though he provided the exploit and therefore proof that
this technique works, he also provided defensive mechanisms [Designer, 1997b].

Advanced return-into-library exploits: In 2001 Nergal published an article [Wojtczuk, 2001]
in the security magazine phrack which was devoted to the advancements of the return-into-library
techniques. In his work he describes the ideas and improvements to the technique which devel-
oped out of the original approach, and adds new methods and ideas which further contributed to
the field. In this article the unlimited chaining of functions within return-into-library exploits is de-
scribed and its possible uses are shown. This work was the first work to include function chunks to
shift the esp register, which is used to perform chaining of function calls, within return-into-library
exploits.

Borrowed code chunks technique: With the introduction of hardware-assisted non-executable
pages, common buffer overflow techniques became useless. Sebastian Krahmer postulated a
possible way to circumvent the protection mechanism introduced in his work [Krahmer, 2005].
Furthermore, classic return-into-library exploits would cease to function on 64 bit Linux machines
with proper page protection because the ABI 2 required the arguments of a function to be passed
in registers. Therefore he developed an method to get arguments from the stack into registers
and then call the desired function within the library. This enabled him to use the ”return-into-
library”-technique with the new ABI.

2Application binary interface
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Return-oriented programming on x86: In 2007 Hovav Shacham described the first Turing-
complete set of code chunks which he named gadgets. These gadgets could be used to form an
arbitrary program from code already present in the exploited target. The paper [Shacham, 2007]
provides three contributions that have since been used to further research the area of return-
oriented programming. He described an algorithm which is capable to recover code sequences
in x86 libraries with the use of a disassembling routine. He described the first gadget set which
became the starting point used in all later works in this field. He showed that return-oriented
programming is not only possible on Linux but also on other x86 based operating systems. His
last claim was that return-oriented programming on RISC machines would not be possible. He
believed this because of the strict alignment requirements of the instruction set and the resulting
scarcity of useful instruction sequences. This claim has been proven wrong in [Buchanan et al.,
2008].

Return-oriented programming goes RISC: In 2008 Ryan Glenn Roemer presented his work
[Buchanan et al., 2008, Roemer, 2009] in the field of return-oriented programming which was
greatly inspired by the work of Hovav Shacham and is in part a joint work of both. The work
presents the adoption of return-oriented programming to a RISC architecture (SPARC). This work
demonstrated that return-oriented programming is possible on strictly aligned instruction sets and
on machines that have completely different calling conventions compared to x86.

Return-oriented programming starts voting: In 2009 the paper [Checkoway et al., 2009]
shows an attack against a voting machine which had been used for elections in the United States.
This paper showed that the return-oriented programming technique was the only feasible way to
reliably exploit the targeted machine in a real life scenario. The reason for this explicit conclusion
is that the voting machine used a Harvard-type architecture which has code and data segments
completely separated from each other. This prevents any other type of software exploitation
technique. The main contributions of this paper in the field of return-oriented programming are:

• First real life example.

• Return-oriented programming in a scientific use case.

• Built a gadget set for a Harvard-type architecture.

Practical return-oriented approach Even though DEPlib [Sole] is not really a work in the field
of return-oriented programming, it has one major advantage over the other papers which are
listed as related work: It has a working implementation which is available. This work is important
because it focuses on the application of the tool chain rather than the scientific side. The primary
goal of the tool is not to provide a Turing-complete set of gadgets which can then be combined to
a gadget set but to aid an attacker with a powerful interface to circumvent possible problems and
to provide reliable exploitation. The main contribution of this work is to have built a tool around
previously known ideas and to make this tool reliable and useful.

1.4. Thesis

Our thesis is as follows:

Return-oriented programming on the ARM architecture is possible. If the binary code of li-
braries for a given operating system can be analysed, there exists an algorithm which can deter-
mine whether the given code can construct the necessary gadgets for return-oriented program-
ming. If the necessary gadgets for return-oriented programming exist, there exists an algorithm
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which can extract the pre- and post-conditions necessary to craft an arbitrary program with the
given gadgets.

The purpose of this work is to investigate the above thesis and attempt to discover and imple-
ment a satisfying set of algorithms. Due to the sheer number of possible ways to perform specific
tasks in return-oriented programming, it is necessary to limit the research to a subset of possible
gadget types. In this investigation the following practical limits are imposed.

1. The search for certain functionality is performed by searching for particular sub-expressions
in expression trees 3 generated from existing code. There exists a threshold of complexity
for a given expression tree which is used to decide whether further analysis of the given
tree should be performed.

2. The process of building a return-oriented program with the help of the automatically found
gadgets is performed manually.

1.5. Contributions of this work

In the matter of return-oriented programming this thesis shows that return-oriented program-
ming is possible on the ARM architecture. This thesis uses algorithms based on the REIL meta-
language to perform the search for suitable gadgets in the given binaries. This shows that an
alternative platform-independent way exists to search for gadgets automatically. No previous
work on this subject uses platform-independent algorithms for return-oriented programming. This
thesis therefore enables analysts to utilize one more tool for offensive computing on ARM based
devices.

1.6. Overview

In Chapter 2 a definition of the objective of this thesis is given. Initially return-oriented is de-
fined and its roots are explained. Then a description of the strategy to reach the given objective
”return-oriented programming for the ARM architecture” is given. Chapter 3 is a formalisation of
the components required to build a return-oriented program for the ARM architecture. Chapter
4 contains the main description of the algorithms used in this thesis and the theory which they
are based on. In Chapter 5 an outline of the implementation details related to the algorithms de-
scribed in Chapter 3 is given. Chapter 6 shows the results of running the implemented algorithms
against a set of binaries. The results are then used in a ”proof-of-concept” exploit which shows
that the approach taken works. Finally, Chapter 7 gives a conclusion about the work performed
in this thesis and discusses suggestions for further work.

3Expression trees represent mathematical expressions in binary tree form, where leaf nodes are variables and non-leaf
nodes are operators.



2. Definition of objective
The following chapter describes the objective of return-oriented programming. To provide an
introduction, the common protection mechanisms employed on operating systems are presented.
The question in focus is which of the presented defence mechanisms can be circumvented by
return-oriented programming. Then, the evolution of return-oriented programming is highlighted.
It shows, which research and milestones have led to the approach of this thesis. Finally the
strategy used in this thesis to solve the challenge of return-oriented programming for the ARM
architecture is presented.

2.1. Protection mechanisms

Return-oriented programming is aimed to circumvent a certain class of protection mechanisms
found in modern operating systems today. To be able to understand the impact of return-oriented
programming for the ARM architecture, a basic knowledge about the common protection mech-
anisms is necessary. The following section briefly explains each defensive mechanism and pro-
vides the information whether return-oriented programming circumvents it.

2.1.1. Stack cookies

Stack cookies are special random values that are stored on the stack upon function entry. Upon
function exit, the code checks if the value remains unchanged. Through this, sequential corrup-
tions of stack frames can be detected on run-time. This does not provide any protection against
modification of data structures in the stack frame of the local function, and only kicks in when
the function exits. Attacks on structured-exception-handlers on x86-Windows exploited this (See
Burrell [2009] for details). Return-oriented programming can not be used to circumvent stack
cookies.

2.1.2. Address space layout randomisation

Address space layout randomisation randomises the addresses of executables, libraries, stacks,
and heaps in memory. This technique prevents an attacker from using static addresses and static
information in the attack, therefore lowering the reliability of an exploit or even rendering it useless.
Return-oriented programming can not be used to defeat address space layout randomization.

2.1.3. Code and data separation

Code and data separation techniques are usually featured on Harvard-architecture based ma-
chines. Code and data separation is a technology where a certain memory area can either be
used to write data to or execute code but not both. All major operating systems today have an
implementation of this technique, most of them based on specific hardware support. In ARM the
execute never (XN) bit was introduced in the virtual memory system architecture version 6. The
feature was first introduced into mainstream processors in 2001 but was known as a technique
as early as 1961 within the Burroughs B5000 [Wikipedia, 2009a]. One important aspect is that
the NX bit for x86 machines is only available if PAE 1 is enabled. Return-oriented programming is
aimed to defeat this protection mechanism.

1Physical Address Extension
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2.2. The evolution of return-oriented programming

This section describes the evolution of return-oriented programming and its applicability in various
scenarios. Initially a time line is presented that provides an overview on the most important
contributions in the field which have eventually led to return-oriented programming on the ARM
architecture. Then these contributions are explained in detail.

2.2.1. The evolution time line

To be able to understand where return-oriented programming has evolved from and which steps
eventually led to the first publicly available documentation, the following section provides a brief
historical overview. As depicted in Figure 2.1, buffer overflows are a long known problem to the
security of computer systems. But only after the first network infrastructures allowed attackers to
reach many systems at once, the manufacturers of operating systems started to develop defen-
sive mechanisms to counter the growing threat.

• Return oriented programming for the first RISC architecture SPARC.

• Borrowed code chunks technique introduced by Sebastian Krahmer.

• First major worm that used buffer overflows (CodeRed).

• First return into library exploit by Solar Designer.

• Initial rediscovery of buffer overflows on Bugtraq.
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• First public documentation about buffer overflows.

• First documented hostile exploitation by the Morris worm.

• Aleph One’s Phrack paper Smashing the Stack for Fun and Profit.

• Nergals Phrack paper about advanced return into library exploits.

• Hovav Shacham introduces return oriented programming for the x86.

• First practical example of return oriented programming (AVC adv.).

FIGURE 2.1.: TIME LINE FROM BUFFER OVERFLOWS TO RETURN-ORIENTED PROGRAMMING

2.2.1.1. Buffer overflows

As early as 1972 the first publicly available documentation of the threat of buffer overflows was
presented in the Computer Security Technology Planning Study [Anderson, 1972]. One might
ask why the necessary effective countermeasures have not been developed at this stage and
why the information about the problems was not available more broadly. One reason for this was
that only a small circle of people had access to this information at the time it was released, and
that the policy to communicate with outsiders of these circles was strict [Dreyfus and Assange,
1997].
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A buffer overflow is, in the original form, a very simple error that is introduced if a function does
not perform proper bounds checking. Basically this means the function receives more input data
than it can store. Assuming that the overflowed buffer was located on the stack, the attacker can
now write a certain amount of data onto the stack where other variables and the return address
might be located. Therefore the attacker can hijack the control flow of the current process and
perform an arbitrary computation.

Even though the first worm which used a buffer overflow to spread dates back to 1988, the
worms that changed the security mindset are not even a decade old. The CodeRed [CERT/CC,
2001] and SQL Slammer [CERT/CC, 2003] worms were the crossroad for introducing the initial
security measures into Microsoft operating systems. Even though operating systems such as
OpenBSD [OPE] had long before introduced software defences against this kind of attack, the
first protection mitigating buffer overflows on Windows was not introduced until Windows XP SP
2 (2004).

2.2.1.2. Return-into-library technique

The return-into-library technique is the root on which all return-oriented exploit approaches are
based.

A return-into-library exploit works as follows: After the attacker has hijacked the control flow, a
library function he chooses is executed. The attacker has made sure that the stack pointer points
into a memory segment he controls. The attacker has set up the data in the memory segment in
a way that it provides the right arguments to the library function of his choice. Through this he
can execute a function 2 with the needed arguments.

This technique was known as early as 1997 when Solar Designer initially posted the first pub-
licly available proof-of-concept exploit [Designer, 1997a] to the Bugtraq mailing list. In this mail
the groundwork for the offensive and defensive side of return-into-library exploits was presented.
The development on both the offensive and the defensive side continued. The milestone article
[Wojtczuk, 2001] discussed the wide range of available techniques up to its release. In his article
Nergal presents advanced return-into-library attacks which where not known beforehand. One
of these advanced techniques was the shifting of the esp register. This technique allows the
unlimited chaining of function calls to be used in return-into-library exploits.

2.2.1.3. Borrowed code chunks technique

With the introduction of hardware-supported non-executable memory segments and 64 bit sup-
port in CPUs, the traditional return-into-library exploits ceased to work. This was due to an ABI
change that now requires arguments to a function to be passed in registers instead of the stack.
Sebastian Krahmer developed a new approach that uses chunks of library functions to still be
able to exploit buffer overflows on machines that employed the newly introduced defences. His
approach is designed around the idea to locate instruction sequences which pop values from
the stack into the right registers for function calls. By using his approach an attacker can use
return-into-library exploits with the new ABI.

2.2.1.4. Return-oriented Programming on x86

In his work [Shacham, 2007] ”The Geometry of Innocent Flesh on the Bone: Return-into-libc with-
out function Calls (on the x86)”, Hovav Shacham has coined the term return-oriented program-
ming. His work describes why he put effort into broadening the attack possibilities of return-into-
library attacks and developed return-oriented programming. His argument was that the return-
into-library technique does not use its full potential and that some of the proposed countermea-

2Usually an attacker chooses a function like system(), which executes the given argument in a new shell process of the
system
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sures are ineffective. Therefore he compiled a list of shortcomings and false assumptions which
he addressed.

• The return-into-library technique has no support for loops and conditional branching.

• The removal of functions from libraries does not provide any security against return-oriented
programming.

The approach Shacham uses to locate suitable instruction sequences works as follows: Ini-
tially he locates instruction sequences (gadgets) in x86 libraries. He does that by scanning the
binary for the binary opcode which represents a return instruction (for example 0xC3). From the
address of the located return instruction he disassembles the binary backwards. The instruction
set length of x86 is variable. Therefore a disassembly for each located return provides many
possible instruction sequences. Each of the located instruction sequences is a possible gadget
which can be used in the return-oriented-program. His work is the first work to define a gadget set
of Turing-complete instruction sequences which can be used for return-oriented programming. It
defines how these gadgets are constructed and combined to build an arbitrary computation with
these gadgets.

2.2.1.5. Return-oriented programming on SPARC

Following the original work from Shacham, Ryan Roemer ported the return-oriented programming
approach to the first RISC machine. His thesis [Roemer, 2009] shows the applicability of return-
oriented programming on the SPARC architecture. The SPARC architecture is very different from
the modern x86 architecture and has some characteristics that differentiate it from almost any
other RISC machine as well. These differences lead to major changes in the approach to find
gadgets in contrast to Shacham’s original work:

• Due to the alignment that all RISC machines enforce for their assembly instructions, the
original scanning method Shacham used to locate gadgets in x86 binaries can not be used
on SPARC. The paper modifies the search algorithm to only consider existing instruction
sequences for gadgets.

• As the SPARC architecture has a distinct calling convention and makes use of a register
window for the exchange of data between functions, the gadget set and the instructions had
to be adapted to work on SPARC.

• The thesis implements the gadget set as a memory to memory gadget set. Therefore
registers are only used inside individual gadgets but not to transfer data between different
gadgets.

Further contributions of the thesis are that not only a catalogue of gadgets is now available for
the SPARC architecture, but also a gadget API has been developed which allows an attacker to
develop exploitation code with the use of return-oriented programming in a convenient way. The
specified contribution has not been verified by the author because the source for the API and the
gadget search algorithms is not publicly available.

2.2.1.6. DEPlib

In an effort to completely automate the bypass of the non-executable stack technique ”DEP” intro-
duced by Microsoft, Pablo Sole presented his work [Sole] which is the most usable implementa-
tion of a return-oriented approach. The only drawback of his work is that he has no documented
support for any conditional execution and therefore misses a Turing-complete gadget set. None
the less, his work is the most practical work in this field and has some unique aspects which all of
the works from academia are lacking. He introduces a complexity value for gadgets that focuses
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on the side effects of the located gadgets. Furthermore he does not rely on specific libraries but
scans the whole address space of the executable for useful instruction sequences. One drawback
of his implementation is that he only supports Windows because his software is an extension to
the Immunity debugger which is only available for Windows.

2.2.1.7. Return-oriented programming on Harvard-type architectures

The most recent work which contributes to the general applicability of return-oriented program-
ming is the work of Checkoway et al. [2009] which shows the use of return-oriented programming
on a true Harvard-type architecture. The most important contribution of this work is that it shows a
real-life use case for return-oriented programming in which no other exploitation technique would
lead to results.

The paper presents an attack against the AVC Advantage voting machine, a machine which
has been used for elections in the United States in the past. The machine uses a Zilog Z80
CPU. The Z80 has a variable length instruction set and is a Harvard-type architecture. The paper
shows the applicability of a return-oriented programming attack against this architecture.

2.3. Strategy

This section describes the strategy used to solve the problem of return oriented programming for
the ARM architecture. It presents the ideas that led to the decisions about data structures and
algorithms as well as the dependencies which arose from them.

2.3.1. Problem approach

The goal of this thesis is to build a program which consists of existing code chunks from other
programs. A program that is built from the parts of another program is a return oriented pro-
gram. To build a return oriented program, parts which can be combined to build the program are
necessary.

The parts to build a return oriented program are named gadgets. A gadget is a sequence of
instructions which is located in the target binary and provides a usable operation, for example the
addition of two registers. A gadget can therefore be thought of as a meta-instruction.

To be able to build a program from gadgets, they must be combinable. Gadgets are combinable
if they end in an instruction that controlled by the user alters the control flow. Instructions which
end gadgets are named ”free branch” instructions. A ”free branch” instruction must satisfy the
following properties:

• The control flow must change at this instruction.

• The target of the control flow must be controllable (free) such that the input from a register
or the stack defines the target.

It is necessary to search the set of all gadgets for the subset of gadgets which can be used for
a return oriented program. The set of all gadgets is built by initially identifying all ”free branch”
instructions followed by the analysis of the program paths ending in these instructions.

To be able to easily search for a specific operation within the set of all gadgets, the gadgets
are stored in tree form. This tree form is named binary expression tree. A binary expression
tree consists of operations with their operands. The tree is a result of multiple sequential native
instructions and their effects. One binary expression tree only affects one target register. There-
fore a single gadget always consist of more than one binary tree. The binary expression trees
are searched for sub-trees, which specify a distinct operation, to find usable gadgets. The sub-
trees which are used to search for an operation are specified manually. For every operation only
one gadget is needed. For a set of gadgets which perform the same operation only the simplest
gadget is selected.





3. Technical details

This chapter provides the technical background needed for return oriented programming on the
ARM architecture. First the ARM architecture is explained, followed by a description of the oper-
ating system which is used as test subject. The description of the ARM architecture is provided
because ARM has some unique characteristics that differentiate the architecture from other ar-
chitectures. Also mobile operating systems differ in their architecture and design as much as
desktop operating systems do. Therefore a short introduction to the specialities of the operating
system used in this thesis is given. Then the REIL meta-language used for the analysis and
matching algorithms is presented. A good understanding of REIL is necessary because it is the
basis for every data structure and every algorithm used in this thesis. Thereafter the introduction
to return oriented programming for the ARM architecture is presented and the gadget catalogue
developed in this thesis is described. The gadget catalogue describes a comfortable gadget set
with whom an analyst can build return-oriented programs on the ARM architecture.

3.1. architecture and operating system details

In this section an introduction to the ARM architecture is given. The necessary basics about the
architecture are explained and the important aspects are highlighted. In the second half Windows
Mobile, the reference platform for this thesis, is explained and its specifics are described. These
basics are necessary because all of the work in this thesis is very closely related to the hardware
and its particularities.

3.1.1. The ARM architecture

The ARM processors have been developed primarily for use in small scale systems such as
mobile communication devices and small home and office network hardware. ARM processors
are used in almost every new mobile phone which ships today. The widespread deployment of
ARM makes the architecture an interesting target for offensive research in general and return
oriented programming specifically.

With the introduction of the ARM9 processor core, the architecture of the ARM is a Harvard-
type architecture. The primary difference between a Harvard architecture and a Von-Neumann
architecture is that the instruction memory is physically separated from the data memory. Like-
wise both memory segments are addressed over distinct bus systems by the processor. In case
of ARM an approach is used that slightly differs from a true Harvard architecture. Within ARM
only the caches for data and instructions are separated.

Using a Harvard-type architecture has some side effects which have to be considered. The
use of self modifying code on the ARM architecture is not possible without additional cache sync
and flush code sequences. Also traditional stack overflows which inject code on the stack, and
then adjust the control flow to execute it, always need cache syncing.

3.1.1.1. History

The ARM architecture has been changed quite frequently during its existence. The support for
more instruction sets and extensions was added over time. Also as described the architecture
was switched from a Von-Neuman type to a Harvard-type architecture with the introduction of
the ARM9 core. The first ARM processor which was widely available was the ARM2 released in
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1987. The ARM processors are always sold as IP 1 by ARM semiconductors, this means that
they sell the specifications needed to fabricate an ARM processor but do not themselves build
the chips. In table a brief overview on the wide range of ARM processors version is given.

YEAR FAMILY ARCHITECTURE VERSION

ARM1 ARMv1
1987 ARM2 ARMv2
1989 ARM3 ARMv2
1991 ARM6 ARMv3
1993 ARM7 ARMv3

ARM7TDMI ARMv4T or ARMv5TEJ
StrongARM ARMv4

1995 ARM8 ARMv4
1997 ARM9TDMI ARMv4T

ARM9E ARMv5TE or ARMv5TEJ
1998 ARM10E ARMv5TE or ARMv5TEJ

XScale ARMv5TE
2002 ARM11 ARMv6 or ARMv6T2 or ARMv6KZ or ARMv6K
2005 Cortex ARMv7-A or ARMv7-R or ARMv7-M or ARMv6-M

FIGURE 3.1.: ARM PROCESSOR TO ARCHITECTURE MAPPING

3.1.1.2. Registers

In the following paragraphs the available registers of the ARM architecture are described. Some
of the available registers have a certain purpose which will be highlighted and explained. As the
ARM architecture provides a subset of registers only in certain execution modes, these modes
will be introduced shortly.

User mode registers: The ARM ISA provides 16 general-purpose registers in user mode (Fig-
ure 3.2). Register PC/R15 is the program counter which can be manipulated as a general-
purpose register. The general-purpose register LR/R14 is used as a link register to store function
return addresses used by the branch-and-link instruction. Register SP/R13 is typically used as
the stack pointer although this is not mandated by the architecture.

Flags and Modes: The current program status register CPSR contains four 1-bit condition flags
(Negative, Zero, Carry, and oVerflow) and four fields reflecting the execution state of the proces-
sor. Flag fields are used in a total of 16 possible condition combinations for the use in ARM
instructions. The T field is used to switch between ARM and THUMB instruction sets. The I and
F flags enable normal and fast interrupts respectively. The ”mode” field selects one of seven
execution modes of the processor:

User mode is the main execution mode. By running application software in user mode, the oper-
ating system can achieve protection and isolation. All other execution modes are privileged
and are therefore only used to run system software.

Fast interrupt processing mode is entered whenever the processor receives an interrupt signal
from the designated fast interrupt source.

Normal interrupt processing mode is entered whenever the processor receives an interrupt
signal from any other interrupt source.

1intellectual property
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FIGURE 3.2.: ARM REGISTER OVERVIEW

Software interrupt mode is entered when the processor encounters a software interrupt in-
struction. Software interrupts are a standard way to invoke operating system services on
ARM.

Undefined instruction mode is entered when the processor attempts to execute an instruction
that is supported neither by the main integer core nor by one of the coprocessors.

System mode is used for running privileged operating system tasks.

Abort mode is entered in response to memory faults.

Privileged mode registers: In addition to registers visible in user mode, ARM processors pro-
vide several registers available in privileged modes only (Figure 3.2). SPSR registers are used
to store a copy of the value of the CPSR register before an exception is raised. Those privileged
modes that are activated in response to exceptions have their own SP/R13 and LR/R14 registers.
These are provides to avoid the need to save the corresponding user registers on every excep-
tion. In order to further reduce the amount of state that has to be saved during handling of fast
interrupts, ARM provides 5 additional registers available in fast interrupt processing mode only.
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3.1.1.3. Instruction set

The ARM architecture can support several extensions to the normal ARM 32 bit instruction set.
These extensions are labelled through the architecture type description: Extension T specifies
THUMB support, J specifies Jazelle support, and T2 specifies THUMB2 support. The THUMB
instruction set is a 16 bit mapping of the 32 bit ARM instruction set but there are some differ-
ences between the instruction sets which will be covered in 3.1.1.4. The Jazelle extension is an
implementation of a Java byte-code machine and allows the processor to execute Java byte-code
natively in hardware. The THUMB2 instruction set adds a limited set of 32 bit instructions to the
normal THUMB instruction set.

3.1.1.4. ARM and THUMB

The two instruction sets which are widely available on almost all the ARM devices are the 32 bit
ARM instruction set and the 16 bit THUMB instruction set. Therefore these two instruction sets
are explained and their differences are described.

The ARM instruction set uses 32 bits for every instruction it supports. It can make use of all
features the specific processor has. The THUMB instruction set uses 16 bits for every instruction
and is limited in the features it can use. The code density of THUMB mode is much higher than
the code density of ARM mode. Due to the limitations of THUMB code it is generally executed
slower then ARM code. Almost all 32 bit ARM instructions are conditional. The 16 bit THUMB
extension does not support conditional execution. Conditional execution of instructions extends
instructions with an optional condition field. This condition field is evaluated by the processor
prior to the execution of the instruction. If the condition is true, the instruction is executed. If the
instruction is false, the instruction is not executed. Conditional execution leads to more efficient
code in terms of CPU pipeline usage and size. For example, the GCD instruction in Listing 3.1
uses 7 instructions without conditional execution while the implementation in Listing 3.2 uses only
4 instructions with conditional execution.

LISTING 3.1: ARM GCD EXAMPLE WITHOUT CONDITIONAL EXECUTION

1 gcd CMP r0, r1
2 BEQ end
3 BLT less
4 SUBS r0, r0 , r1 ; could be SUB r0, r0, r1 for ARM
5 B gcd
6 less
7 SUBS r1, r1 , r0 ; could be SUB r1, r1, r0 for ARM
8 B gcd
9 end

LISTING 3.2: ARM GCD EXAMPLE WITH CONDITIONAL EXECUTION

1 gcd
2 CMP r0, r1
3 SUBGT r0 , r0, r1
4 SUBLE r1 , r1, r0
5 BNE gcd

The instructions used in the examples Listing 3.1 and Listing 3.2 are described in Figure 3.3.
For a more detailed explanation of the ARM instruction set refer to Ltd. [2005].

All 32 bit arithmetic instructions are able to use a barrel shifter which provides multiple shift
operations to the last operand. This barrel shifter is not available with 16 bit instructions. ARM
supports different addressing modes with pre- and post-indexed register updates for all memory
operations. The switch between ARM and THUMB instructions is indicated with the T flag within
the CPSR register. THUMB code is used if the size of available memory is small and execution
speed is not a critical asset.
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INSTRUCTION DESCRIPTION

CMP compare instruction, sets flags accordingly
BEQ branch equal
BLT branch less than
BNE branch not equal
B unconditional branch
SUBS subtract and set flags
SUBGT subtract if greater than condition met
SUBLE subtract if less or equal condition met

FIGURE 3.3.: SHORT INSTRUCTION DESCRIPTION

3.1.1.5. Endianness of memory

Usually a certain operating system uses only one specific endianess for storing of data but in the
case of ARM this can vary.

In contrast to other architectures the ARM architecture supports multiple modes for the en-
dianness of the system. It supports little-endianess, big-endianess, and a supplemental mixed
mode. And these are only the most common modes of endianess used, even though the ARM
architecture supports several more. The variable endianess is only available for data access, the
endianess of instructions is always little-endian mode and can not be changed.

For more information about memory endianess please refer to [Ltd., 2005].

3.1.1.6. Stack modes

The stack is in the case of return-oriented programming an important factor as it might be used
to store information which is used within the gadgets. Therefore the stack modes of the ARM
architecture are explained and the constraints which are crucial for successful exploitation are
presented.

ARM has four different stack modes. These are used in the LDM (Figure 3.4) and STM (Figure
3.5) instructions. The stack mode used is controlled by the L, P, and U bits of the instruction
encoding. If the L bit is set the instruction is an LDM instruction. If the bit is cleared the instruction
is an STM instruction. The P bit controls whether the stack pointer points to the last ”full” element
pushed onto the stack or the next ”empty” stack slot after the element. The U bit indicates in
which direction the stack grows.

STACK ADDRESSING MODE L BIT P BIT U BIT

LDMFA (Full Ascending) 1 0 0
LDMFD (Full Descending) 1 0 1
LDMEA (Empty Ascending) 1 1 0
LDMED (Empty Descending) 1 1 1

FIGURE 3.4.: ARM LDM ADDRESSING MODES

STACK ADDRESSING MODE L BIT P BIT U BIT

STMED (Empty Descending) 0 0 0
STMEA (Empty Ascending) 0 0 1
STMFD (Full Descending) 0 1 0
STMFA (Full Ascending) 0 1 1

FIGURE 3.5.: ARM STM ADDRESSING MODES
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In any operating system usually only one stack addressing mode is used, but there are also
cases when the frame pointer is used to access data on the stack instead of the stack pointer. In
these cases the direction of stack growth is usually switched.

Universal stack constraints The AAPCS (Procedure Call Standard for the ARM Architecture)
Ltd. [2008] defines basic constraints that must hold at all times:

Stack-limit < SP <= stack-base The stack pointer must lie inside the stack.

SP mod 4 = 0 The stack must at all times be aligned to word boundaries.

Access limit A process may only access (either read or write) the closed interval of the entire
stack delimited by [SP, stack-base - 1].

3.1.1.7. Subroutine calling convention

Both instruction sets, ARM and THUMB, contain a primitive subroutine call instruction (BL) which
performs a branch with link operation. The effect of the BL instruction is that the sequentially next
value of the program counter (current address + 4 for ARM and current address + 2 for THUMB)
is saved into the link register LR and the destination address is stored in the program counter PC.
In case of BL the least significant bit of the link register is set to one. If the instruction was called
from THUMB code. Otherwise the least significant bit is set to zero. The result is that control is
transferred to the destination address and the return address is passed to the subroutine as an
additional parameter in the link register. The ARM architecture also provides the BLX instruction
that can use a register to hold the destination address to pass control to. This instruction also
handles ARM / THUMB interworking.

If the BL instruction is used, far jumps are not possible. In this case a stub function must be
used to pass the control to the called function. An example of such a stub can be seen in Figure
3.8. For a more in-depth explanation of the subroutine calling convention refer to [Ltd., 2008].

3.1.2. Operating system

The following sections will focus on the operating system which has been used in this thesis. The
important aspects which are in part specific this operating system and in part generic to operating
systems are explained. This description is important because it will explain details necessary to
understand the limitations and problems a researcher encounters on mobile operating systems.
A larger part of the problems and concepts presented can be applied to almost any embedded
operating system.

3.1.2.1. Operating system overview

The operating system used as the research target in this thesis is Windows Mobile 6.x. Windows
Mobile is based on Windows CE 5. Windows Mobile is used in a wide range of consumer devices
such as mobile phones and personal digital assistants. The Windows CE API which can be used
within Windows Mobile is a subset of the Win32 API for Windows.

3.1.2.2. Memory architecture

This section describes the differences of virtual and physical memory and tries to clear out some
misconceptions that can lead to false assumptions in case of memory definitions.
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Virtual Memory Virtual memory is the addressable memory space. This can be understood as
the work area for a process. On 32 bit Windows desktop systems each user land application has
2 gigabytes private virtual address space Sanderson. The addressable virtual memory space
is 4 gigabytes. On Windows Mobile each application has a 32 megabytes private slot of virtual
memory.

RAM Random access memory is the physical resource each process consumes to fulfil memory
requests. A process has a 32 megabytes virtual memory address space but will not consume 32
megabytes of RAM initially when the process is started. RAM is consumed when the application
allocates objects.

RAM vs. Virtual Memory As described, RAM and virtual memory are two different aspects of
memory which should not be confused. The failure characteristics are different when one of the
two runs out. If RAM runs out, there is no physical memory left. If virtual memory runs out, there
is no usable memory left.

Address space Windows Mobile 6 has the memory architecture of Windows CE 5.2. It has 32
bits of addressable virtual memory. The upper 2 gigabytes of virtual memory are used for the
kernel and system space. The lower 2 gigabytes are used for user space.
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FIGURE 3.6.: WINDOWS MOBILE VIRTUAL MEMORY

The user space is divided into memory regions. The larger part of the memory regions is
defined as the large memory area. This area is used to allocate large blocks of memory usually
used for memory mapped files. The smaller part of the memory region is divided into small
sections named slots. A slot is a basic unit for maintaining virtual memory within the Windows
CE kernel.

There are 33 slots available on Windows Mobile of which 31 slots can be used by processes.
Therefore a total of 31 simultaneous processes can be started on a Windows CE based system.
The kernel process is counted as the 32nd process. The process with its currently running thread
is cloned into slot 0. Slot 1 (XIP section) is used exclusively for in-ROM 2 components that have
been included in the device image.

2Read Only Memory
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3.1.2.3. XIP DLLs

Slot 1 is the XIP section. XIP stands for ”eXecute In Place” as the binaries in this section are not
relocated on execution. The XIP section was introduced with Windows CE 3 to provide a relief for
the memory constraints in Windows CE. DLLs located in the XIP section are loaded from address
0x03FFFFFF (64 megabytes) down to address 0x02000000 (32 megabytes). Only DLLs that are
part of the original ROM shipped by the OEM 3 are placed in the XIP section. No non-XIP DLLs
may be loaded in this memory area. Common DLLs for the inclusion into the XIP section are for
example ”coredll.dll” and ”ws2.dll”.

3.1.2.4. DLL loading

The loading of DLLs which are part of 3rd party programs is done in slot 0 of the memory layout.
Different DLLs under Windows CE 5.2 may not be loaded at the same address range in different
processes and the same DLL may not occupy different address ranges in different processes.
This implies that a DLL that is loaded in one process occupies space in all applications and not
only the one that has loaded the DLL. This loading procedure is one of the reasons for memory
exhaustion on Windows Mobile devices.

RAM DLL: code + data

DLL virtual memory allocations

general virtual memory allocations

process VirtualAlloc() calls

thread stack

process heap

thread stack

process code and data

guard section ( 64k ) + user info
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FIGURE 3.7.: WINDOWS MOBILE SLOT 0 MEMORY LAYOUT

The application code is loaded into the virtual memory at address 0x00010000. This section is
followed by the read only section and then the read write space. Then the heap and the stack are
the last sections which grow upwards towards higher addresses. The DLL space starts at the top
of slot 0 and grows downward towards lower addresses.

3.1.2.5. Registers

Even though the registers and their meaning have already been discussed for the ARM architec-
ture in general, The specific use of the registers in Windows Mobile is important to understand
some of the gadgets later described.

There are 16 general-purpose registers in the ARM processor specified for use with Windows
Mobile. How they are used within Windows Mobile is presented in table 3.8.

3Original Equipment Manufacturer
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REGISTER AFFINITY ALIASES DESCRIPTION

R0 Temporary Argument 1, Return Value
R1 Temporary Argument 2, Second 32-bits

if double / int Return Value
R2, R3 Temporary Arguments
R4–R10 Permanent General registers,

R7 is THUMB frame pointer
R11 Permanent FP ARM frame pointer
R12 Temporary Scratch register
R13 Permanent SP Stack pointer
R14 Permanent LR Link register
R15 Permanent PC Program counter
CPSR Flags

FIGURE 3.8.: REGISTER DESCRIPTION FOR WINDOWS MOBILE

Arguments for function calls are held in the registers R0 through R3. Remaining arguments are
placed in the calling function’s argument build area. The area does not provide space into which
R0 through R3 can be spilled.

3.1.2.6. The stack

Windows Mobile uses the little-endian mode of the ARM processor. The stack mode used by
Windows Mobile is full descending which means that the stack pointer SP/R13 is pointing to the
last full entry of the stack and grows towards decreasing memory addresses 4. Even though
Windows Mobile specifies the frame pointer to be located as shown in Figure 3.9, experiments
have shown that this must not be true in all cases. Therefore the location of the frame pointer
should not be relied upon.

CALLERS STACK FRAME

FRAME POINTER

CURRENT STACK FRAME

STACK POINTER

register save area

locals and temporaries

alloca() locals

incoming arguments past four words

first four words of arguments

register save area

locals and temporaries

alloca() locals

outgoing arguments past four words

FIGURE 3.9.: WINDOWS MOBILE STACK LAYOUT

The following list specifies additional information about the stack specifications on the ARM
platform used by Windows Mobile. The information has been extracted from Corporation [2004].

Register Save Area (RSA) holds the preserved values of permanent registers used by the func-
tion. It also contains the function return address.

4towards the bottom of memory.
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Locals and temporaries area represents the stack space allocated for local variables and tem-
poraries.

First four words on top of the stack can contain the values passed in registers R0–R3. Any of
these values may be missing. The values should be stored in the registers R0–R3 if regis-
ters can not hold the arguments for the entire function or if the addresses for the arguments
are in use.

Storage at the top of the called function stack is initialized if a routine needs storage space
for the first four words of arguments. If a register keeps an argument for the argument live
range, the argument has no associated storage in the stack frame.

Separate frame pointer If a routine has alloca() locals, the ARM specification requires a sep-
arate frame pointer to access the incoming arguments and locals. The frame pointer as-
signed for 32 bit ARM code is register R11, the register R7 is used as frame pointer for 16
bit THUMB code.

Leaf vs. non-leaf routines In a leaf routine 5 any free register can be used as frame pointer. A
non-leaf routine must use a permanent register as the frame pointer. The routine must not
modify the frame pointer register between the prologue and the epilogue.

References with use of alloca() In a routine that uses alloca(), everything in the frame at a
lower address than the alloca() area is referenced relative to the stack pointer and never
contains a defined value at the time of an alloca() call. Everything in the frame below an
address higher than the alloca() area is referenced relative to the frame pointer.

Efficient access in large stack frames A routine that needs to access data in a large stack
frame can established another frame pointer. The establish frame pointer usually points to
a fixed offset in the register save area or the locals and temporaries area of the stack frame
but can point to any offset in the frame.

Stackless routines If a routine does not need to save permanent registers or allocate space
for locals or outgoing arguments larger than four words, it does not need to set up a stack
frame.

Strict alignment The stack pointer and the frame pointer are 4-bytes aligned on the ARM archi-
tecture.

3.1.2.7. ARM prologue and epilogue

Windows Mobile supports the virtual unwinding of stack frames. ARM prologue and epilogue
code segments are required to implement structured exception handling (SEH) for ARM micro-
processors. The ARM prologue is a code segment that sets the up the stack frame for a routine.
The ARM epilogue is a code segment that removes the routine’s stack frame and returns from
the routine.

ARM prologue The ARM prologue for Windows Mobile has three parts. The three parts are
directly continuous and there are no interleaved instructions. If the function prologue follows this
guideline, the virtual un-winder can virtually reverse execute the prologue.

The three important parts of the ARM prologue are:

1. Zero or one instructions that push the incoming arguments in the registers R0-R3 to the
argument locations and update the stack pointer accordingly. If present, this instruction
saves all the permanent registers in descending order at the top of the stack frame after
any saved argument registers.

5A leaf routine is a routine that does not call any other routine, and does not have variables passed on the stack
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2. Set up the additional frame pointer if necessary. If a frame pointer is established, the stack
pointer is copied to the scratch register R12 before the initial register saves. The scratch
register R12 is then used to compute the value of the frame pointer.

3. A sequence of zero or more instructions is used to allocate the remaining stack frame space
for local variables, the compiler generated temporaries, and the argument build area. This
is achieved by subtracting a 4-bytes aligned offset from the stack pointer. If an offset is
too wide to be represented in the immediate section of the instruction used to subtract the
offset, the scratch register R12 is used to hold the offset. The offset used within R12 is
computed using a different instruction.

LISTING 3.3: ARM ROUTINE PROLOGUE WITH FRAME POINTER SETUP

1 MOV r12 , SP ; Save stack on entry if needed.
2 STMFD SP!, {r0 -r3} ; As needed
3 STMFD SP!, {r4 -r12 , LR} ; As needed
4 SUB r11 , r12 , #16 ; Sets frame past args
5 <stack link if needed >

LISTING 3.4: ARM ROUTINE PROLOGUE WITHOUT FRAME POINTER SETUP

1 MOV r12 , SP
2 STMFD SP!, {r0 -r3} ; As needed
3 STMFD SP! {[r4 -r12 ,]|[SP ,]LR} ; As needed
4 <stack link if needed >
5 <note: r12 is not used if the stack (SP) is the first register saved >

A short description of the instructions used in the examples (Listings 3.3, 3.4, 3.5, 3.6 and 3.7)
is provided in Figure 3.10. For a more-in depth description of the specific instructions refer to Ltd.
[2005]. The extensions to the LDM and STM instructions have been omitted from the description
because they have been explained in Figure 3.4 and Figure 3.5 respectively.

INSTRUCTION DESCRIPTION

MOV move the contents of a register or integer to a register
STM memory store multiple registers, first register is memory location start
SUB subtraction
LDM memory load multiple registers, first register is memory location start
BX branch with interworking support for THUMB

FIGURE 3.10.: SIMPLE ARM MNEMONICS

ARM epilogue The ARM epilogue for Windows Mobile is a sequence of continuous instructions
that perform the unwinding of the current routine. The saved permanent registers are restored.
The stack pointer is reset to the value before the routine entry and control is handed to the calling
function.

The guidelines which are applied in epilogues used by Windows Mobile are the following. The
instructions which form the epilogue are immediately continuous and no interleaving instructions
are present.

If a frame pointer was set up, the epilogue is a single instruction (Listing 3.5) that uses the frame
pointer as the base and updates all non-volatile registers. This includes the program counter and
the stack pointer.

LISTING 3.5: ARM ROUTINE EPILOGUE WITH FRAME POINTER

1 <no stack unlink >
2 LDMEA r11 , {r4 -r11 , SP , PC}



24 Technical details

If no frame pointer was set up, the epilogue is comprised of a stack unlink, if needed, followed by
an instruction that restores multiple registers or copies the link register into the program counter
(Listing 3.6).

LISTING 3.6: ARM ROUTINE EPILOGUE WITHOUT FRAME POINTER

1 <stack unlink if needed >
2 LDMFD SP, {r4-R11 , SP , PC}

If a routine has not modified any non-volatile registers and there is no interworking between
ARM and THUMB required, only a copy of the link register to the program counter is performed.

If interworking between ARM and THUMB is possible after the current routine returns, the
epilogue needs to support interworking (Listing 3.7).

LISTING 3.7: ARM ROUTINE EPILOGUE WITH INTERWORKING SUPPORT

1 <stack unlink if needed >
2 LDMFD SP, {r4 -r11 , SP, LR}
3 BX LR

If a routine only branches to another routine in its last instruction and does not modify any
non volatile registers, the epilogue of the function that performs the branch can be empty. If a
routine establishes a frame pointer in the register R11, this routine must not modify the pointer
value during the interval between the completion of the routine’s prologue’s last instruction and
its epilogue’s first instruction. If a routine has not established a frame pointer, this routine must
not alter the stack pointer during the interval of the last instruction in the routines prologue and
the execution of the first instruction of the routines epilogue. The address which is contained in
the stack pointer must never be greater than the lowest address of any not restored register value
in the register save area. This prevents that the preserved values of saved permanent registers
are being corrupted by a context switch or any other asynchronous event that might occur during
the execution of a prologue or epilogue.

3.1.2.8. Function calling

ARM calling convention requires that a full 32 bit address is called when calling a function. The
maximum space which can be used to specify the address to call is 12 bits wide (8 address bits,
4 shifter bits). Therefore Windows Mobile uses function stubs to call routines in libraries outside
the reachable address space Listing 3.8.

LISTING 3.8: ARM FUNCTION CALLING STUB

1 accept:
2 0x00011BDC ldr r12 , [PC, #4]
3 0x00011BE0 ldr r12 , [r12]
4 0x00011BE4 bx r12
5 0x00011BE8 [0 x000140C4] ; only data
6

7 __imp_accept:
8 0x000140C4 [0 x02D365FC] ; only data

The function stub loads the PC-relative address into the scratch register R12. The address to
which the data in the stub points to is then loaded into the scratch register by dereference. Now
the address of the function to be called is present in register R12 and can be called. The stub
uses the same instructions for all functions to be called but differs in the address.

3.1.2.9. System calls

In the ARM architecture there exists the SWI instruction to perform a system call or software
interrupt. This instruction can be used to implement system calls although it is not used by
Windows Mobile.
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Windows Mobile implements system calls differently with a call to an invalid address in the
range of 0xF0000000 - 0xF0010000. The call to this address causes a pre-fetch abort trap which
is then handled by PrefetchAbort in the file arptrap.s. The actual fault is a permission fault. If the
address provided is located in the specified trap area, then the function ObjectCall, located in the
file objdisp.c, will locate the actual system call function. If the address is not part of the trap area,
the function ProcessPrefAbort, also located in the file armtrap.s, will deal with the exception.

To be able to locate a specific system call the following formula can be used.

• BASE ADDRESS

systemcall = 0xF0010000 − (256 ∗ apiset + apinr ) ∗ 4 (3.1)

• APISET in kfuncs.h and psyscall.h

• APINR in several files.

The really interesting part in respect to return oriented programming and exploitation of Win-
dows Mobile in general is that the addresses used for system calls are static.

Additional information about system calls can be accessed in Becher and Hund [2008], Hengeveld
and Loh [2006].

3.1.2.10. Cache synchronisation and buffers

With traditional shell code injection techniques, the Harvard architecture used in the ARM pro-
cessor and its separate caches for data and code pose a problem for reliable exploitation. Even
though this is not the case with return oriented programming the basics of circumventing the issue
are explained in the following.

On ARM, data and instructions are separated into two buses, each with a separate cache 6.
In between the data cache and the main memory a write buffer in write back mode is used. This
is a problem because data that has been injected has not yet been written back to memory and
therefore can not used as instruction. With traditional injection, this can lead to a case where
old data from the area where the injection was performed is executed leading to unpredictable
results.

In Figure 3.9 the instruction sequence needed to perform this type of cache invalidation is
shown. This sequence will work for any ARM operating system if the required privilege level is
available to the program being exploited.

LISTING 3.9: ARM CACHE INVALIDATION INSTRUCTION SEQUENCE

1 mcr p15 , 0 , r0 , c7 , c10 , 4 ; Instruction to drain the write buffer.
2 mrc p15 , 0 , r0 , c2 , c0 , 0 ; Arbitrary read of CP15.
3 mov r0 , r0 ; Wait for the drain to complete.

In the specific case of Windows Mobile a function (Listing 3.10) is provided in the coredll.dll
library that performs this function based on the arguments passed.

LISTING 3.10: WINDOWS MOBILE CACHE SYNC FUNCTION

1 VOID CacheSync(
2 int flags
3 );
4

5 /*
6 * where flags can be
7 * CACHE_SYNC_DISCARD : Writes back and discards all cached data.
8 * CACHE_SYNC_INSTRUCTIONS : Discards all cached instructions.
9 * CACHE_SYNC_WRITEBACK : Writes back , but does not discard , cached data.

10 */

6hybrid between a fully-associative cache, and direct-mapped cache
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Even though the MSDN library specifies this function only for Windows CE and not for Windows
Mobile, reverse engineering of coredll.dll has provided proof that this function exists for Windows
Mobile as well.

3.1.2.11. Dumping ROM and XIP

In order to conduct return oriented programming on an analysis target, one has to determine the
linked libraries of the specific target. In case of Windows Mobile the primary library that is linked
to almost all executables is coredll.dll which is located in the XIP section of memory. But the
use of the XIP section poses a set of difficulties one has to solve to gain access to the files in
question.

Problems with dumping and extracting files

Copy protection Elements located in the XIP section can not be copied off a device or emulator
with normal procedures such as the copy command on the command line.

File fragmentation In an image provided for updating or initial installation of a device, the files
in the XIP section are fragmented into different parts.

Base address The address which is essential to return oriented programming may not be relo-
cated correctly after extraction. This can lead to wrong offsets in the gadget search process.

File version As an OEM builds the operating system for a specific mobile device, libraries can
contain subtle differences. Therefore changes from target device to target device must be
taken into account.

Dumping XIP files from a running device Extracting XIP files from a running device either
in the emulator or on a handheld is possible with the free tool ROMExtractor which is provided
as binary executable Cortulla [2007]. The tool can extract all files with the file property FILE
ATTRIBUTE ROMMODULE from a running device. Observations have shown that the files are
relocated properly to the base address which is present in the running system. Therefore this
seems to be the most efficient way of extracting files from XIP sources.

Extracting XIP files from an image There exists no general way to extract XIP files from an
image because the OEM chooses the locations of the files in the XIP location and therefore one
needs adapted tools for any device which is to be analysed. For a general approach to analyse
an off-line image the following steps must be performed:

1. Download the image of choice from developer members.

2. Search the kitchen 7 for the device to be analysed with.

3. Locate the extraction functionality of the kitchen.

4. Extract the contents of the XIP.

5. Locate the folder where the dump has been placed.

6. Download the tool recmod.exe form developer members and place it in the directory above
the dump directory.

7. Reconstruct the original files from the sections using recmod.exe.

8. Disassemble New File with IDA Pro.
7A kitchen is a compilation of tools used for unpacking and repacking of Windows Mobile images and software.
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9. Select the option for Pocket PC ARM dynamic libraries for the file type.

10. Be sure to go through the advanced options and deselect the simplify instructions check
box.

11. Start the disassembly.

12. Usually, using the dump of a specific file from XIP the relocation information is present in the
files directory in the file imageinfo.txt. This information can be used to relocate the image to
the original addresses on the device.

Finding the right set of tools for a specific device can prove to be a difficult task. The specified
forum provides a lot of information but this information is sometimes hidden under a pile of non-
informative or even misleading information.

The step to deselect the option to simplify instructions is very important if you plan to use REIL
later in your analysis. This is due to how IDA Pro handles the simplification. It merges certain
instructions into one instruction but the length of the instruction is not 16 or 32 bits any more.
Therefore the REIL translators can not decide upon the instruction which was originally located
at this specific position and translation fails.

Problems with extraction If one has no access to the real phone and extracts the needed
libraries from an image, relocation is always the main issue. The file that accompanies the dy-
namic libraries gives hints about what base address and what size the original file had but there
is always room for errors. This is a very serious issue with return oriented programming due to
the fact that one will rely on the exact instructions at a specific location. If this information is just
off by one, the results can greatly vary from the intended result.

3.1.2.12. Debugging Windows Mobile

Debugging Windows Mobile is as described difficult if one wants to debug system code and
comparable to desktop Windows debugging if user land code, excluding system libraries, is to be
debugged. Currently no software tool can be purchased which enables system code debugging
on Windows mobile. The reason is that the system files, like most of the dynamic linked libraries,
and the kernel are part of the XIP. All of the available Windows debuggers seem not to allow the
usage of breakpoints within the XIP area of memory.

Even though this is a major limitation, debugging is still possible and in most cases it is not
really necessary to break into a system library.

Debugging with Visual Studio If the source of a program is available, debugging with Visual
Studio is easy and efficient. The tools which are required to enable development and debugging
of Windows Mobile are.

• Visual Studio 2008 / 2005.

• Windows Mobile 6.1 refresh SDK.

• Microsoft Virtual PC.

• Active Sync.

• Emulator images for the desired Windows Mobile release.

• A Windows Mobile device (optional).
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To be able to debug a piece software it has to be added to a Visual Studio project. In the Visual
Studio project the settings have to be adjusted where to debug the project. The first option is to
test the software on a real device. The second option is to test it on the emulator. Debugging on
the real device is a poor choice for exploit and attack development because some devices crash
irrecoverably upon memory corruption.

This does not imply that the final exploit will not work against the device but to save time
debugging with the emulator initially is a better choice. The emulator has a major disadvantage.
It does not emulate all of the hardware of the device. If one wants to develop an exploit or attack
against a specific type of hardware / software combination the only option is to use the device
itself.

Breakpoints and watchpoints work just like on desktop Windows software. The only difference
is that the register window or the assembly code window displays ARM specific registers and
assembly code in contrast to x86 specific information.

Another point which reduces the ability to debug the core libraries in Windows Mobile is that
no PDB files are available from Microsoft for the libraries. The reasoning behind not providing the
user with those files is that an OEM can change the libraries and therefore debugging symbols
would not match the device specific libraries. However, this reasoning does not explain why there
are no debugging symbols for the emulator images.

Debugging with IDA Pro IDA Pro provides a Windows CE debugger which is capable of de-
bugging Windows Mobile devices. IDA Pro uses a debugger server which is copied to the device
via the Active Sync protocol. For some versions of Windows Mobile two registry keys (Listing
3.11) have to be changed to lower the device security to a point where the debugger can be
invoked remotely.

LISTING 3.11: WINDOWS MOBILE REGISTRY FIXES

1 Key: 'HKLM\Security\Policies\Policies001001 ' change to value DWORD:1
2 Key: 'HKLM\Security\Policies\Policies00100b ' change to value DWORD:1

Like the debugger which is shipped with Visual Studio some address ranges are blocked for
breakpoints if you use IDA Pro as debugger. The primer about Windows Mobile debugging with
IDA lists the address range above 0x80000000, which is the kernel memory space, and the
address range of coredll.dll, as blocked ranges.

In contrast to the Visual Studio debugger, IDA Pro supports hardware breakpoints in data mem-
ory regions. This is especially useful if you consider the approach of return oriented programming
where the future variables and parameters to functions all reside in the data region of the stack.
But even though hardware breakpoints seems to be the perfect debugging solution, breaking into
system functions is not possible. For a primer on debugging Windows Mobile with IDA Pro see
Hex-Rays.

Debugging with BinNavi The debugger in BinNavi has been rewritten for this thesis by the
author. The debugger is based upon the Windows Mobile debugging interface provided by the
Microsoft libraries. In contrast to debuggers on desktop Windows versions some features of the
debugging API can not be easily transferred to Windows Mobile. One example of these types of
problems that was encountered is the use of the Toolhelp32 API for the enumeration of loaded
libraries by the debugged process. With a desktop Windows using this function is no problem. In
Windows Mobile after some calls to the function have been performed it just stops working. In
the process of rewriting the debugger this problem could not be traced to any specific cause but
could be reproduced every single time.

The major difference between the BinNavi debugger and the two other debuggers is that it’s not
based on the Active Sync protocol. This leads to two important points. The debugger is not able
to load the program which is to be debugged onto the device, but its not bound to the limitations
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and quirks that Active Sync has. The debugger is used over a simple TCP/IP connection which
can be started for any networking device the Windows Mobile device has.

The other difference is that the debugger has to be installed on the device prior to debugging.
It provides a graphical user interface where the process to be debugged can be selected from the
list of running processes or from the disk of the device.

The selection of breakpoints and the presentation of the information from the debugger is
shown in the BinNavi debugger window.

Problems with debugging As already mentioned in the previous paragraphs, debugging a
Windows Mobile machine is not as easy as debugging a native Windows desktop machine. The
primary reason for this is the XIP section and the limitations that result in a pre-relocated read
only memory section. Another reason is that the tools which may be able to surround these
issues are only available to device OEMs (Platform Builder for Windows Mobile).
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3.2. The REIL meta-language

For the last decades, a wide range of people had only access to personal computers - generally
x86 machines - at home. However, the recent evolution of consumer electronics like modern cell
phones, PDAs, SOHO routers, and wireless devices, have brought people in contact with a wide
range of other architectures. Even though Intel very recently introduced chips which focus on
this specific market, architectures like PowerPC, ARM, and MIPS are used instead in most of
the devices. Most of these devices store sensitive data and have the ability to connect to a wide
range of networks and services. The progression towards consumer device architecture diversity
is affecting the work of security researchers. The average security researcher now must deal
with larger programs on a multitude of platforms. The ever-growing complexity of the software
that runs on these devices naturally leads to more bugs in the code.

Auditing these larger code bases on multiple platforms, becomes more expensive as more
analysts are needed which must have a diverse skill set to be able to analyse the platforms in
question. To counteract the growing complexity and costs, methods need to be found to reduce
complexity and make analysis tools portable across different platforms. zynamics [zynamics
GmbH] created a low-level intermediate language to do just that. With the help of the Reverse
Engineering Intermediate Language (REIL) an analyst can abstract various specific assembly
languages to facilitate cross-platform analysis of disassembled binary code. In this thesis REIL
was chosen as base for all analytic algorithms to allow a later adoption of the acquired results to
other architectures.

3.2.1. A brief description of REIL cornerstones

Intermediate language design appears to be more art than science and has been proven to
be only effective if it evolved from an iterative process of trial and error. The most important
influence to the design of REIL were the experiences made designing previous intermediate
representations, amongst others those discussed in a presentation by Halvar Flake at Black Hat
Asia 2003. In that presentation, "Automated Reverse Engineering", he follows a first attempt at
using intermediate representations for static bug detection [Dullien, 2003].

One of the key elements for REIL was the insight that an initial intermediate language needs
to be extremely simple. Therefore complexity or over-dependency on correct disassembly needs
to be avoided because it easily leads to mistranslations and difficulties later in the analysis chain.
REIL does a simple one-to-many mapping in the translation step without trying to understand or
recognize structures in the translated assembly source. Is has explicit modelling of the contents
of the flags registers as results of the underlying arithmetic. For example, when translating ARM
code to REIL, the ARM flags are modelled independently instead of being grouped into the CPSR
register like they are on the real ARM CPU. Memory accesses in REIL are as explicit as possible.
This is in contrast to the x86 instruction set where many different instructions can implicitly access
memory. REIL has dedicated memory access instructions.

In general, one of the main goals was to create a language where every instruction has exactly
one effect on the program state and this effect is immediately obvious when looking at the in-
struction. This contrasts sharply to native assembly instruction sets where the exact behaviour of
instructions is often influenced by CPU flags or other pre-conditions. Real instructions often have
an effect on the program state that is not immediately obvious without a deeper understanding of
the instruction set and the underlying architecture.

3.2.2. REIL architecture and instruction set

The purpose of REIL is to provide a platform-independent intermediate language which makes it
as easy as possible to write static code analysis algorithms such as the gadget finding algorithm
for return oriented programming presented in this thesis.
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This specific focus of REIL has led to design differences in comparison to other intermediate
languages. REIL was designed to be easily understandable in a few minutes by an average
security researcher. Also, algorithms designed for REIL should be shorter and simpler than
algorithms designed for a native assembly language.

REIL is syntactically and semantically simple.

Syntactic simplicity means that all REIL instructions have the same general format. This makes
them easy to parse and comprehend.

Semantic simplicity means that the REIL instruction set is as small as possible and that the
effects of an instruction on the program state are clear and explicit.

REIL has a common instruction format which is shared among all instructions. Each REIL
instruction has a unique REIL address which identifies the relative position of the current REIL
instruction to other REIL instructions. A REIL address is composed of two parts. This is different
to native assembly addresses.

• Native assembly instructions address which has been translated to REIL.

REILaddress = 0x03F0A0B0C . 05 (3.2)

• Zero based offset to the first REIL instruction.

Each REIL instruction has exactly one mnemonic that specifies the effects of an instruction
on the program state. In total there are 17 different REIL mnemonics. Each REIL instruction
takes exactly three operands. For instructions where some of the three operands are not used,
place-holder operands of a special type called Empty are used where necessary.

Additionally it is possible to associate a list of key-value pairs, the so called meta data, with
each REIL instruction. This meta data can be used by code analysis algorithms to do a more
precise program analysis.

Prior to the description of the 17 different REIL instructions, it is necessary to give an overview
of the REIL architecture. Listing the instructions is not sufficient to define the runtime semantics
of the REIL language. It is also necessary to define a virtual machine (REIL VM) that defines how
REIL instructions behave when interacting with memory or registers.

3.2.2.1. The REIL VM

The REIL VM is a register-based virtual machine without an explicit stack. This decision was
made because the most-targeted native CPUs (x86, PowerPC, ARM) are also register-based
machines.

This close proximity between the native architectures and the REIL architecture make it easy
to translate native instructions to REIL.

Unlike native architectures, the REIL architecture has an unlimited set of registers. The names
of REIL registers all have the form t-number, like t0, t1, t2. Furthermore, REIL registers are not
limited in size. This means that in one instruction, the register t17 can be four bytes large and in
the next instruction it can be 120 bytes large. In practice only register sizes between 1 byte and
16 bytes have been used. Due to REIL translation conventions REIL registers are local to one
native instruction. This means that REIL registers can not be used to transfer values between
two native instructions.

Native registers are also used in REIL instructions. This does not violate the principle of
platform-independence because native registers and REIL registers can be treated completely
uniformly in analysis algorithms.
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The memory of the REIL VM is also not limited in size. It is organized using a flat memory
model where individual bytes are addressable without alignment constraints. Memory segments
or memory selectors are not used by the REIL memory. The endianness of REIL memory ac-
cesses equals the endianness of memory accesses of the source platform. For example, in REIL
code that was created from ARM code, all memory accesses use little endian mode, while REIL
code created from PowerPC code uses big endian by default.

3.2.2.2. REIL instructions

Now that the REIL architecture has been described, the 17 different REIL instructions can be
introduced. These instructions can loosely be grouped into five different categories according to
the type of the instructions. These categories are

• Arithmetic instructions

• Bitwise instructions

• Logical instructions

• Data transfer instructions

• Other instructions

Arithmetic instructions The general structure of all arithmetic instructions is the same. They
all take two input operands and one output operand. The values of the two input operands are
connected using the arithmetic operation specified by the instruction mnemonic. The result of
the arithmetic operation is stored in the third operand, the output operand. The input operands
can be either integer literals or registers. The output operand must be a register. None of the
operands have any size restrictions but the arithmetic operations can impose a minimum output
operand size or a maximum output operand size relative to the sizes of the input operands.

[ADD OP1, OP2, OP3] The ADD (Addition) instruction is used for addition computed in two’s
complement. To account for potential overflows the size of the output operand must be larger
than the biggest size of the input operands.

[SUB OP1, OP2, OP3] The SUB (Subtraction) instruction is the exact opposite of the ADD
instruction. It subtracts the second input operand from the first input operand and stores the
result of the subtraction in the output operand. Subtraction can also overflow or underflow on
fixed-size registers and the size of the output register must be adjusted accordingly.

[MUL OP1, OP2, OP3] The MUL (Multiplication) instruction is the unsigned multiplication in-
struction of REIL. It takes two input operands, interprets them in an unsigned fashion and multi-
plies them. The result of the operation is stored in the output operand. Multiplication can overflow
too and the size of the output operand must be large enough to hold all potential results. In REIL,
signed multiplication is simulated using unsigned multiplication followed by an explicit adjustment
of the sign bit of the multiplication result.

[DIV OP1, OP2, OP3] The DIV (Division) instruction is the unsigned division instruction of REIL.
It divides the first operand by the second operand. The result is stored in the output operand.
The DIV operation is an integer division, meaning that the fractional part of the division result is
truncated. Since the minimum absolute value of the second input operand is 1 (dividing by 0 is
invalid), the result can never be bigger than the first input operand. The size of the output operand
can therefore always be set to the size of the first input operand
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[MOD OP1, OP2, OP3] The MOD (Modulo) instruction is the unsigned modulo instruction of
REIL. It calculates the same operation as the DIV instruction but stores the remainder of the
division in the output operand. Since the calculated remainder must be somewhere between 0
and the second input operand less one, the size of the output operand can be set to the size of
the second input operand.

[BSH OP1, OP2, OP3] The BSH (Bitwise Shift) instruction is used for logical bit-shifting. The
first input operand contains the value to shift. The second input operand contains the shift-mask
that specifies how far the first input operand is shifted. Furthermore, the second input operand
specifies the direction of the shift. If the value in the second operand is negative, the shift is a
left-shift. Otherwise it is a right-shift. The BSH instruction is a logical shift instruction. Arithmetic
shifting is simulated using BSH and explicit adjustment of the most significant bits of the shifted
value.

Bitwise instructions The structure and behavior of bitwise instructions is comparable to that
of arithmetic instructions. Each bitwise instruction takes two input operands and connects all bits
of the input operands using the truth table of their respective underlying Boolean operation. The
result of the operation is stored in the output register. Since none of the bitwise operations can
overflow or underflow, the size of the output operand can be set to the size of the bigger input
operand.

[AND OP1, OP2, OP3] The AND operation executes a bitwise AND on the two input operands
and stores the result of the operation in the output operand.

[OR OP1, OP2, OP3] The OR operation executes a bitwise OR on the two input operands and
stores the results of the operation in the output operand.

[XOR OP1, OP2, OP3] The XOR operation executes a bitwise XOR on the two input operands
and stores the results of the operation in the output operand.

Logical instructions Logical instructions are used to compare values and to conditionally
branch. The instructions of this category are the first instructions which do not use all three
operands. The special operand type Empty is inserted where necessary instead. When writing
down instructions, the Empty operands are not written.

[BISZ OP1, , OP3] The BISZ (Boolean is zero) instruction is the only way to compare two
values in REIL. In fact, the BISZ instruction can only be used to compare a single value to zero.
BISZ takes a single input operand and tests whether the value of the input operand is zero. If
the value of the input operand is zero, the value of the output operand is set to one. Otherwise
it is set to zero. The second operand is always unused. More complex comparisons must be
modeled using a series of REIL instructions followed by an (optional) BISZ instruction.

[JCC OP1, , OP3] The JCC (Conditional jump) instruction is used to branch conditionally. If
the value given to the instruction in the first operand is anything but zero, the jump is taken and
control flow is transferred to the address specified in the third operand. The second operand is
always unused.

Data transfer instructions Data transfer instructions are used to access the REIL memory or
to copy values between registers.
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[LDM OP1, , OP3] The LDM (Load Memory) instruction is used to load a range of bytes from
the REIL memory into a register. The start address from where bytes are loaded is given in the
first operand of the instruction. The register where the loaded value is stored is given in the third
operand. The number of bytes which are read from REIL memory equals the size of the output
operand. For example, if the output operand is four bytes large, four bytes are read from memory.
Since there is no limit to the size of REIL registers, the number of bytes that can be loaded by a
single LDM instruction is also not limited.

[STM OP1, , OP3] The STM (Store Memory) instruction is used to store a value in the REIL
memory. The value to store is given in the first operand of the instruction. It can be either an
integer literal or the content of a register. The third operand contains the start address the value
is written to. The STM instruction always stores all the bytes of the input operand in the REIL
memory. Since both integer literals and registers can be arbitrarily large, the number of bytes
written by a single STM instruction is not limited.

[STR OP1, , OP3] The STR (Store Register) instruction is used to store a value in a register.
This instruction can be used to store an integer literal in a register or to copy the content of one
register to another register. The first operand contains the value to be copied; the third operand
contains the target register where the value is stored.

Other instructions The last category of REIL instructions is the category of instructions that
do not fit into any other category.

[NOP , ,] The NOP (No Operation) instruction takes no operands and does not have an effect
on the program state.

[UNDEF , , OP3] Certain native assembly instructions, like the x86 instruction MUL leave regis-
ters or flags in an undefined state. To be able to simulate this behaviour in REIL it was necessary
to add the UNDEF (Undefine Register) instruction. This instruction takes a single operand, al-
ways a register, and marks the content of that register as undefined.

[UNKN , ,] The UNKN (Unknown Mnemonic) instruction is a place-holder instruction that is
emitted by REIL translators if they come across an instruction which they cannot translate.

3.2.3. Limitations of REIL

At this point REIL cannot yet completely translate all native assembly instructions. This is partly
caused by limitations in the REIL language or the REIL architecture itself and partly because
there has not been yet time to implement everything planned. The first limitation is that certain
native instructions cannot be translated to REIL code yet. For example, FPU instructions and x86
instruction set extensions like MMX or SSE are not yet translated to REIL code because REIL is
specifically made for finding security-critical bugs in binary code and these instructions are rarely
involved in such bugs. Another limitation is that instructions which are close to the underlying
hardware can often not be translated to REIL code without extending the REIL instruction set.
For purposes of analysis, keeping the REIL instruction set small is more important than having
the ability to translate all seldom used native assembly instructions to REIL code. A limitation
that is significantly more important in practice is that exceptions are not handled properly yet. To
handle exceptions in REIL, it is necessary to create a platform-independent model of exception
handling first. This has yet to be done.
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3.3. Return-Oriented Programming on ARM

In this section the answer to the question of feasibility of return oriented programming on the
ARM architecture is given. Like other modern architectures, the ARM architecture has a non-
executable stack.

In the original work by Shacham, unintended instruction sequences were the core of all analysing
algorithms and the resulting gadgets. While this is a valid approach for any variable length in-
struction set like the x86, in fixed-length instruction sets this is not possible. It has been shown
that return oriented programming is feasible on RISC machines with a fixed-length instruction set.

As described in Section 3.1 the ARM architecture is structurally different from both the x86
architecture and the SPARC architecture. In contrast to the x86 architecture it has strictly aligned
4 byte or 2 byte instructions. In contrast to SPARC it does not use a register window shift mech-
anism for parameter passing.

The contributions of this thesis to the research in the field of return oriented programming are:

• That a platform independent meta-language can be used as the basis for locating interest-
ing instruction sequences.

• That function epilogues of leaf functions can be used as gadgets.

• That it is possible to construct a gadget set which can use registers and memory across
different gadgets.

A return oriented program is defined by a distinct sequence of gadget frames which are placed
in a attacker controlled memory segment of the exploited process, for example the stack or the
heap. A gadget frame consists of one or more variables which are used as data source. The
data from the variables provides the input for the gadgets and the information where the control
flow will continue. A gadget is a short sequence of instructions located in a library or executable
accessible at runtime. A single gadget provides a single operation for the return oriented program.
Gadgets can be understood as meta-instructions and can, if carefully combined, form a return
oriented program.

A return oriented program operates as follows: After the attacker has hijacked the control flow,
the first gadget he chooses is executed. The attacker has made sure that the stack pointer points
into the memory he controls. The first gadget is executed and eventually ends in a "free branch",
e.g. a branch whose target address is determined during runtime. The attacker has set up the
data in a way that allows branching to the next gadget he wishes to execute. Through this, he can
execute one gadget after the other, where arguments for each code sequence can come from
either the memory he controls or register values set by previous gadgets.

To be able to built a return oriented programming for the ARM architecture, a comfortable set of
gadgets is explained in depth in Section 3.4. In Chapter 4, the algorithms to locate these gadgets
are described and the theoretical ideas on which they build are explained. The algorithms are
able to find and categorize gadget types and to measure their respective complexity to choose
the least complex gadget.

3.3.1. A note on Turing-completeness

In this thesis the term ”Turing-complete” is often used in the context of the instruction set which
is available through the use of return-oriented programming. The term Turing-completeness is
named after Alan Turing. It states that every plausible design for a computing device can be
emulated by a universal Turing machine. Therefore, a machine which can act as a universal
Turing machine can perform any calculation of any other computing device.

However, this does not state anything about how complex it is to build a program for this com-
puting device.
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[SP+0] = 0xAAAAAAAA -> R4 next gadget

[SP+4] = 0xBBBBBBBB -> R5 next gadget

[SP+8] = 0xCCCCCCCC -> next gadget

0x03F55898 LDR R3, [R5,4]

0x03F5589C STR R3, [R4,4]

0x03F558A0 MOV R0, R4

0x03F558A4 LDMFD SP!, {R4,R5,LR}

0x03F558A8 BX LR
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À An exploited frame on the stack gives the attacker initial control over the control flow and provides the arguments for
the first gadget.

Á After the initial control hijack, all data which has been stored on the stack below the initially exploited frame is used as
a gadget frame. A gadget frame uses the stack to pass variables to the next gadget.

Â The gadgets itself are located in the runtime image of the exploited program. The runtime image consists of the
program itself and all the libraries which have been loaded into the program.

Ã The variables which are needed across multiple gadgets can be stored in a dedicated memory section. The exploited
process must have read and write access to the memory area.

Ä Example instruction sequence which forms a gadget.

Å The gadget is located in a function epilogue in the current runtime image of the exploited binary.

Æ A gadget frame is needed for each gadget which has stack usage. The gadget frames are located on the stack.

Ç The first two instructions of the example gadget need the memory locations [R4+4] and [R5+4] to be accessible
memory.

È The gadget frame provides the input for the LDMFD instruction. Therefore the registers R4 and R5 are set to the
values present in the frame and the control flow is passed to the value which has been stored in LR.

FIGURE 3.11.: RETURN ORIENTED PROGRAM ENVIRONMENT OVERVIEW

Even though the term Turing-complete is used to describe the basic capabilities of the gadget
set, a much more comfortable set of gadgets is searched for. With a comfortable gadget set it is
not only theoretically possible to program, it is practically possible.

3.3.2. Finding ARM Instruction Sequences in libraries

The search for useful instruction sequences in ARM libraries was performed with a set of condi-
tions in mind that have to be fulfilled by the instruction sequence.

• It should completely perform one of the desired operations which are needed for a comfort-
able set of gadgets.

• It should partially perform one of the desired operations and there are other sequences
available which perform the missing parts to fulfil the operation.
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• The sequence must have the result of the operation stored in memory or in a register.

• The sequence must not have unintended side effects which might jeopardize the operation
of another sequence and therefore the entire program.

All experiments performed in this thesis have used the Windows Mobile version 6.1 library
coredll.dll in multiple versions. The file is approximately 592 kilobytes large and provides about
3000 ”free branches”, which are terminating potentially usable instruction sequences.

The algorithms which are used to perform the experiments are explained in depth in Section 4.
One of the primary concerns within the gadget search process is passing variables between

instruction sequences. On the ARM architecture passing variables is possible with registers and
with memory. The overview in Figure 3.11 shows the use of memory locations as parameters to
a function Ç and registers as parameters Å.

3.3.3. Construction of ARM Gadgets

A gadget is the combination of one or more instruction sequences located in the library. It can
either read from registers or memory, perform its operation and store the result to a register or a
memory location. The ARM gadget catalogue describes gadgets which can perform a basic set of
computational methods, such as memory read and writes, register read and writes, arithmetic on
registers or memory, bitwise arithmetic on registers or memory, control flow operations, function
calls and system calls. The operations performed by the gadgets are described in a simple
descriptive way using three parts:

• Tree form, to display what has been searched for.

• Assembly form, to display what has been found.

• Gadget form, to explain what is needed to use the gadget and what its results are.

3.3.4. Crafting a Return-Oriented Program

A return oriented program is nothing more and nothing less than a carefully crafted buffer of
consecutive addresses, variables, and place-holder values which is placed on the stack or heap
of the exploited program. It needs to fulfil the requirement that upon return of the initially exploited
function, in case of a buffer overflow on the stack, the stack pointer SP and the link register LR
are set to the right values for the initial gadget and the necessary arguments are provided in the
right registers.

3.3.5. Generating a return oriented program with a compiler

With these prerequisites it will be possible to construct a compiler which is able to use these gad-
gets to build a return oriented program automatically. Earlier papers in the field of return oriented
programming have provided such an compiler and an API for return oriented programming. This
approach abstracts the creation of a return oriented program even more and provides an even
simpler interface for the user. None of the described compiler extensions are publicly available.
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3.4. ARM gadget catalogue

For every programming language there must be a definition about the possible commands and
structures present in the language. For return-oriented programming the gadgets are the com-
mands. Therefore it is necessary to define and describe them.

The gadget catalogue is a compilation of the gadgets used in this thesis. In this section the
following information is provided: A description for each gadget is provided and the operation it
performs is explained. The tree form (search string) which is used to find the particular gadget
is presented. An exemplary assembly listing for each gadget is given and the effects for the
presented listings are described.

The in this section provided information is used in the algorithms for gadget searching which
are explained in Chapter 4.

3.4.1. Description

What does the tree form do and why is it needed ? The set of all possible gadgets is searched
for usable gadgets. A single gadget in the set consists of multiple binary expression trees,
which are generated from the code sequences. Therefore operations must be located within
these binary expression trees. The tree form is the ”search string” used for the search. A
search is performed with a binary expression trees that matches only a certain operation,
for example an addition. The expression trees used for searching have been constructed
manually by looking at the REIL translation of an instruction sequence which performs a
desired operation. Once a tree for a specific operation has been constructed it can be used
in the algorithms for automatic gadget finding (Chapter 4).

What information does the assembly form provide ? A single gadget for a specific operation
is usually present more then once in a binary, also it need not match an exact instruction
sequence. Therefore an example is provided to show how a representative of this specific
gadget might look like. The short assembly listing shows the instructions which have been
found by using the binary expression tree of one specific gadget in the algorithms from
Chapter 4. They are provided as a basis to explain what is necessary to use this specific
sequence of instructions.

Why is the gadget form presented ? As the goal is to build a program from gadgets, these
gadgets must be combinable. A gadget can be thought of as a meta-instruction which
provides a specific operation in form of an instruction sequence. This instruction sequence
need not be the same for two gadgets that provide the same operation. Therefore not all
of the gadgets for one operation are the same and might require different conditions to
be combinable. To provide an abstraction for the information about what a certain gadget
needs as input and provides as output, as well as its side effects, the gadget form is given.
The gadget form is used in combination with the assembly form as it represents this exact
sequence of instructions.

What about side effects ? A gadget might taint registers or memory cells which are not part of
the core functionality that was searched for. These tainted registers or memory cells are
the side effects of the gadget. Side effects that taint registers can in almost any case be
ignored as the register can just be marked as tainted until a known value is stored into the
register. For a memory cell this is not the case. This is because the memory cell can be
addressed in various ways other then a register which is always addressed by its name.
Therefore gadgets which have memory cell side effects should be avoided if possible. The
side effects for each gadget are automatically extracted by the algorithms in Chapter 4.

How does the combination of gadgets work ? The calling convention of the ARM architecture
describes that a functions epilogue must restore the registers of the caller function. This
behaviour is used to combine gadgets to form a program. The registers which must be
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restored are usually saved onto the stack in the function prologue. In a return oriented
program the prologue of a function is not used, but the stack contains the data placed there
for the return oriented program. Therefore the function epilogue which would usually return
to the caller function and restore its registers now returns to the next gadget and provides
it with its registers. The registers are restored by a single assembly instruction (LDMFD)
which usually has the stack pointer as first argument. Therefore all of the registers are
loaded from a stack offset. Not all gadgets restore the same registers. Therefore gadgets
can only be combined if the pre- and post-conditions specified in the gadget form of the
gadgets match each others requirements.

3.4.2. Nomenclature

To avoid misunderstanding and uncertainty about the following gadget specifications the nomen-
clature provides the information to interpret them correctly.

Tree form The tree form has two types of nodes which are differentiated by their color. Light blue
defines mandatory nodes which must be present for the search. Light green nodes define
sub-trees which must be present but the actual form in which they exist in a certain gadget
can vary.

Gadget form The gadget form has four different node types also differentiated by color. The
operation(s) performed by the gadget are coloured green. The chaining variables which are
used as input for the next gadget subsequent to the current gadget are coloured blue. The
gadget chaining (through the PC register) is coloured in orange. The side effects of the
gadget are coloured in red.

register access Register access is denoted through the name of the register states without any
brackets (for example R3 = 5).

memory access Memory access is specified through a set of brackets which contain the name
of the register and a possible offset (for example [R5] = R2).

offsets Offsets (+ ‖ - are the possible operators) exist only for memory locations and are pre-
sented in the form register operand offset (for example [R5+4]).

mem prefix The mem prefix followed by a bracket with the possible operand types (register,
immediate, register with immediate offset or register with register offset) states a memory
access to the memory location within the brackets. If the mem prefix is followed by an-
other mem prefix, an access to a dereferenced memory location is indicated (for example
mem[mem[R4]).

⊥ The ⊥ symbol is used to define that no information about the state of the register or memory
cell can be given. The ⊥ symbol is used in the side effects for each gadget.

3.4.3. Memory gadgets

Memory gadgets are gadgets that store the result of the computation in memory. The source of
the computation can either be a register or a memory location. A computation in this context is
understood as a change in value of the target memory location. Therefore a simple move from
a register to a memory location is a computation as well as an addition of two registers with a
downstream store of the result in a memory location.
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LISTING 3.12: MEMORY TO REGISTER GADGET EXAMPLE

1 0x03F8E3F8 STR R0, [R4 ,12]
2 0x03F8E3FC LDMFD SP!, {R4,R5,LR}
3 0x03F8E400 BX LR

3.4.3.1. Gadget: memory to register

The ”memory to register” gadget copies the value stored in a register to a memory location. The
source operand must be a register and the target operand must be a memory location. This
gadget can be used in combination with other gadgets if the desired operation needs to store its
result to a memory variable but the computing gadget can not access the memory itself.

STM

register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.12.: MEMORY TO REGISTER TREE FORM

The tree in Figure 3.12 has one light blue mandatory node which must be present as root
node. Without this node an expression tree from an instruction sequence does not match the
specific gadget. The key under which such an expression tree is stored in the operand tree map
always starts with a MEM prefix. The light green nodes in the figure represent the optional nodes.
Optional means that there can be multiple possible trees present for the tree to match but the tree
must be empty. For example the left-hand tree can either be only a register node, which must
be present as the left-hand node of the light blue STM node, or an operation of the type ADD or
SUB. If the left-hand node is a ADD or SUB then their respective left- and right-hand nodes must
be present, and at least the left-hand node must be a register. The right-hand node can either be
a register or an immediate integer. All of the following trees meet this specification.

The assembly code (Listing 3.12) shows an example for the ”memory to register” gadget type.
On the left-hand side of the listing the original addresses of the assembly code from the analysed
binary are shown. On the right-hand side of the listing the ARM assembler is shown. All of the
assembly listings presented in this section follow this specification. They are meant to show for
which assembler code the tree in Figure 3.12 will provide a match.

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

MEM[R4+12] = R0

R4 = MEM[SP+0]

R5 = MEM[SP+4]

LR = MEM[SP+8]

PC = LR = MEM[SP+8]

NONE

FIGURE 3.13.: MEMORY TO REGISTER GADGET FORM

The gadget form in Figure 3.13 shows the conditions which have to be met for the assembler
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LISTING 3.13: MEMORY TO MEMORY GADGET EXAMPLE

1 0x03F55898 LDR R3, [R5 ,4]
2 0x03F5589C STR R3, [R4 ,4]
3 0x03F558A0 MOV R0, R4
4 0x03F558A4 LDMFD SP!, {R4,R5,LR}
5 0x03F558A8 BX LR

code (Listing 3.12) to work as the intended gadget. In the register R0 the value which is to be
stored in the memory location mem[R4+12] can be provided. The memory location mem[R4+12]
must point to an accessible memory location. The memory locations mem[SP], mem[SP+4], and
mem[SP+8] must also point to accessible memory locations. In the special case of the memory
locations which are referenced with an offset from the stack pointer, accessibility is almost always
possible. The values from the stack will be used to load values into the registers R4, R5, and LR.
The value for LR has to be treated with special care because the control flow will continue at the
given address as indicated in the highest light orange node. The memory locations and registers
which are tainted by the gadget are shown in the light orange node below the control flow node.
All of the gadget type figures in this thesis follow this specification.

3.4.3.2. Gadget: memory to memory

The ”memory to memory” gadget copies the value stored at the memory location the source
register points to, to the memory location the target register points to.

To be able to have more matches for this gadget type within a specific binary, the source and
target registers which specify the memory locations can have positive or negative offsets. These
offsets can be treated as they were normal memory cells because the register value which is
used in combination with the offset can always be adjusted. Integer values as source or target
are not allowed because this would reference static values within the running application which
are not needed as all the values can be loaded into a register.

STM

LDM
register OR
operation

null OR register null OR register
register OR
operation

null OR ( register
OR immediate )

null OR ( register
OR immediate )

FIGURE 3.14.: MEMORY TO MEMORY TREE FORM

A ”memory to memory” gadget search tree has two mandatory nodes. The root node which
must be present is a STM node. The left child node of the STM node must be a LDM node. The
light green sub-trees one on the left side of the LDM node and one on the right node of the STM
node. Both light green trees can either be registers only or an ADD or SUB operation. In the
case of an ADD or SUB node present as the root of the tree the left-hand side of the operation
must be a register while the left-hand side can either be a register or an immediate integer.

Listing 3.13 shows a possible match for the described tree in Figure 3.14. The two instructions
at the beginning of the listing are the instructions which, after they have been translated to REIL,
get matched by the search tree.

Figure 3.15 shows the pre- and post-conditions which must be met for the gadget example in
Listing 3.13.
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• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

MEM[R4+4] = MEM[R5+4]

R4 = MEM[SP+0]

R5 = MEM[SP+4]

LR = MEM[SP+8]

PC = LR = MEM[SP+8]

R0 =⊥

FIGURE 3.15.: MEMORY TO MEMORY GADGET FORM

LISTING 3.14: ARITHMETIC MEMORY OPERATION GADGET EXAMPLE

1 0x03F86EB8 LDR R1, [R6]
2 0x03F86EBC MOV R0, 1
3 0x03F86EC0 ADD R3, R1, R4
4 0x03F86EC4 ADD R2, R1, 0x10000
5 0x03F86EC8 STR R3, [R6 ,8]
6 0x03F86ECC STR R2, [R6 ,12]
7 0x03F86ED0 STR R1, [R6 ,4]
8 0x03F86ED4 LDMFD SP!, {R4,R5,R6,LR}
9 0x03F86ED8 BX LR

3.4.3.3. Memory arithmetic operation gadget

Gadgets for memory arithmetic provide basic arithmetic operations. The target operand for the
gadget must be a memory location, the source operands can either be registers or memory
locations. It is possible to specify immediate values as operands for the arithmetic operation as
right-hand operands. The supported arithmetic operations are:

• MEMORY ADDITION

• MEMORY SUBTRACTION

The search trees for both the memory arithmetic gadgets and the bitwise operation gadgets
are identical. The operation specified on the left-hand side of the root node is mandatory for this
type of gadget. It differs between all arithmetic and bitwise functions.

The tree to locate a memory operation gadget within the runtime image of the binary introduces
a new aspect which is now explained. The left-hand side of the root node is the mandatory
operation which can be any of the operations named above. The two trees the left-hand sub-tree
of the operation node and the right-hand sub-tree, can be memory load operations. The option
that these trees are memory load operations is indicated through the LDM instruction present in
both child nodes of the operation node. If a LDM instruction was matched the possible sub-trees
are register only, register with immediate offset, or register with register offset.

Example 3.14 shows a memory addition with two important aspects of the gadget finding pro-
cess. The first aspect is the complexity of the gadget itself. It computes more than what would
be sufficient to match the search tree. The second aspect is that the gadget, even though it
is complex and performs instructions which are not needed, is still found. Therefore, even in
cases where the number of usable functions is quite small, the algorithm can still find complex
combinations of instructions to perform a specific task.

In Figure 3.17 the complexity of the given Listing 3.14 is also present. The gadget taints a wide
range of memory cells and registers. Therefore the gadget needs all of the memory location to
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STM

operation

register OR
operation

null OR register null OR ( register
OR immediate )

register OR LDM
OR immediate

null OR ( register
OR operation )

null OR register null OR ( register
OR immediate )

register OR LDM

null OR ( register
OR operation )

null OR register null OR ( register
OR immediate )

FIGURE 3.16.: MEMORY OPERATION GADGET TREE FORM

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

MEM[R6+8] = MEM[R6] + R4

R4 = MEM[SP+0]

R5 = MEM[SP+4]

R6 = MEM[SP+8]

LR = MEM[SP+12]

PC = LR = MEM[SP+12]

R0, R1, R2, R3 =⊥

FIGURE 3.17.: ARITHMETIC MEMORY OPERATION GADGET FORM

be accessible. In the context of a return oriented program using this gadget, the memory location
should not contain important information which shall not be overwritten.

3.4.3.4. Memory bitwise operation gadgets

The bitwise operation memory gadgets perform the basic bitwise operations. The source operands
of the gadget can either be registers or memory locations, the target operand needs to be a mem-
ory location. The bitwise operations found by the algorithm are:

• MEMORY AND

• MEMORY OR

• MEMORY XOR

• MEMORY NOT

The tree structure to locate memory bitwise operations is the same as the tree structure for
memory arithmetic operations. The operation node in Figure 3.16 would in this case match one
of the bitwise arithmetic operations instead of a normal arithmetic operation.

The bitwise memory operation gadget in Listing 3.15 is a leaf type function. Leaf type functions
in ARM do only work with function-local registers and do not use the stack. This specific gadget
can not work all by itself because the LR register which the control flow is transferred to must
be set to the next gadget in the gadget chain. To use this gadget we need to use the gadget
described as leaf function call gadget in Section 3.4.8.2.
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LISTING 3.15: BITWISE MEMORY OPERATION GADGET EXAMPLE

1 0x03FB1D50 LDR R3, [R2]
2 0x03FB1D54 ORR R3, R3, R0
3 0x03FB1D58 STR R3, [R2]
4 0x03FB1D5C BX LR

• GADGET OPERATION

• GADGET CHAINING

• SIDE-EFFECTS

MEM[R2] = MEM[R2] | R0

PC = LR

R3 =⊥

FIGURE 3.18.: BITWISE MEMORY OPERATION GADGET FORM

3.4.4. Memory dereference gadgets

This section describes the gadgets which can be used for memory dereference load and store
operations. Basically a memory dereference on the source side of an expression tree is a pointer
read and a memory dereference on the target side is a pointer write.

3.4.4.1. Gadget: register to memory dereference (pointer read)

The tree form of both the ”register to memory dereference” and the ”memory to memory deref-
erence” gadgets rely on the same combination of two consecutive LDM instructions. The only
difference is the operand storage type. The definition of a pointer read in this context can be
misleading and is not to be confused with a pointer read in a normal, for example C program. In
return oriented programming variables can only be stored in a dedicated memory area present
somewhere in the accessible memory as shown in Figure 3.11 item Ã. A variable is loaded from
memory with a REIL LDM instruction and would therefore in the normal convention already be
a pointer read. In return oriented programming this would be a normal assignment and only if
a pointer has been stored in the variable location, and the value it points to is loaded, a return
oriented pointer read is performed. The return oriented pointer read therefore needs two LDM
instructions one to load a variable from the dedicated memory space and one to load the value
where the variable points to into the desired location.

LDM

LDM

register OR
operation

null OR register null OR register
OR immediate

FIGURE 3.19.: REGISTER TO MEMORY DEREFERENCE GADGET TREE FORM

Figure 3.19 shows the two LDM instructions necessary for the ”register to memory dereference”
gadget. The lower LDM instruction can either have a register as child node or an offset tree as
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LISTING 3.16: REGISTER TO MEMORY DEREFERENCE GADGET EXAMPLE

1 0x03F85CC0 LDR R3, [R5 ,0x10]
2 0x03F85CC4 LDR R2, [R5]
3 0x03F85CC8 LDR R1, [R3]
4 0x03F85CCC ADD R3, R2, R6LSL2
5 0x03F85CD0 STR R1, [R3 ,4]
6 0x03F85CD4 LDMFD SP!, {R4,R5,R6,LR}
7 0x03F85CD8 BX LR

LISTING 3.17: MEMORY TO MEMORY DEREFERENCE GADGET EXAMPLE

1 0x03FA75E0 LDR R3, [R4 ,12]
2 0x03FA75E4 LDR R2, [R4 ,4]
3 0x03FA75E8 MOV R0, R3
4 0x03FA75EC LDR R3, [R3]
5 0x03FA75F0 STR R3, [R4 ,8]
6 0x03FA75F4 MOV LR, PC
7 0x03FA75F8 BX R2

sub-tree.
Listing 3.16 shows an example of a ”register to memory dereference” gadget. Instruction 1

loads a memory cell (mem[R5+0x10]) into the the register R3. In instruction 3 the content of
register R3 loaded before is now the source for the memory read, which is stored in register R1.
This specific code sequence could also be used as a ”memory to memory dereference” gadget if
the instructions 4 and 5 are taken into account.

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R1 = MEM[MEM[R5+16]]

R4 = MEM[SP+0]

R5 = MEM[SP+4]

R6 = MEM[SP+8]

LR = MEM[SP+12]

PC = LR = MEM[SP+12]

R2, R3, MEM[R5+4+R6«2] =⊥

FIGURE 3.20.: REGISTER TO MEMORY DEREFERENCE GADGET FORM

3.4.4.2. Gadget: memory to memory dereference (pointer read)

The ”memory to memory dereference” gadget closely matches the ”register to memory derefer-
ence” gadget, but has a different source for the read pointer, a memory location. The gadget
follows the same ideas the ”register to memory dereference” gadget does. Generally all of the
”memory to memory dereference” gadgets which can be found with the algorithms in this thesis
are also ”register to memory dereference” gadgets.

Figure 3.16 shows that the target is a memory location. The source side of the search tree
has the same characteristics as the ”register to memory dereference” tree. The target side can
either be a memory location specified as a register or a memory location which is addressed by
an offset to a register.

Listing 3.17 also presents a leaf function but with a different set of restrictions that apply in
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STM

LDM

LDM

register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.21.: MEMORY TO MEMORY DEREFERENCE GADGET TREE FORM

contrast to the earlier example. This time the register R2 is used in the branch instruction which
lowers the usage restrictions of the gadget. Because this specific register is usually user-settable
across multiple instruction sequences which is not the case for the LR register. In instruction 7
the control flow is passed to the address present in register R2 which has been loaded from the
memory cell addressed by mem[R4+4]. Therefore, to use this gadget a program must provide a
valid address for control flow passing in the memory location, otherwise the program will execute
unintended data.

• GADGET OPERATION

• GADGET CHAINING

• SIDE-EFFECTS

MEM[R4+4] = MEM[MEM[R4+12]]

PC = MEM[R4+4]

R0, R2, R3 =⊥

FIGURE 3.22.: MEMORY TO MEMORY DEREFERENCE GADGET FORM

3.4.4.3. Gadget: memory dereference to memory or register (pointer write)

The memory dereference gadgets store a memory or register value into a memory cell. A pointer
write in return oriented programming is, as the pointer read operation, different from pointer writes
in C code. In return oriented programming a pointer write means that the target where a memory
location or a register value will be written to has been loaded from memory prior to the write. The
process is, as follows, an address of a variable from an accessible memory location is loaded
into a register. Now the STM instruction stores a new value in the memory cell were the address
points to. Therefore this operation is named pointer write.

The tree presented in Figure 3.23 describes what has to be present in an operand tree map
for this type of gadget to be located. On the right-hand side can be seen what differentiates this
gadget from all other gadget types. It locates instructions, which have a memory load instruction
LDM from a location prior to the write memory operation STM to this location.

In Listing 3.18 instruction 1 loads a variable from memory into the register R2. Instruction 3 then
stores the contents of register R3 into the variable loaded from memory. Two important aspects
must be taken into account with the example gadget. The first aspect is that the initial load is
performed from a stack offset, which might be used in the next gadgets as input. The second
aspect is that an addition was performed in instruction 2 which affects the source register. Both
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STM

LDM
register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register

null OR ( register
OR immediate )

FIGURE 3.23.: MEMORY DEREFERENCE TO REGISTER GADGET TREE FORM

LISTING 3.18: MEMORY DEREFERENCE TO MEMORY GADGET EXAMPLE

1 0x03F5F11C LDR R2, [SP ,8]
2 0x03F5F120 ADD R3, R3, 1
3 0x03F5F124 STR R3, [R2]
4 0x03F5F128 LDMFD SP!, {R4,LR}
5 0x03F5F12C BX LR

of the mentioned aspects must be considered when this gadget is to be used in a return oriented
program.

STM

LDM LDM

register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.24.: MEMORY DEREFERENCE TO MEMORY GADGET TREE FORM

The tree in Figure 3.24 has in contrast to Figure 3.23 a memory load for both sides of the
memory store instruction. Therefore the tree locates instruction sequences where a memory
location is written to a memory dereference.

Listing 3.19 shows a ”memory dereference to memory” gadget. In Instruction 1 the memory
location addressed by register R5 is loaded into register R3. In instruction 2 a stack offset is
loaded into the register R2. Instruction 4 stores the value in register R3 into the memory location
addressed by register R2. Therefore the memory location where R5 initially pointed to is now
stored at the address where the stack offset pointed too, which is a return oriented pointer write.

Like prior gadgets, the conditions of this gadget 3.25 need to be analysed closely for potential
pitfalls. The reference to a stack offset must always be taken into account when using such a
gadget as following gadgets might use the value as input. Not all gadgets of this type have this
limitation but as an example a problematic candidate does provide more insight then a perfect
candidate.

3.4.5. Register gadgets

Register gadgets are gadgets where the result of the computation of the gadget is stored in
a register. The source of the computation can either be a register or a memory location. A
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LISTING 3.19: MEMORY DEREFERENCE TO MEMORY GADGET EXAMPLE

1 0x03F768D0 LDR R3, [R5]
2 0x03F768D4 LDR R2, [SP ,0x50]
3 0x03F768D8 MOV R0, R10
4 0x03F768DC STR R3, [R2]
5 0x03F768E0 ADD SP, SP, 0x18
6 0x03F768E4 LDMFD SP!, {R4,R5,R6,R7 ,R8 ,R9,R10 ,R11 ,LR}
7 0x03F768E8 BX LR

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

MEM[MEM[SP+50] = MEM[R5]

R4 = MEM[SP+0+24]

R5 = MEM[SP+4+24]

R6 = MEM[SP+8+24]

R7 = MEM[SP+12+24]

R8 = MEM[SP+16+24]

R9 = MEM[SP+20+24]

R10 = MEM[SP+24+24]

R11 = MEM[SP+28+24]

LR = MEM[SP+32+24]

PC = LR = MEM[SP+32+24]

R0, R2, R3 =⊥

FIGURE 3.25.: MEMORY DEREFERENCE TO MEMORY GADGET FORM

computation is understood as a change in value of the target register.

3.4.5.1. Gadget: Register to register

The ”register to register” gadget copies the contents of the source register into the target reg-
ister. This gadget is very simple but useful, especially on the ARM architecture. Because the
encountered calling conventions take arguments from the registers R1-R3, but they are almost
always local to the current function and do not get overwritten by the stack restore in the functions
epilogue. Also, these registers are often used inside the function to perform function local tasks.
Therefore the register to register gadget can be used to copy values from a register that can be
set by the stack restore instruction into the function local registers. The layout of the gadget is
very simple as it allows no other operands besides registers as source and target.

The ”registers to registers” gadget can be used if multiple register value copies are needed,
this is the case for the function call gadget which is discussed in 3.4.8.

register

FIGURE 3.26.: REGISTER TO REGISTER GADGET TREE FORM

The ”register to register” gadget only needs a very simple search tree as the gadget itself is
very simple. It is sufficient, if an entry in the operand tree map only has a register as root node
and no other nodes.

Listing 3.20 shows an example finding which is more complex then the average gadget present
in almost all binaries analysed. Instruction 1 performs the desired operation that is searched for.
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LISTING 3.20: REGISTER TO REGISTER EXAMPLE

1 0x03FAF4C0 MOV R5, R4
2 0x03FAF4C4 MOV R4, 0
3 0x03FAF4C8 SUB R3, R3, 0x1F
4 0x03FAF4CC SUB R3, R3, R12
5 0x03FAF4D0 LDMFD SP!, {R1,PC}

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R5 = R4

R1 = MEM[SP+0]

PC = MEM[SP+4]

R3, R4 =⊥

FIGURE 3.27.: REGISTER TO REGISTER GADGET FORM

3.4.5.2. Gadget: Register to constant

The ”register to constant” gadget is present in two different types. The first type searches for
instruction sequences where a register is set to zero. The second type searches for all other
constants besides zero. The layout of the gadget is simple as it allows only registers as targets
and integers as sources. The differentiation between zero and other constants is made because
zero constants are of much greater use then almost any other constant.

immediate

FIGURE 3.28.: REGISTER TO CONSTANT GADGET TREE FORM

Like the tree to locate a ”register to register” gadget, the tree to locate a ”register to constant”
gadget is also very simple.

Listing 3.21 shows an example of how a ”register to constant” gadget looks in native assembly
code. Instruction 1 is matched by the tree in Figure 3.28. This gadgets also shows that not all
found gadgets really make sense for the use in a program but are still matched.

Stack pointer relative register restores have been omitted for Figure 3.29 to get the correct
offsets add 0x63C to the stack pointer. This specific behaviour is explained in the next gadget.

3.4.5.3. Gadget: register to memory

The ”register to memory” gadget copies a value from a memory location and stores it into a
register. The source operand of this gadget must be a memory location and the target operand
must be a register. This gadget can be used in combination with a register operation gadget if
the gadget itself does not load values from memory but a memory variable is the desired input
for the operation.

Often all trees which provide similar functionality to the trees explained in the memory location
only differ in the target operand. While in the memory section the target is always a memory
location in the register section the target is a register. The tree in Figure 3.30 shows the tree
which is used to locate a ”register to memory” gadget.
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LISTING 3.21: REGISTER TO CONSTANT EXAMPLE

1 0x03F8AA24 MOV R12 , 0x63C
2 0x03F8AA2C ADD SP, SP, R12
3 0x03F8AA30 LDMFD SP!, {R4,R5,R6,R7 ,R8 ,R9,R10 ,R11 ,LR}
4 0x03F8AA34 BX LR

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R12 = 0X63C

R4 = MEM[SP+0+0X63C]

R5 = MEM[SP+4+0X63C]

R6 = MEM[SP+8+0X63C]

R7 = MEM[SP+12+0X63C]

R8 = MEM[SP+16+0X63C]

R9 = MEM[SP+20+0X63C]

R10 = MEM[SP+24+0X63C]

R11 = MEM[SP+28+0X63C]

LR = MEM[SP+32+0X63C]

PC = LR = MEM[SP+32+0X63C]

NONE

FIGURE 3.29.: REGISTER TO CONSTANT GADGET FORM

LISTING 3.22: REGISTER TO MEMORY EXAMPLE

1 0x03F5EC9C LDR R0, [R4 ,4]
2 0x03F5ECA0 ADD SP, SP, 8
3 0x03F5ECA4 LDMFD SP!, {R4,R5,LR}
4 0x03F5ECA8 BX LR

Listing 3.22 shows an example of a ”register to memory” gadget. The register R0 is loaded with
the value from the memory location addressed by mem[R4+4]. The example has been chosen
because it shows an often encountered stack shift. Stack shifts are curse and blessing: On the
one hand they might enable certain stack offsets to be used in other gadgets, on the other hand
stack shifts waste precious stack space which (especially on Windows Mobile) is very sparse.

3.4.5.4. Register arithmetic gadgets

The arithmetic gadgets for registers can be used to perform basic arithmetic operations. The
target operand type of this gadget must be a register whereas the source operands can either be
registers or memory locations. The available arithmetic operations are:

LDM

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.30.: REGISTER TO MEMORY GADGET TREE FORM
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• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R0 = MEM[R4+4]

R4 = MEM[SP+0+8]

R5 = MEM[SP+4+8]

LR = MEM[SP+8+8]

PC = LR = MEM[SP+8+8]

NONE

FIGURE 3.31.: REGISTER TO MEMORY GADGET FORM

LISTING 3.23: REGISTER ADDITION EXAMPLE

1 0x03F79EDC LDR R3, [R4 ,0xA8]
2 0x03F79EE0 ADD R3, R1, R3
3 0x03F79EE4 CMP R3, R2
4 0x03F79EE8 MOVEQ R0 , 2
5 0x03F79EEC MOVNE R0 , 0
6 0x03F79EF0 ADD SP, SP, 0x10
7 0x03F79EF4 LDMFD SP!, {R4,R5,LR}
8 0x03F79EF8 BX LR

• REGISTER ADDITION

• REGISTER SUBTRACTION

All of the arithmetic gadgets have the same tree form which is displayed in Figure 3.32.

operation

register OR LDM
OR immediate

null OR register
OR operation

null OR register null OR register
OR immediate

register OR LDM

null OR register
OR operation

null OR register null OR register
OR immediate

FIGURE 3.32.: REGISTER TO OPERATION GADGET TREE FORM

The tree to search for register operation gadgets in Figure 3.32 allows both sides of the op-
eration to either be registers or variables loaded from memory, and also that the right-hand side
of the operation is an immediate integer. The target of the tree is always a register stored in the
operand tree map.

Register addition has been selected for the register arithmetic gadget.
Listing 3.23 shows an example of a ”register arithmetic” gadget where the left-hand side of the

operation is a memory location. Instructions 1 and 2 in combination are matched by the search
tree.
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• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R3 = R1 + MEM[R4+168]

R4 = MEM[SP+0+16]

R5 = MEM[SP+4+16]

LR = MEM[SP+8+16]

PC = LR = MEM[SP+8+16]

C, V, N, Z, R0 =⊥

FIGURE 3.33.: REGISTER TO OPERATION GADGET FORM

LISTING 3.24: REGISTER XOR EXAMPLE

1 0x03F953C4 MOV R5, 0xFF00
2 0x03F953C8 EOR R2, R3, R7
3 0x03F953CC ORR R5, R5, 0xFF
4 0x03F953D0 AND R3, R2, R5
5 0x03F953D4 EOR R0, R3, R2LSR0x10
6 0x03F953D8 ADD SP, SP, 8
7 0x03F953DC LDMFD SP!, {R4,R5,R6,R7 ,LR}
8 0x03F953E0 BX LR

3.4.5.5. Register bitwise operation gadgets

The bitwise operation gadgets for registers perform bitwise arithmetic operations. The target
operand type for bitwise gadgets must be a register while the source operands can either be
registers or memory locations. The available bitwise operations are:

• REGISTER AND

• REGISTER OR

• REGISTER XOR

• REGISTER NOT

• REGISTER NEGATION

Bitwise operation gadgets are located with the same algorithms which are used to locate arith-
metic gadgets. This leads to a similar tree form for both types of gadgets. The XOR operation
has been selected as an example for the register bitwise operation.

In Listing 3.24 instruction 2 is the instruction which is matched by the search tree. The XOR
instruction was chosen as an example because it shows that bitwise operations are more compli-
cated to locate inside ARM binaries then other instructions. Although this is not true for all bitwise
arithmetic operations, XOR instructions are a difficult target at least for Windows Mobile libraries.
It is assumed that this is due to the Visual Studio compiler.

Even though the complexity of the selected assembly listing is quite high, the resulting pre- and
post-conditions are surprisingly simple as only registers get used inside the gadget and the only
memory usage is the restoring of stack variables.

3.4.5.6. Shift gadgets

Shift operation gadgets are treated different on the ARM architecture as there are no real shift
instructions present in the 32 bit instruction set. Shift operations always take place in the ARM
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• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R2 = R3 ⊕ R7

R4 = MEM[SP+0+8]

R5 = MEM[SP+4+8]

R6 = MEM[SP+8+8]

R7 = MEM[SP+12+8]

LR = MEM[SP+16+8]

PC = LR = MEM[SP+16+8]

R0, R3 =⊥

FIGURE 3.34.: REGISTER TO BITWISE OPERATION GADGET FORM

barrel shifter operand. To find a shift instruction for the 32 bit instruction set one has to really find
a MOV instruction which uses the barrel shifter. This leads to a gadget searching routine for shifts
that is more complex than the normal register operation gadgets which have been presented in
Section 3.4.5.4 and Section 3.4.5.5.

Another problem that was encountered while determining the search tree of a shift gadget was
that two different matching trees are needed to locate all possible shift operations.This is due
to the fact that REIL, in its current release, does not differentiate between right and left shifts
by mnemonic, but by the sign of the second REIL operands value. With an immediate shift
parameter this does not cause problems in the analysis process. However if the shift parameter
is a register the sign has to be set with one more REIL instruction which then has to be matched
by the algorithm as well.

Due to the discussed issues with shift operations both trees for the two locatable shifts are
presented.

BSH

SUB

0 AND

255
register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.35.: REGISTER RIGHT SHIFT GADGET TREE FORM

Both trees which are used to search for shift gadgets require special mandatory nodes to be
present. The special mandatory nodes are in case of Figure 3.35 the SUB node and its left child
node with the value zero. This combination is used to adjust the sign in REIL and therefore must
be matched by the tree. In Figure 3.36 the nodes needed for the ”right shift” are missing as the
operation which is to be located is a ”left shift”.

As an example, a register left shift operation is shown in Listing 3.25. As explained above, a
register shift does not exist as a standalone instruction in the 32 bit ARM instruction set. Therefore
the located instruction is a MOV instruction which uses the LSL option of the barrel shifter.

The listing also provides an argument to the LDMFD instruction, which has not been explained
yet, the PC register. If the PC register is present as argument for the LDMFD instruction no ARM
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BSH

AND

255
register OR
operation

null OR register null OR ( register
OR immediate )

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.36.: REGISTER LEFT SHIFT GADGET TREE FORM

LISTING 3.25: REGISTER LEFT SHIFT EXAMPLE

1 0x03FAF3B0 MOV R2, R2LSLR12
2 0x03FAF3B4 SUB R1, R1, R12
3 0x03FAF3B8 ADD R1, R1, 1
4 0x03FAF3BC LDMFD SP!, {R3,PC}

/ THUMB interworking is possible, because the LDMFD instruction does not set the necessary
bits which would get set if a BX instruction was present.

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

R2 = R2 � R12

R3 = MEM[SP+0]

PC = MEM[SP+4]

R1 =⊥

FIGURE 3.37.: REGISTER LEFT SHIFT GADGET FORM

3.4.6. Flags

The gadget in the flags section locates instruction sequences where one or more flags are modi-
fied. This gadget can be used in combination with conditional call gadgets to build a conditional
control flow gadget. The operation of the gadget is basically a comparison between different
source operands. A source operand can either be a register, memory location, or an immediate
integer.

Even though it seems as if the tree should search for a compare instruction, it does search for
the result of a compare instruction. The reason for this is that several instructions, in most of the
assembly languages today, may set flags even if they are not compare instructions. In the ARM
architecture all arithmetic instructions which are suffixed with a S set flags according to the result
of the arithmetic.

As an example Listing 3.26 shows a match of the search tree in Figure 3.38. In the example a
real compare instruction (CMP) was found.

Figure 3.39 shows the pre- and post-conditions of Listing 3.26. The important aspect which
has to be kept in mind when a compare gadget has been located is that all of the flags available in
the ARM architecture are set. While different instructions might set flags differently, all conditional
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BISZ

register OR
operation

null OR register null OR ( register
OR immediate )

FIGURE 3.38.: COMPARE GADGET TREE FORM

LISTING 3.26: COMPARE GADGET EXAMPLE

1 0x03FAE6AC CMP R1, R3
2 0x03FAE6B0 STRHIB R1 , byte [R2 ,11]
3 0x03FAE6B4 LDMFD SP!, {R4,LR}
4 0x03FAE6B8 BX LR

executions that might be present in instruction sequences, which are executed after a compare
gadget, are influenced by the flags set here. Therefore crafting a return oriented program with
compare gadgets is more difficult then crafting one without conditional execution.

3.4.7. Control Flow gadgets

The control flow gadgets section describes a gadget type which is used to alter control flow
directly. Normal gadgets alter the control flow with the final return statement. The gadgets de-
scribed here alter the control flow conditionally or unconditionally.

3.4.7.1. Gadget: branch Always

The branch always gadget is a gadget which basically pops registers off the stack and transfers
control to the next gadget. This is what every gadget, which is not part of a leaf function, performs
in the last two instructions. As there is no real need to find a ”branch always” gadget, no search
pattern has been introduced to locate it specifically but if it would be needed later on, adding it
could easily be done.

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

Z = BISZ(R1−R3)

R4 = MEM[SP+0]

LR = MEM[SP+4]

PC = LR = MEM[SP+4]

MEM[R2+11], V, N, C =⊥

FIGURE 3.39.: COMPARE GADGET FORM
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LISTING 3.27: CONDITIONAL BRANCH GADGET EXAMPLE

1 0x03F632E4 BXNE R4
2 0x03F632E8 LDMFD SP!, {R4,R5,R6,R7 ,LR}
3 0x03F632EC BX LR

3.4.7.2. Gadget: branch conditionally

The branch conditionally gadget alters the control flow of the program based on the current state
of the flags. Multiple flags exist in the ARM architecture which specify different conditions. These
are explained in Section 3.1.1.2.

ADD

MUL MUL

BISZ

AND

ORIGINAL PCCONDITION

CONDITION

REGISTER MASK

FIGURE 3.40.: CONDITIONAL BRANCH TREE FORM

Tree 3.40 is currently the most complex tree to search for a specific gadget type. This is due to
the general concept of how conditional instructions are handled by the algorithms in this thesis.
For every conditional instruction a true and a false tree are generated each with the according
condition which has to be fulfilled. Both of the trees must be present to locate a conditional
instruction. In the special case of locating a ”conditional branch” gadget the original register
PC-ORIG must be present in the left-hand tree.

As an example of a ”conditional branch” gadget, Listing 3.27 has been selected. For Windows
Mobile only suitable gadgets which either branch on equal or not equal could be located.

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

PC = (BISZ Z) ? R4:MEM[SP+16]

R4 = (BISZ Z) ? ⊥:MEM[SP+0]

R5 = (BISZ Z) ? ⊥:MEM[SP+4]

R6 = (BISZ Z) ? ⊥:MEM[SP+8]

R7 = (BISZ Z) ? ⊥:MEM[SP+12]

LR = (BISZ Z) ? ⊥:MEM[SP+16]

PC = (BISZ Z) ? R4:MEM[SP+16]

NONE

FIGURE 3.41.: CONDITIONAL BRANCH GADGET FORM

Figure 3.41 shows the pre- and post-conditions of Listing 3.27. As the outcome of the gadget
is not determined upon invocation, all registers that might only be changed if the condition is false
have been placed in round brackets.
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LISTING 3.28: FUNCTION CALL GADGET EXAMPLE

1 0x03F91064 MOV R3, R5
2 0x03F91068 MOV R2, R6
3 0x03F9106C MOV R1, R7
4 0x03F91070 MOV R0, R8
5 0x03F91074 MOV LR, PC
6 0x03F91078 BX R4

3.4.8. Function call gadgets

The function call gadgets are instruction sequences which enable the use of any native function
in the current library. They set up a specific amount of registers which can be passed to the native
function.

There are two different function call gadgets, the normal function call gadget and the leaf
function call gadget. The difference between normal functions and leaf functions is that normal
functions, at least for the encountered calling conventions, take care of the stack within the called
function. This implies that the stack of the caller must be saved within the functions prologue and
restored within the functions epilogue. The normal function call gadget is explained in 3.4.8.1.

Leaf functions on the other hand do not use the stack. Therefore they don’t need to save or
restore the stack frame of the caller. The leaf function call gadget is explained in 3.4.8.2.

3.4.8.1. Gadget: normal function call

The normal function call gadget is used to call functions which use the stack and restore the
caller’s stack in their function epilogues. The function call gadget enables the use of any function
present in the library with up to four arguments. This is the maximum number of parameter
usually given to a ARM subroutine. To be able to use the library function, the target function
address must be set by the stack frame which is restored by the previous gadget and the target
function prologue must be omitted from execution by taking an entry point below the stack frame
save instruction. An example how the gadget is supposed to be used is presented in Chapter
6.3.

This jump to the instruction below the stack frame save instruction prevents the program from
being lost in an endless loop or continuing execution at a location where control for the program
is lost.

Upon termination of the called function, the stack frame will be restored as it is with normal
gadgets. Therefore any function that is to be used in the return oriented program must be anal-
ysed with regard to the possible stack frame use and optional memory writes which can corrupt
memory locations in use by the return oriented programs.

R0 register

R1 register

R2 register

R3 register

LR register

PC register

FIGURE 3.42.: FUNCTION CALL TREE FORM

The tree form in Figure 3.42 is basically an extension to the ”registers to registers” gadget
described earlier. The major difference is that certain registers must be present for the gadget
while for the ”registers set to registers” gadget this was not mandatory.

Listing 3.28 shows how a possible candidate for the ”function call gadget” looks like.
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• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

PC = R4, FUNC ARGS: R0, R1, R2,
R3

R3 = R5

R2 = R6

R1 = R7

R0 = R8

PC = R4

NONE

FIGURE 3.43.: FUNCTION CALL GADGET FORM

3.4.8.2. Gadget: leaf function call

The leaf function gadget is very similar to the conditional branch gadget presented in 3.4.7.2
with the major difference that in case of a leaf function call no conditional initial call instruction
is permitted. One might ask if a normal function call gadget is not enough for a return oriented
program to have a reasonable amount of computational power. While this can be true, it must
not be the case for all encountered binaries. Therefore this gadget makes it possible to use leaf
functions and leaf type gadgets.

As a leaf function or gadget does not restore the stack and just returns back to the address
specified in the link register, the leaf function call gadget must set the link register to the instruction
following the initial call to the gadget. When the called function or gadget has completed, control
is passed back to the gadget. Therefore, the next instructions in the caller function must be the
normal stack restoring instructions which build the function epilogue.

Hence, the leaf function call gadget can be understood as a wrapper which wraps the normal
function epilogue around a set of instructions which do not normally have the function epilogue.
An example for the use of the leaf function call gadget is presented in Chapter 6.3.

R0 register

R1 register

R2 register

R3 register

LR register

PC1 register

PC2 stack offset

FIGURE 3.44.: LEAF FUNCTION CALL TREE FORM

The ”leaf function call” gadget can be matched with a tree similar to the function call gadget.
The major difference is that the execution after the initial function call must be terminated only by
the normal function epilogue instructions. Even though one could think of possible cases where
this strict rule does not make perfect sense, to avoid side effects after the execution of a leaf
function the rule makes calling leaf functions straightforward and predictable.

Listing 3.29 shows an example for the ”leaf function call” gadget.

3.4.9. System Call gadget

System call gadgets are special because they are needed to have a complete gadget set which
is able to perform all the tasks of a normal program. These gadgets are implemented differently
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LISTING 3.29: LEAF FUNCTION CALL GADGET EXAMPLE

1 0x03F91064 MOV R3, R5
2 0x03F91068 MOV R2, R6
3 0x03F9106C MOV R1, R7
4 0x03F91070 MOV R0, R8
5 0x03F91074 MOV LR, PC
6 0x03F91078 BX R4
7 0x03F9107C LDMFD SP!, {R4,R5,R6,R7 ,R8 ,LR}
8 0x03F91080 BX LR

• GADGET OPERATION

• CHAINING VARIABLES

• GADGET CHAINING

• SIDE-EFFECTS

PC1 = R4, FUNC ARGS: {R0, R3}
PC2 = MEM[SP+20]

R3 = R5

R2 = R6

R1 = R7

R0 = R8

R4 = MEM[SP+0]

R5 = MEM[SP+4]

R6 = MEM[SP+8]

R7 = MEM[SP+12]

R8 = MEM[SP+16]

LR = MEM[SP+20]

PC1 = R4, PC2 = LR =
MEM[SP+20]

NONE

FIGURE 3.45.: LEAF FUNCTION CALL GADGET FORM

across the various operating systems. Therefore, in contrast to the gadgets which have been
discussed so far, the system call gadget described here is only useful for Windows Mobile.

As described in Section 3.1.2.9, Windows Mobile does not use the SWI instruction to implement
system calls. It rather uses a call to an invalid address in the trap area to perform a system call.
For making a system call with return oriented programming the 3.4.8.2 gadget is used to perform
the system call.





4. Algorithms for automatic gadget
searching

To be able to build a return-oriented program the necessary parts for this program must be located
in the binaries of the application. In this thesis the search for gadgets is performed automatically
by a set of algorithms. This chapter describes these algorithms for automatic gadget searching
developed in this thesis. The algorithms are divided into logical stages which can be roughly
categorized as follows:

The first stage is the data collection stage in which the binaries are analysed. The second stage
is the data merging stage in which the collected data is refined. The third stage is the matching
stage where specific gadgets are located by comparing them against a set of expression trees.

4.1. Stage I

In order to be able to locate gadgets within a binary, this binary needs to be analysed and all
necessary data the binary provides must be collected. The algorithms of the first stage collect
the necessary information and store them in such a way, that the subsequent algorithms can
access the data.

Collecting data from the binary is performed by two algorithms. The first algorithm is used to
extract expression trees for a single native instruction. The second algorithm is used to extract
path information.

4.1.1. Reverse walker algorithm

Both of the two algorithms are built upon a stack based reverse walker algorithm. This algorithm
starts at a free branch instruction. It then traverses the instructions and basic blocks in reverse
execution order, until either the user defined threshold is reached or no more predecessor in-
structions exist.

Each algorithm by itself uses the same code for traversing the instructions but has its own
callback function where the logic resides in.

4.1.2. Algorithm: Expression tree extraction

To be able to construct gadgets it is necessary to have precise knowledge about how a single
native instruction influences registers, flags and memory cells. Also specifically in case of the
ARM architecture, where instructions can be conditional. Therefore it is necessary to be able to
decide whether a certain native instructions effects have to be taken into account or not. This
knowledge is gained by using the expression tree extraction algorithm. It builds a single map for
each native instruction which holds the trees for all influenced registers, flags and memory cells.

The expression tree extraction algorithm works as follows: A native instruction is translated
into the REIL meta-language. The translation results in a graph (ReilGraph) consisting of nodes
(ReilNodes). Each node in the graph holds one or more instructions (ReilInstructions).

This graph is traversed from top to bottom, instruction by instruction. For each instruction the
mnemonic of the instruction determines the handler for further processing.

The result of each handler is a tree that contains information about the effects the REIL instruc-
tion had on one specific register, flag, or memory cell. This tree is stored in a map which uses
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0x03F5584C STMFD SP!, {R4,R5,LR}

0x03F55850 MOV R5, R1

0x03F55854 MOV R4, R0

0x03F55858 LDR R3, [off_3F558AC]

0x03F5585C STR R3, [R4]

0x03F55860 LDR R3, [R5,8]

0x03F55864 CMP R3, 0

0x03F55868 STR R3, [R4,8]

0x03F5586C BEQ word loc_3F55898

Á

Â

/* 0x03F55898 LDR R3, [R5,4] */

0x3F5589800 add R5, 4, t1

0x3F5589801 and t1, 0xFFFFFFFF, t0

0x3F5589802 ldm t0, , t2

0x3F5589803 and t2, 0xFFFFFFFF, R3

LDM

ADD

R5 4

Å

0x03F55870 LDR R0, [R5,4]

0x03F55874 BL word strlen

0x03F55878 ADD R0, R0, 1

0x03F5587C BL word ??2@YAPAXI@Z

0x03F55880 CMP R0, 0

0x03F55884 STR R0, [R4,4]

0x03F55888 BEQ word loc_3F558A0

Á

Â

0x03F5588C LDR R1, [R5,4]

0x03F55890 BL word strcpy

0x03F55894 B word loc_3F558A0
Á

0x03F55898 LDR R3, [R5,4]

0x03F5589C STR R3, [R4,4]

0x03F558A0 MOV R0, R4

0x03F558A4 LDMFD SP!, {R4,R5,LR}

0x03F558A8 BX LRÃ

ADDRESSES BASICBLOCKS

0x03F55898 0x03F55898

0x03F5589C 0x03F558A0

0x03F558A0

0x03F558A4

0x03F558A8

Æ

MEMORY SET TO MEMORY

mem[R4+4] = mem[R5+4];

Ç

Ä

À

À Exemplary REIL translation which is performed for each native instruction for use in algorithm 1.

Á Instruction or condition which terminates the path search algorithm 8.

Â Conditional branch instruction, which leads to a ”COND” prefixed expression tree in algorithm 10.

Ã Controllable control flow altering instruction where the extraction process 4.1.2 begins.

Ä Expression tree extraction from REIL translation performed in algorithm 1.

Å Multiple expression trees get merged with the path information in algorithm 9.

Æ Possible path for this function which has been extracted.

Ç Gadget candidate for the extracted path in Æ located by algorithm 12.

FIGURE 4.1.: ALGORITHM OVERVIEW
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the register-, flag-, or memory cell-name as key. The name of the map where the trees are saved
in is ”operand tree map”.

The entries in the map are constantly updated. Therefore the contents of the map represent
all effects of the native instruction, by the time the last REIL instruction updated the map with its
tree.

The translation result of a single native instruction is a graph. In every graph multiple paths are
possible. While a single native instruction is executed in any case, the effects of the instruction
vary depending on which path in the graph is taken. The expression tree extraction algorithm
uses the JCC handler to construct a formulae which represents all possible effects in a single
tree (See Section 6 for details) to solve this problem.

The following sections will explain in detail how the expression tree extraction algorithm work.
Initially the handlers for the REIL instructions are presented. Then the part of the algorithm
is explained which combines the information of the handlers and updates the map. Finally an
example which uses the algorithm on a single instruction is shown.

Require: valid ReilGraph, valid currentNativeAddress.
1. operandTrees = new OperandTreeMap()
2. skippedInstructions = 0
3. for all ReilBlocks in ReilGraph do
4. for all ReilInstructions in ReilBlock do
5. if ReilInstruction is binary then
6. skippedInstructions← handleBinaryInstruction()
7. else {ReilInstruction is unary}
8. skippedInstructions← handleUnaryInstructions()
9. else {ReilInstruction == STM}

10. skippedInstructions← handleSTMInstruction()
11. else {ReilInstruction == STR}
12. skippedInstructions← handleSTRInstruction()
13. else {ReilInstruction == JCC}
14. skippedInstructions←handleJCCInstruction()
15. end if
16. end for
17. end for
18. remove temporary registers
19. restore native register names
20. return operandTrees

ALGORITHM 1: EXPRESSION TREE EXTRACTION FOR A SINGLE NATIVE INSTRUCTION

4.1.2.1. Instruction handler

For each instruction (ReilInstruction) a specific handler is used to extract the effects. Basically
the handler takes the instruction which is present in text representation and transforms it into a
tree. While this simple transform is true for most of the instructions the JCC and STM handlers
have to be explained in more detail.

Binary instruction handler Each binary REIL instruction is handled by algorithm 2. In case
of a binary instruction the expression tree is built from the first and the second operand of the
instruction. Both operands are retrieved from the map where the expression trees are stored.
Therefore already stored registers will not be created but fetched, which leads to a single expres-
sion tree for a native register even in case of very complex REIL translators.

Require: valid ReilInstruction, valid skippedInstructions, valid operandTrees, valid currentNativeAddress.
1. operandTree1← operandTrees.getTree(reilInstruction.getFirstOperand())
2. operandTree2← operandTrees.getTree(reilInstruction.getSecondOperand())
3. expressionTree← createBinaryTree( reilInstruction.getMnemonic(), operandTree1, operandTree2 )
4. return updateOperandTrees( reilInstruction.getThirdOperand(), expressionTree )

ALGORITHM 2: HANDLER FOR BINARY INSTRUCTIONS
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For a binary instruction the mnemonic of the REIL instruction is the root of the expression tree.
The key for the map where the expression tree will be stored is the result register. In case of a
binary REIL instruction this is the third operand. Figure 4.2 shows what the expression tree of a
binary REIL instructions looks like.

MNEMONIC

OPERAND 1 OPERAND 2

FIGURE 4.2.: EXPRESSION TREE FOR A BINARY INSTRUCTION

Unary instruction handler Some of the REIL instructions with only two operands are handled
through algorithm 3. In the current implementation only the REIL instructions LDM and BISZ use
this handler. The handler is a simpler handler because it only updates one side of the expression
tree.

Require: valid ReilInstruction, valid skippedInstructions, valid operandTrees, valid currentNativeAddress.
1. operandTree1← operandTrees.getTree(reilInstruction.getFirstOperand())
2. expressionTree← createBinaryTree( reilInstruction.getMnemonic(), operandTree1, null)
3. return updateOperandTrees( reilInstruction.getThirdOperand(), expressionTree )

ALGORITHM 3: HANDLER FOR UNARY INSTRUCTIONS

The handler works almost equivalent to the handler for binary REIL instructions. The root of
the generated expression tree is the mnemonic of the current REIL instruction. The right side
of the expression tree is always null. The left side of the expression tree is the first operand of
the REIL instruction fetched from the map. An example for a unary instruction expression tree is
presented in Figure 4.3.

MNEMONIC

OPERAND 1

FIGURE 4.3.: EXPRESSION TREE FOR A UNARY INSTRUCTION

STM instruction handler The goal with each translation is that no information gets lost. For
registers this is an easy task because every write to a register overwrites old information with new
one. Therefore only the last state of the register can be taken into account as result state for a
gadget. With memory on the other hand this is different as memory is addressed by registers. An
overwrite of the register which addresses the memory does not mean that the information stored
in the memory cell is lost. Therefore the handler for memory writes must save its information in
such a way that its not lost if the register used to address it is overwritten.

This leads to the following behaviour: An STM instruction is not stored in the map using the
target register as key but under a key that indicates memory access. Also the source and the
target of the memory access are included into the tree which is saved. Therefore all information
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about the memory write is saved and can be used. The expression tree generated by the handler
is shown in Figure 4.4.

Require: valid ReilInstruction, valid skippedInstructions, valid operandTrees, valid currentNativeAddress.
1. operandTree1← operandTrees.getTree(reilInstruction.getFirstOperand())
2. operandTree2← operandTrees.getTree(reilInstruction.getThirdOperand())
3. expressionTree← createBinaryTree( reilInstruction.getMnemonic(), operandTree1, operandTree2 )
4. memoryReilOperand← new ReilOperand( DWORD, ”MEM_” + currentReilAddress )
5. return updateOperandTrees( memoryReilOperand, expressionTree )

ALGORITHM 4: HANDLER FOR STM INSTRUCTIONS

STM

OPERAND 1 OPERAND2

FIGURE 4.4.: EXPRESSION TREE FOR A STM INSTRUCTION

STR instruction handler A STR instruction is only a move of information into the target register
therefore handler 5 simply fetches the information of the source register from the map and stores
it with the key of the target register. An example for the generated expression tree can be seen
in Figure 4.5.

Require: valid ReilInstruction, valid skippedInstructions, valid operandTrees, valid currentNativeAddress.
1. expressionTree←operandTrees.getTree(reilInstruction.getFirstOperand())
2. return updateOperandTrees( reilInstruction.getThirdOperand(), expressionTree)

ALGORITHM 5: HANDLER FOR STR INSTRUCTIONS

OPERAND 1

FIGURE 4.5.: EXPRESSION TREE FOR A STR INSTRUCTION

JCC instruction handler The JCC instruction in REIL can be conditional but it must not be
conditional. In case of an unconditional JCC instruction the handler behaves as the STR handler
with the PC register as target (Figure 4.6). But in the case of a conditional JCC instruction the
handler is more complex as it has to solve the following problem:

The translation of a single native instructions leads to a graph which is comprised of nodes.
These nodes hold instructions. In most cases the graph is just a single block with instructions.
But in the case of a conditional instruction (for example MOVEQ or BNE) it consists of more
nodes which hold instructions. One set of these nodes is only executed if the condition is true
and the other set is only executed if the condition is false. The conditional JCC handler is used
to construct a single tree which reflects both possible conditions.

The handler for a conditional JCC instruction is used in combination with the update algorithm
described in section 4.1.2.2 and works as follows: Initially the number of REIL instructions which
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JUMP TARGET

FIGURE 4.6.: EXPRESSION TREE FOR AN UNCONDITIONAL JUMP

will not be executed if the condition is true (as true means skip) is calculated. This is done by
subtracting the address of the JCC instruction from the target address of the JCC instruction.
The value where the number of skipped instructions is stored is called skippedInstructions and is
used by the algorithm described in section 4.1.2.2 for all instruction handlers.

Then the JCC condition operand (first REIL operand OP1) is fetched from the map. With this
operand two trees are generated: The TRUE tree (Figure 4.7) and the FALSE tree (Figure 4.8).

MUL

OPERAND 1

FIGURE 4.7.: EXPRESSION TREE FOR THE TRUE SIDE OF A CONDITIONAL JUMP

The TRUE tree consists of a multiplication as root of the tree and the condition operand as
left child node of the multiplication node. The right child of the multiplication is empty and will be
filled by algorithm 7. If the condition is now true (means it equals one 1) then the result of the
multiplication equals the tree on the right side of the multiplication of the TRUE tree.

MUL

BISZ

OPERAND 1

FIGURE 4.8.: EXPRESSION TREE FOR THE FALSE SIDE OF A CONDITIONAL JUMP

The FALSE tree in contrast to the TRUE tree uses the inverse of the condition. The BISZ
instruction is used to invert the condition operand. This leads to the following behaviour: If the
condition is now false (means it equals zero) then the result of the BISZ instruction equals one.
Therefore the result of the multiplication equals the tree on the right side of the multiplication of
the FALSE tree.

As shown it is not possible for both trees to yield a result 6= 0 at the same time. Therefore its
possible with the JCC handler to combine both sides of a conditional execution within a single
native instruction into one single tree.

The information how the combination of the TRUE and the FALSE trees is performed is pro-
vided in section 4.1.2.2.

1JCC instructions conditional operands can either be zero or one.
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Require: valid ReilInstruction, valid skippedInstructions, valid operandTrees, valid currentNativeAddress.
1. if is unconditional jump then
2. jumpTarget← operandTrees.getTree(reilInstruction.getThirdOperand())
3. return updateOperandTrees( reilInstruction.getThirdOperand(), jumpTarget)
4. else
5. skippedInstructions← calculateSkippedInstructions()
6. operandTree1← operandTrees.getTree(reilInstruction.getFirstOperand())
7. falseTree← createBinaryTree( ”mul”, ”bisz”, null )
8. falseTree← falseTree.attachLeft( operandTree1 )
9. storeTree(”FALSE”, falseTree)

10. trueTree← createBinaryTree( ”mul”, null, null )
11. trueTree← trueTree.attachLeft( operandTree1 )
12. storeTree(”TRUE”, trueTree)
13. end if
14. return skippedInstructions

ALGORITHM 6: HANDLER FOR JCC INSTRUCTIONS

4.1.2.2. Algorithm to update the operand tree map

The translation of a single native instruction leads in almost any cases to more then one REIL
instruction. Some of the instructions which are translated are conditional. To be able to have
all effects which a single native instruction has in one single map an update step has to be
performed. This update step has to decide whether an instruction is to be simply stored in map
or if it has to be combined with a condition tree from the JCC instruction. The algorithm which
performs this work is the update operand the map algorithm 7.

The algorithm works as follows: Each handler aside from the JCC handler calls the update
algorithm. If a native register is the result operand of the received tree from the handler the name
of the register is suffixed with the current address of the native instruction. This is done because
it is possible that the register which just got updated will be referenced by a later REIL instruction.
If the name would not be suffixed then the newly written tree would be wrongly used as input.

Then the skippedInstructions variable and the register type of the result operand are evaluated.
This leads to three possible outcomes:

If skippedInstructions equals zero then the tree can just be saved into the map regardless of
the register type. If skippedInstructions does not equal zero and the register type is a temporary
register (e.g. t0) the tree is also just saved to the map. But in this case the reason is that a
temporary REIL register can never be the final result register. Therefore to keep the conditional
trees small only the skippedInstructions variable is decremented and the tree is not combined
with the conditional trees. If skippedInstructions does not equal zero and the register type is
a native register (e.g. R2) the tree will be combined with the conditional trees from the JCC
instruction. This is done by attaching the tree from the handler to the right side of the FALSE
trees multiplication node, and the original value of the register, which is the key of the tree from
the handler, to the right side of the TRUE trees multiplication node. Then an addition node is
introduced as the new root of the result tree and the TRUE and FALSE tree are attached to it.
This tree is then stored in the map with the result register of the tree as key.

If all of the described algorithms are finished the native instructions effects are stored in a single
map (operand tree map) which can be used by the subsequent algorithms.

4.1.2.3. Example for a single native instruction

To be able to comprehend the above described algorithms an example for a single native instruc-
tion expression tree extraction is given in Figure 4.9. The translation of a single instruction can
vary from very simple to very complex depending on the instruction and the REIL translator. For
example the ARM instruction MOV can, in a simple case, be only a single expression tree with
one node that gets stored. But in a complex case when the barrel shifter is used, flags are set,
and the instruction itself is conditional, multiple trees will be generated and have to inserted into
the operand tree map.
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Require: valid resultReilOperand, valid expressionTree, valid skippedInstructions, valid operandTrees, valid
NativeInstructionAddress

1. if resultReilOperand is native platform register then
2. resultReilOperand.setValue(getValue() + ”-” + NativeInstructionAddress)
3. end if
4. if skippedInstructions == 0 then
5. storeTree(resultReilOperand, expressionTree)
6. else {resultReilOperand is temporary REIL register}
7. storeTree(resultReilOperand, expressionTree)
8. skippedInstructions−−
9. else

10. skippedInstructions−−
11. falseTree = operandTrees.getTree(”FALSE”)
12. trueTree = operandTrees.getTree(”TRUE”)
13. falseTree.attachRight(expressionTree)
14. trueTree.attachRight(resultReilOperand.original())
15. conditionTree← createBinaryTree( ”add”, falseTree, trueTree )
16. storeTree(resultReilOperand, conditionTree )
17. end if
18. return skippedInstructions

ALGORITHM 7: UPDATE OPERAND TREES ALGORITHM

03F556A4 CMP R3, 0 3F556A400 sub R3, 0, qword t0

3F556A401 and qword t0, 0xFFFFFFFF, t1

3F556A402 bsh qword t0, -31, byte t3

3F556A403 and byte t3, byte 1, byte N

3F556A404 bisz t1, , byte Z

3F556A405 bsh qword t0, word -32, byte t4

3F556A406 and byte t4, byte 1, byte t2

3F556A407 bisz byte t2, , byte C

3F556A408 bsh 0, word -31, byte t5

3F556A409 bsh R3, word -31, byte t6

3F556A40A xor byte t5, byte t6, byte t4

3F556A40B xor byte t5, byte N, byte t3

3F556A40C and byte t4, byte t3, byte V

À
AND Á

XOR

BSH

0 -31

BSH

R3 -31

XOR

N

BISZ Â

AND

-1SUB

R3 0

AND Ä

1BSH

-31SUB

R3 0

BISZ Ã

AND

1BSH

-32SUB

R3 0

FIGURE 4.9.: SINGLE NATIVE INSTRUCTION EXPRESSION TREE EXTRACTION

In Figure 4.9 the CMP ARM instruction is presented. The instruction compares the first operand
with the second operand. Before the expression trees can be extracted the instruction is trans-
lated (item À). This translation leads to the REIL assembly listing on the left-hand side of the
figure. In the extraction process this listing is analysed. The result of the compare influences all
flags which exist on the ARM architecture. The tree for the V flag is the tree Á. The tree for the
Z flag is the tree Â. The tree for the C flag is the tree Ã, Ä is the tree for flag N. The operand
tree map where the trees are stored has registers as keys. Therefore after the CMP instruction is
translated four trees will be inserted into the operand tree map.
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4.1.3. Path extraction

Usually a function of a binary consists of multiple basic blocks which are organized in a graph. To
be able to locate useful gadgets in such a graph its necessary to find paths comprised of instruc-
tions which are executed consecutively. The path extraction algorithm is designed to perform this
search. The information which is extracted by the algorithm 8 is used in combination with the
operand tree maps for single native instructions in 4.2.

The path extraction algorithm works as follows: Start at a free branch instruction. Traverse
the graph in reverse execution order and for each native instruction found save the path to it in
a map. A path consists of the list of traversed instructions and traversed basic blocks. Stop the
traversing if either the user defined threshold is reached, no more predecessor instructions exist,
or a function call instruction has been found.

Require: valid currentPath, valid currentBasicBlock, valid currentInstruction.
1. isStart = ( currentInstruction == startInstruction )
2. if isCallInstruction(currentInstruction) or ( !isStart and !specialInstructionAddress ) then
3. return false
4. end if
5. previousInstruction = isStart ? null : getPreviousInstruction()
6. path = previousInstruction == null ? new Path : getPath()
7. if path.size() == iterationDepth then
8. return false
9. end if

10. path.add(current address)
11. savePath()
12. return true

ALGORITHM 8: PATH EXTRACTION ALGORITHM

4.2. Stage II

The overall goal is to be able to automatically search for gadgets. The information extracted in the
first stage does not yet enable an algorithm to perform this search. The extracted information is
a collection of all possible paths starting from the free branch instructions and a representation
of the effects of each native instruction stored in a map. The second stage is a set of algo-
rithms which merges the information of the first stage to enable the third stage to locate gadgets.
Basically the second stage algorithms combine the effects of single native instructions along all
possible paths. The second stage therefore has all effects of multiple instructions along a path
as result.

The following Sections 4.2.1, 4.2.1.2, 4.2.1.3, and 4.2.2 explain for each of the algorithms.
Section 4.2.1 describes the core functionality which uses the algorithms described in Section
4.2.1.2 and Section 4.2.1.3. Section 4.2.2 describes a simplification step which is run once all
information has been merged.

4.2.1. Algorithm to merge expression trees with path information

Problem description: Almost any function on assembly level is a graph of interconnected basic
blocks which hold instructions. The effects of these native instructions were saved as binary ex-
pression trees in operand tree maps in stage I. The control flow through a function is determined
by the branches which connect the basic blocks. There are two types of branches: Unconditional
branches which just pass control to the first instruction in the target basic block and conditional
branches which determine if the jump to the target basic blocks first instruction is preformed
based upon the given condition. In the path extraction algorithm from stage I all possible paths
were extracted. This includes paths that have a conditional branch in them. As described the
path extraction algorithm walks the graph in reverse execution order. Therefore the condition for
the particular branches needs to be determined. All effects of the instructions in one path need
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to be merged into a single map such that a statement about the sum of effects for an executed
path can be given.

Require: valid addressToPath, valid addressToForests, valid pathToOperandTreeMap.
1. for all addressList in addressToPath do
2. currentPathOperandTreeMap = new OperandTreeMap()
3. for all addresses in addressList do
4. currentAddressOperandTreeMap = jumpConditionDeterminator()
5. traverseAndUpdateAddressOperandTreeMap(currentAddressOperandTreeMap, currentPathOperandTreeMap)
6. tempOperandMap = buildTemporaryOperandTreeMap(currentPathOperandTreeMap)
7. fixAddressSuffix(tempOperandMap, currentPathOperandTreeMap)
8. end for
9. PathToOperandTreeMap.put(pathToOperandTreeMapKey, currentPathOperandTreeMap)

10. end for

ALGORITHM 9: MERGE PATH OPERAND TREE FUNCTION

Problem solution: The algorithm that merges expression trees with path information addresses
the problem as follows: For each saved path (stored in control flow order) a new operand tree
map is created. This operand tree map will hold the merged expression tree information. All
instruction addresses of the path will be traversed from top to bottom. For each of the addresses
it is determined if a condition needs to be generated (Described in Section 4.2.1.2). The result of
the condition determination is the operand tree map for the current instruction. This operand tree
map is then merged with the already merged operand tree maps (Described in Section 4.2.1.3).
After all instructions have been traversed the merged information is stored. This information is
then simplified by the algorithm described in Section 4.2.2.

4.2.1.1. Merging example

To further elaborate the concept of merging the following example is provided. The example
shows the merging of a path with the expressions trees which have been extracted from the
instructions whose addresses make up the path.

4.2.1.2. Jump condition determination algorithm

As described for each encountered conditional jump (for example BEQ) the condition needs to
be determined which fits the path currently traversed. This condition determination is done by the
jump condition determination algorithm.

The algorithm works as follows: The operand tree map for the current instruction is loaded.
For each of the expression trees within this operand tree map the keys are searched for the
existence of a conditional branch. If this conditional branch is present the next address in the
path is determined and compared to the branch target in the conditional branch. If the address is
present, the condition ”jump is taken” is generated, which includes the conditional operand of the
branch. If the address is not present the condition ”jump not taken” is generated. The conditions
are also saved in the final operand tree map for the path with the prefix COND. This condition
indicates that the path can only be used if the condition is satisfied. Therefore the path dictates
the condition value.

If no conditional branch is present in the current instruction the operand tree map of the in-
struction is returned.

4.2.1.3. Traverse and update operand tree map algorithm

Similar to the expression tree extraction algorithm in the second stage multiple operand trees
need to be merged according to the instruction addresses in the current path.

The algorithm to merge the operand tree of a single instruction with the information of the
already merged operand trees works as follows:
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0x03F555A0 ADD R3, R5, R4LSL1

0x03F555A4 LDRH R3, word [R3,-2]

0x03F555A8 CMP R3, 0

0x03F555AC SUBEQ R4, R4, 1

0x03F555B0 MOV R0, R4

0x03F555B4 ADD SP, SP, 8

0x03F555B8 LDMFD SP!, {R4,R5,LR}

0x03F555BC BX LR

À

Á

Â

Ã

Ä

Å

Æ

À The first tree has been inserted into the path operand tree map. The key to access the newly stored tree is the register
R3.

Á The tree which was stored with key R3 is now referenced as source of an operation and will therefore be merged with
the tree from this instruction.

Â Only read access to already defined trees is performed therefore no merge will take place. The newly created trees
are the trees for the flags N, V, C, and Z.

Ã An new tree has been inserted and stored with the key R4. All previous accesses to the register have been read
accesses therefore no tree was put in the map until now.

Ä The tree with key R0 is merged with the tree of register R4 and stored in the map.

Å The SP tree is updated and stored in the map.

Æ The trees for SP, R4, R5, LR are updated with new trees the old values for all trees but the SP tree are lost.

FIGURE 4.10.: EXAMPLE FOR THE MERGING FUNCTIONS

Require: valid addressToForests, valid addressList, valid currentAddress.
1. currentAddressOperandTreeMap= addressToForests.get(currentAddress)
2. if currentAddressOperandTreeMap contains tree with key "PC-" + currentAddress then
3. pcTree = getTree()
4. if pcTree.size() = 1 then
5. return currentAddressOperandTreeMap
6. end if
7. if currentAddress is last element in path then
8. return currentAddressOperandTreeMap
9. end if

10. nextAddress = addressToPathElementPath.get(currentAddress + 1)
11. if pcTree does not contain nextAddress then
12. generateConditionJumpNotTaken()
13. else
14. generateConditionJumpTaken()
15. end if
16. return currentAddressOperandTreeMap
17. end if
18. return currentAddressOperandTreeMap

ALGORITHM 10: JUMP CONDITION DETERMINATION FUNCTION

For each expression tree, Algorithm 11 locates all the registers which are referenced in the
current expression tree and the operand tree map of the current path. If matches exist, the
expression tree which will be stored, is updated with the already available information about the
referenced register. After this step the trees of a single instruction are merged with the trees of
all predecessor instructions in the path.

The following information is available in the resulting operand tree map after the three algo-
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Require: valid currentExpressionTree, valid currentPathOperandTreeMap, valid operandTreeKey.
1. registers⇐ find all registers referenced in the expression tree and the map
2. for all registers do
3. replace all found operands with stored tree if available
4. end for
5. currentPathOperandTreeMap.storeTree(operandTreeKey, currentExpressionTree)

ALGORITHM 11: TRAVERSE AND UPDATE OPERAND TREE MAP FUNCTION

rithms have finished processing a single path and its instructions.

• Merged information exists for all written registers.

• All leaf registers in the saved trees are in original state (original state means state equal to
gadget entry).

• All memory locations written are available in an MEM statement.

• All conditions which need to be met are referenced by a COND statement.

• There are only native registers in the map and no temporary REIL registers.

• All entries are unoptimized (which means that there are still redundant instructions present).

4.2.2. Algorithm to simplify expression tree

All native instructions that are translated into REIL instructions have redundant instructions. This
is due to the fact that REIL registers in contrast to native registers do not have a size limitation.
Therefore to simulate the size limitation of native registers REIL instructions mask the values
written to registers to the original size of the native register. These mask instructions and their
operands are redundant and can be removed. Also as a certain path can use immediate values
as input for registers, in some cases it is possible to calculate sub-trees of the result trees, thus
further reducing the redundant information present. The last algorithm in the second stage is the
simplification of the merged map which performs the above steps.

The algorithm uses the simplification steps in Table 4.11.

SIMPLIFICATION OPERATION DESCRIPTION

remove all register truncation operands removes AND 0xFFFFFFFF operands
remove neutral element right Xop0⇒ X for op (ADD, SUB, BSH, XOR, OR)

and Xop0⇒ 0 for op (MUL, AND)
remove neutral element left 0opX ⇒ X for op (XOR OR ADD)

and Xop0⇒ 0 for op (AND, MUL, BSH, DIV)
merge bisz operations eliminate two consecutive bisz instructions.
merge add operations merge consecutive add instructions into one.
calculate add operations of integer operands X + Y

calculate and operations of integer operands XY

calculate bisz operations of boolean operands X = 0

calculate bsh operations of integer operands X � Y ||X � Y

calculate div operations of integer operands X/Y

calculate mod operations of integer operands XmodY

calculate mul operations of integer operands X × Y

calculate or operations of integer operands X|Y
calculate sub operations of integer operands X − Y

calculate xor operations of integer operands X ⊕ Y

FIGURE 4.11.: SIMPLIFICATIONS PERFORMED BY THE SIMPLIFICATION ALGORITHM
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The simplification algorithm works as follows:
Each tree in the result operand tree map is passed to every possible simplification method. In

the simplification method the tree is tested in regard to the applicability of the current simplifica-
tion. It the simplification is applicable it is performed an the tree is marked as changed. As long
as one of the simplification methods can still simplify the tree as indicated by the changed mark
the process loops. After the simplification algorithm terminates all of the trees in the operand tree
map have been simplified according to the rules in Figure 4.11.

4.3. Stage III

In the last two stages the effects of a series of instructions along a path have been gathered and
stored. This information is the basis for the actual gadget search which is the third stage. The goal
is to locate specific functionality within the set of all possible gadgets that were collected in the
first two stages. To locate this functionality multiple algorithms which locate specific functionalities
are used. This section describes these algorithms.

Initially the core function for gadget search in described (Section 4.3.0.1). Then the actual
locator functions are explained. Finally a complexity estimation algorithm is presented which
helps with the decision which gadget to use for one specific gadget type.

4.3.0.1. Locate gadgets core function

The goal is to locate gadgets which perform a specific operation. All of the gadgets are organized
as operand tree maps which are comprised of binary expression trees. These binary expression
trees carry the information about what operation the gadget performs. Therefore an algorithm
is needed which compares the expression trees of the gadget to expression trees which reflect
a specific operation. The core algorithm which controls all the gadget locator functions (Section
4.3.0.2) works as follows:

To locate the gadgets in the operand tree maps a central function is used which consecutively
calls all gadget locator functions for a single operand tree map and then parses the result for a
possible inclusion into the gadget type operand tree map.

Require: valid operandTreeMap, valid pathOperandTreeMapKey, valid gadgetTypeOperandTreeMap.
1. currentAddress⇐ pathOperandTreeMapKey.first()
2. if Controlflow is function of register then
3. if operandTreeMap does not contain condition then
4. gadgetCandidate⇐ perform gadget search for each gadget type present.
5. if gadgetCandidate != NULL then
6. gadgetTypeOperandTreeMap.store(gadgetCandidate)
7. end if
8. end if
9. end if

10. currentPathOperandTreeMap.storeTree(operandTreeKey, currentExpressionTree)

ALGORITHM 12: LOCATE GADGETS IN OPERAND TREE MAP

4.3.0.2. Gadget locator functions

To be able to locate a specific functionality in a gadget candidate every operation that is searched
for uses a specific tree which resembles exactly this operation. The trees which are used to
match have been described in Section 3.4. There exist 32 gadget locator functions which locate
the 32 possible gadget types.

The method of operation is the same for all of them and works as follows:
The core function passes the operand tree map of the current gadget candidate to a gadget

locator function. The gadget locator function then traverses all of the keys of the trees stored in
the map (keys can be registers, flags, conditions, or memory writes). For each of the keys it is
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checked if the initial condition of the tree is matched (for example Algorithm 13 searches for a
memory write (Line 3)). If the initial condition is matched the tree from Section 3.4 which is used
by the current gadget locator is compared to the tree of the matched key. If the tree matches the
gadget information is passed to the core algorithm for inclusion into the gadget type map which
stores which locator has produced a match for the current gadget. If the current operand tree
map produces no match nothing is returned.

Require: valid operation, valid optionalRightSourceOperand, valid operandTreeMap.
1. operands⇐ get all operands from the operandTreeMap
2. for all operands do
3. if operand indicates memory store then
4. if rootNode from operandTreeMap.getTree(operand) == ”STM” then
5. if rootNode.left() == operation then
6. targetSide⇐ checkValidOperands(rootNode.right())
7. leftSourceSide⇐ checkValidOperands(rootNode.left().left())
8. if optionalRightSourceOperand == NULL then
9. rightSourceSide⇐ checkValidOperands(rootNode.left().right())

10. else
11. rightSourceSide⇐ checkIsNodeValueEqual(optionalRightSourceOperand)
12. end if
13. if targetSide and leftSourceSide and rightSourceSide valid then
14. return targetSide, leftSourceSide, rightSourceSide
15. end if
16. end if
17. end if
18. end if
19. end for
20. return null

ALGORITHM 13: MEMORY ARITHMETIC GADGETS CORE

4.3.0.3. Gadget complexity calculation

To be able to select the gadget with the least side effects, a routine is used to calculate the
complexity of any given gadget candidate stored in the gadget type operand tree map.

This routine works as follows: It first performs a tree size check against the given gadget and
tests whether a gadget of the same type with the same functionality in combination with the same
registers has been already stored. It then chooses the gadget candidate with the smallest tree
size as the gadget representative for this specific type and input values.

Require: valid gadgetType, valid gadgetTypeOperandTreeMap.
1. complexityMap⇐ HashMap<String, Integer>
2. leastComplexGadget = NULL
3. for all elements in gadgetTypeOperandTreeMap.keys() do
4. if ! complexityMap contains element then
5. complexityMap.add(element, MAXINT)
6. end if
7. if element == gadgetType then
8. if treeComplexity(element) < complexityMap.get(gadgetType) then
9. leastComplexGadget = element

10. complexityMap.add(element, treeComplexity(element)
11. end if
12. end if
13. end for
14. return leastComplexGadget

ALGORITHM 14: GADGET COMPLEXITY CALCULATION
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The implementation of the algorithms described in Chapter 4 consist of approximately 5000 log-
ical lines [Wikipedia, 2009c] of Java code. The code is divided into logically structured compo-
nents with a strict separation between the data and the algorithmic functions. In this chapter the
details of the implementation are explained, focusing on the integration into BinNavi, the analysing
algorithms, and the data structures which build the core of the system.

5.1. Integration into BinNavi

The software developed in this thesis is implemented as a plug-in for the reverse engineering
platform BinNavi. Developed by zynamics GmbH, BinNavi focuses on static reverse engineering.
In contrast to comparable tools it displays disassembled code as graphs rather than text based
listings. One part of BinNavi is REIL which is described in Section 3.2. REIL is the basis upon all
of the algorithms presented in this thesis are build on.

5.2. Initial data extraction

Initially the algorithms described in Section 4.1 need the information about all control flow altering
instructions. In ARM assembly there exist many instructions which are able to alter the control
flow because the PC register can be manipulated directly rather than only by a return, call, or
jump instruction. As BinNavi stores the information about the disassembly in a relational database
there are basically two ways to extract the information about PC altering instructions. The initial
idea was to load the functions present in the target binary sequentially, translate them into REIL
and scan for instructions involving the PC register. The approach was abolished after initial
runtime tests revealed that it would take too long and there are better methods to get the right
information. The second idea and the used approach is to use SQL queries to fetch all possible
PC altering instructions from the database. The module id which is used in the query has been
fetched from the database as well, with the query in Listing 5.2.

LISTING 5.1: SQL QUERY TO GET PC ALTERING INSTRUCTIONS

1 SELECT DISTINCT address FROM bn_instructions b

2 JOIN bn_operands ON b . id = bn_operands . instruction
3 JOIN bn_operand_expressions ON bn_operands . id = bn_operand_expressions . operand_id
4 JOIN bn_expression_tree ON bn_operand_expressions . expression_id = bn_expression_tree

. id
5 WHERE b . module_id = 'moduleID'

6 AND ( symbol = 'PC'

7 AND ( ( mnemonic like 'LDM%' AND bn_operands . position != '0' )
8 OR ( bn_operands . position = '0' AND mnemonic not like 'LDM%' ) )
9 OR ( mnemonic = 'BX' AND symbol != 'PC' AND symbol != 'b4' ) )

10 ORDER BY address

LISTING 5.2: SQL QUERY TO GET THE MODULE ID FROM A MODULE NAME

1 SELECT id from bn_modules b where name = 'moduleName'
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With the query in Listing 5.1 the addresses of all PC altering instructions are fetched from the
database and stored in a list within the program. As the initial query does not return to which
function an instruction belongs to, this information must be fetched with an additional SQL query.

LISTING 5.3: SQL QUERY TO GET A FUNCTION ID BASED ON ADDRESS AND MODULE

1 SELECT parent_function from bn_instructions bi

2 JOIN bn_codenode_instructions bci ON bci . instruction = bi . id
3 JOIN bn_code_nodes bcn ON bcn . node_id = bci . node_id
4 where bi . address = 'address' AND bi . module_id = 'moduleID' ) ;

With the query in Listing 5.3 the function id for loading the function in BinNavi is fetched from
the database. With the extracted information it is now possible to load exactly the function of any
given PC altering instruction.

5.3. Extracting information

In the implementation the step to extract the information from the available disassembly is per-
formed for each PC altering instruction. In a loop the extracted list of PC altering instructions is
traversed and the source function is loaded. Depending on the configured depth threshold the
function is traversed, starting from the PC altering instruction upwards where upwards means
that in a single basic block the instructions are traversed from high to low addresses. At the last
instruction of a basic block, given the threshold has not yet been reached, all incoming edges for
the current basic block of the function’s control flow graph are included into the traversal routine.

The retrieval of information from the function is implemented with callbacks to the class Ba-
sicBlockReverseWalker. Within this class the function walkReverse performs the described up-
wards traversal of the function. The callbacks implement the extraction of the instruction informa-
tion as well as the path information.

5.3.1. Extracting instruction information callback

For each of the encountered instructions within the upwards traversal of the functions control flow
graph, the instruction is translated to REIL. This translation leads to a structure called ReilGraph
consisting of ReilBlocks which are connected with edges to map the translated native instruction
into the REIL space. This graph is analysed with the algorithms from Section 4.1.2. These
algorithms are called from the callback function in Listing 5.4.

LISTING 5.4: INSTRUCTION INFORMATION CALLBACK

1 @Override
2 public boolean call(final List <BasicBlock > currentPath , final BasicBlock currentBasicBlock ,

final Instruction currentInstruction)
3 {
4 final long currentAddress = currentInstruction.getAddress ().toLong ();
5 if (m_addressToForests.hasTree(currentAddress))
6 {
7 return true;
8 }
9 try

10 {
11 final ReilGraph reilGraph = currentInstruction.getReilCode ();
12 final OperandTreeMap operandTreeMap = ExpressionTreeExtractor.extractor(reilGraph ,

currentInstruction.getAddress ().toHexString ());
13 m_addressToForests.put(currentAddress , operandTreeMap);
14 }
15 catch (final InternalTranslationException e1)
16 {
17 e1.printStackTrace ();
18 }
19 return true;
20 }
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The extraction and translation of the native instruction to an expression tree is always complete,
meaning that for each native instruction where a REIL translator exists the expression tree will
map the native instruction with all operations into the REIL space and no information about the
original instruction is lost.

As it is perfectly possible in a graph to visit a location twice during iteration, the algorithm makes
sure that a previously processed instruction will not be processed again.

5.3.2. Extracting path information callback

As the information about the native instructions translated to expression trees can not be used
by itself, the algorithms described in Section 4.1.3 perform path extraction with the same call-
back functionality described in Section 5.3.1. The callback is much simpler than the callback for
extracting information from a native instruction. The path is also terminated if the threshold is
reached or, if no more native instructions exist upwards from the current instruction.

5.4. Merging of extracted information

Both the information about the extracted paths and the information about the extracted REIL
mapping of native instructions are not useful if not properly combined. Listing 5.5 shows the
function which controls this part of the process also explained in Section 4.2.

LISTING 5.5: MERGING THE EXTRACTED INFORMATION

1 public static void mergePathOperandTrees(final AddressBlocksPathMap addressToPath , final
AddressOperandTreeMap addressToForests , final PathOperandTreeMap pathToOperandTreeMap
)

2 {
3 for (final Entry <Pair <Long , List <BasicBlock >>, List <Long >> addressToPathElement :

addressToPath.entrySet ())
4 {
5 final OperandTreeMap currentPathOperandTreeMap = new OperandTreeMap ();
6 boolean updateFlag = true;
7 final List <Long > addressToPathElementPath = addressToPathElement.getValue ();
8 for ( final Long currentAddressToPathElement : addressToPathElementPath)
9 {

10 final OperandTreeMap currentAddressOperandTreeMap = AddressOperandTreeMapHelper.
jumpConditionDeterminator(addressToForests , addressToPathElementPath ,
currentAddressToPathElement);

11

12 traverseAndUpdateAddressOperandTreeMap(currentAddressOperandTreeMap ,
currentPathOperandTreeMap );

13 final OperandTreeMap tempOperandMap = buildTemporaryOperandTreeMap(
currentPathOperandTreeMap);

14 fixAddressSuffix(tempOperandMap , currentPathOperandTreeMap);
15 final Pair <Long , List <Long >> pathToOperandTreeMapKey = new Pair <Long , List <Long >>(

addressToPathElement.getKey ().first (), addressToPathElement.getValue ());
16 pathToOperandTreeMap.put(pathToOperandTreeMapKey , currentPathOperandTreeMap);
17 }
18 }
19 }

In the actual implementation there is also a check implemented which controls the current tree
size of the merged tree and kills the complete operand tree map if the configured threshold is
reached. This can happen if a group of conditional execution instructions are in a certain path
and the conditions are combined resulting in a quadratic increase of size.

5.4.1. Updating the expression tree in a path

Updating the expression tree for a single path is performed through the iterative walk of all ad-
dresses which are sequentially present in the path and updating the resulting operand tree map
with the information encountered in the next instructions operand tree map.
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The implementation 5.6 of the merging process proved to be a harder problem than expected
and is still considered to be changed in the future. This is primarily due to one aspect which is
very unlikely but still possible. In the function which updates the expression trees of the current
instruction with the already processed instructions earlier in the path an update of a certain case
in the expression tree is incorrect if the condition 5.4.1 holds.

LISTING 5.6: UPDATE EXPRESSION TREE FUNCTION

1 public static void updateExpressionTree(final LinkedBinaryTree <ComparableReilOperand >
currentExpressionTree , final OperandTreeMap currentPathOperandTreeMap , final
ComparableReilOperand operandTreeKey)

2 {
3 final ArrayList <ComparableReilOperand > elementsInTreeToBeUpdated = new ArrayList <

ComparableReilOperand >();
4

5 for (final Position <ComparableReilOperand > position : currentExpressionTree.positions ())
6 {
7 if (position.element ().getType () == OperandType.REGISTER)
8 {
9 if ( currentPathOperandTreeMap.keySet ().contains(position.element ()))

10 {
11 elementsInTreeToBeUpdated.add(position.element ());
12 }
13 }
14 }
15

16 for (final ComparableReilOperand currentUpdateElement : elementsInTreeToBeUpdated)
17 {
18 traverseFoundOperandPositions(currentExpressionTree , currentPathOperandTreeMap ,

currentUpdateElement);
19 }
20 currentPathOperandTreeMap.storeTree(operandTreeKey , currentExpressionTree);
21 }

Condition Given a tree that references the two registers R1 and R2. The tree for R1 also
references R2 but with an older state, then the update will update the R1 reference correctly and
the R2 reference in the new tree correctly but the R2 reference in the attached R1 tree incorrectly.

5.4.2. Simplification of expression trees

The implementation of the expression trees is only a very simple function that does school math
to reduce the size of the expression trees. Initially the idea was to use a SAT solver Wikipedia
[2009b] or a library for boolean arithmetic to simplify the expressions extracted from the instruc-
tions. But it proved to be efficient enough to just simplify according to the rules specified in Figure
4.11 for the tree size to be reduced significantly in the cases that mattered.

5.5. Using the extracted information

The implementation details presented so far are all part of information gathering while the follow-
ing part can be summarized under the name information analysing and sieving. The information
that is now presented after the gathering process needs to be filtered to receive the actual in-
struction sequences useful for chaining.

5.5.1. Finding suitable sequences

Even though most of the gadget location algorithms are freely interchangeable between differ-
ent platforms, this is not the case for control flow altering instruction sequences or system call
instruction sequences.

One always has to keep in mind that certain implementations that are valid for one architecture
are not valid for another one. Therefore, even though this thesis only covers the ARM architecture



5.5 Using the extracted information 79

specifically, the implementation was designed to support all architectures where REIL translators
exist. The following limitations about all gadgets always have to be kept in mind. All instruction
sequence locator algorithms are very dependent on the structure of the REIL translator. Even
if simple arithmetic operations like ADD can be found platform-independently it can still be a
challenge to locate shifts.

LISTING 5.7: REGISTER RIGHT SHIFT LOCATOR

1 private static Triple <ComparableReilOperand , ComparableReilOperand , ComparableReilOperand >
locateRegisterRightShiftRegisterGadget(final OperandTreeMap operandTreeMap)

2 {
3 for (final ComparableReilOperand operandTreeMapKey : operandTreeMap.keySet ())
4 {
5 if ( ComparableReilOperandHelper.isNativeRegister(operandTreeMapKey))
6 {
7 final LinkedBinaryTree <ComparableReilOperand > treeToBeCheckedForMatch = operandTreeMap.

getTree(operandTreeMapKey);
8 final Position <ComparableReilOperand > rootNodePosition = GadgetLocatorHelper.

checkExactRootNodeValue(treeToBeCheckedForMatch , "bsh");
9 if ( rootNodePosition != null )

10 {
11 final Position <ComparableReilOperand > rightNodePosition = GadgetLocatorHelper.

checkExactRightOfNodeValue(treeToBeCheckedForMatch , rootNodePosition , "sub");
12 if ( rightNodePosition != null )
13 {
14 final Position <ComparableReilOperand > zeroNodePosition = GadgetLocatorHelper.

checkExactLeftOfNodeValue(treeToBeCheckedForMatch , rightNodePosition , "0");
15 final Position <ComparableReilOperand > rightRightNodePosition = GadgetLocatorHelper.

checkExactRightOfNodeValue(treeToBeCheckedForMatch , rightNodePosition , "and");
16 if ( (rightRightNodePosition != null) && (zeroNodePosition != null) )
17 {
18 final Position <ComparableReilOperand > shifterAndMaskPosition = GadgetLocatorHelper.

checkExactRightOfNodeValue(treeToBeCheckedForMatch , rightRightNodePosition , "255
");

19

20 final ComparableReilOperand shifterOperand = locateValidOperands(
treeToBeCheckedForMatch.buildSubtree(treeToBeCheckedForMatch.left(
rightRightNodePosition)));

21 final ComparableReilOperand shiftedOperand = locateValidOperands(
treeToBeCheckedForMatch.buildSubtree(treeToBeCheckedForMatch.left(
rootNodePosition)));

22 if ( (shifterAndMaskPosition != null) && (shifterOperand != null) && (shiftedOperand
!= null) )

23 {
24 return new Triple <ComparableReilOperand , ComparableReilOperand ,

ComparableReilOperand >( operandTreeMapKey , shiftedOperand , shifterOperand);
25 }
26 }
27 }
28 }
29 }
30 }
31 return null;
32 }

While the complexity of cross platform support is mainly due to the way REIL translators handle
shifts, other cases also exist. ABIs 1 of different architectures have different calling conventions.
This makes it very difficult to port branch and call instruction sequences to another architecture.
In case of branches and calls an architecture-specific implementation of the search process is
inevitable. The most special case is the system call. Even though architectures define a standard
way to perform this operation, every operating system implements this in a different way. There-
fore one can see the first major limitation of the current implementation. System calls are only
supported in Windows Mobile.

5.5.2. Evaluating suitable sequences

The scarcity of stack space in an exploitation scenario is often underestimated. If the available
stack space is too small some bugs can not even be exploited with the technique of return ori-

1Application Binary Interface
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ented programming. Therefore the need to find the smallest sequence for a specific operation is
mandatory. In the current implementation (Listing 5.8) the tree size has been used as the main
indicator for the complexity of the instruction sequence. Using the tree size as a metric is a two-
sided coin. On the one hand it is easy to calculate and it provides a good match for side effect
freeness and general register use.

LISTING 5.8: COMPLEXITY CALCULATION ROUTINE

1 public HashMap <String , Triple <GadgetType , String , Address >>
getLeastComplexGadgetForSpecificGadgetType(final GadgetType type)

2 {
3 final HashMap <String , Triple <GadgetType , String , Address >> leastComplexGadget = new

HashMap <String , Triple <GadgetType , String , Address >>();
4 final HashMap <String , Integer > complexityMap = new HashMap <String , Integer >();
5

6 for (final Triple <GadgetType , String , Address > key : m_hashmap.keySet ())
7 {
8 if ( !complexityMap.containsKey(key.second ()))
9 {

10 complexityMap.put(key.second (), Integer.MAX_VALUE);
11 }
12

13 if ( key.first ().equals(type) )
14 {
15 if ( complexity(key) < complexityMap.get(key.second ()) )
16 {
17 leastComplexGadget.put(key.second (), key);
18 complexityMap.put(key.second (), complexity(key));
19 }
20 }
21 }
22

23 return leastComplexGadget;
24 }

On the other hand it does not consider stack usage. Even though the stack usage is reflected
in the general register use, as all registers get popped in the function epilogue, there might be a
need for further refinement in the future. Another issue is memory usage with writes and reads
which must be taken into consideration. If an algorithm should be able to build the shellcode
for an algorithm provided automatically from a library, then the memory accesses need to be
modelled in more detail.



6. Experimental results

In Chapter 1 the thesis was presented. In Chapter 2 the basics about the architecture and the
operating system as well as a general introduction into the topic was presented. In the following
chapters the algorithms and the implementation were described. In this chapter examples for the
analysis results of a set of libraries are given and compared. Also, a simple proof of concept
exploit is presented and explained as there exist some conditions which impact the reliability of
exploits on the target platform in general.

All the tests regarding the analysis of a library begin with the following provided data:

1. A dynamically linked library which has been compiled for the ARM architecture.

2. The correct offset addresses for the library.

The main objective in this chapter is to show that the developed algorithms yield sufficient
results for a given library and are able to extract the specified instruction sequences automatically.
As a side objective the general usability of the located instruction sequences shall be shown with
an example exploit for a simple buffer overflow.

6.1. Testing environment

All the tests were carried out on machines with a Java (JDK 1.6.0) installation and the BinNavi
(version 2.2) software suite installed. The requirements for BinNavi to work on a machine are a
MySQL (version 5.1) database on the local machine or accessible to the machine as well as the
correct Python plug-ins for importing data into the database. Microsoft Visual Studio 2008 was
used to develop the vulnerable target server and the debugger used in this thesis. Eclipse 3.5
was used to develop the BinNavi plug-in which contains the algorithms for gadget extraction from
the libraries.

To test the exploit, the vulnerable server was compiled without stack cookie protection. As
no other exploit mitigating techniques exist on Windows Mobile this was the only change to the
default compiler settings of Visual Studio.

6.2. Library comparison

Unlike Windows versions for desktop machines, Windows Mobile images are not provided to
the customer by Microsoft but by the device OEM enabling him to change certain settings of
the device to fit his needs. Therefore all images and libraries are slightly different. Initially a
set of Windows Mobile 6.1 libraries are compared and their differences are shown. The tests
were carried out on a machine with a Core 2 Duo 2.4 Ghz and 4 Gigabytes of RAM of whom 3
Gigabytes were available to the 64 Bit Java VM. The Operating System for all tests is Windows 7
64 Bit Enterprise.

The results provided in table 6.1 show the analysis of a selected set of libraries. There are
some aspects which must be explained: The matches are always compiler dependant and use
information about the compiler to match emitted code. The trees to match instruction sequences
where initially developed for Windows Mobile and then tested against other operating systems
with other compilers. Therefore the analysis of the IPhone library did not yield all of the gadgets
which it did for the Windows Mobile library (indicated by the brackets around the yes). But a
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LIBRARY ORIGIN # OF FUNCTIONS ANALYSIS TIME (DB/DISK) # OF GADGETS COMPLETE

Emulator 2748 (4.97/2.98)minutes 30340 yes
Device dump 2757 (4.74/1.68)minutes 29952 yes
IPhone libSystem.B.dylib 6111 (16.27/6.39)minutes 76634 (yes)

FIGURE 6.1.: LIBRARY COMPARISON

manual analysis then confirmed that the missing ”conditional branch” gadget is present but the
matching trees need to be adjusted to find them for the IPhone libraries as well.

As numbers by themselves do not provide any information the description about the fields in
the table 6.1 is the following.

LIBRARY ORIGIN describes where the library comes from.

# OF FUNCTIONS How many functions in this library could be analysed.

ANALYSIS TIME (DB/DISK) The time it took for a complete analysis of the library where DB indi-
cates an initial analysis and disk an analysis that already has all the information extraction
performed and only the gadget location process must be done.

# OF GADGETS The total number of gadgets that were located in the library.

COMPLETE Indicates if the complete gadget suite has been located in the library or if any of the
gadgets for Turing-completeness are missing.

The number of located gadgets indicate that a lot of the function epilogues are usable but to
be able to understand that this large number can be misleading the distribution of the gadgets in
Figure 6.2 needs to be taken into account. Because most of the simpler gadgets can be located
in various ways and might even be present in a gadget that itself performs a lot more work.

GADGET TYPE # GADGET TYPE #
REGISTER_SET_TO_REGISTER 11644 REGISTER_SET_TO_MEMORY_DEREFERENCE 58
COMPARE 5047 MEMORY_ADDITION 51
MEMORY_SET_TO_REGISTER 3239 MEMORY_DECREMENT 46
REGISTER_SET_TO_ZERO 2526 MEMORY_SUBTRACTION 44
REGISTERS_SET_TO_REGISTERS 2203 MEMORY_DEREFERENCE_SET_TO_MEMORY 34
REGISTER_SET_TO_CONSTANT 2162 REGISTER_LEFT_SHIFT_REGISTER 30
REGISTER_SET_TO_MEMORY 825 REGISTER_AND 29
MEMORY_SET_TO_MEMORY 533 MEMORY_DEREFERENCE_SET_TO_REGISTER 20
REGISTER_INCREMENT 413 REGISTER_RIGHT_SHIFT_REGISTER 14
REGISTER_DECREMENT 380 REGISTER_XOR 12
REGISTER_SUBTRACTION 336 MEMORY_OR 9
REGISTER_ADDITION 264 MEMORY_XOR 7
MEMORY_INCREMENT 150 MEMORY_SET_TO_MEMORY_DEREFERENCE 4
REGISTER_OR 111 MEMORY_AND 1
CONDITIONAL_BRANCH 82 REGISTER_NOT 0
FUNCTION_CALL 66 REGISTER_NEGATION 0

FIGURE 6.2.: COREDLL.DLL GADGETS IN NUMBERS

Like presented in Figure 6.2 there are gadgets which have not been located by the automated
search. These missing gadgets can be constructed from other gadgets present. 1

1All the numbers presented are the result of analysing the Windows Mobile 6.1 emulator image.
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6.3. Exploit example

6.3.1. Vulnerable service

The vulnerable service is a basic TCP server which has been compiled for Windows Mobile using
Visual Studio 2008. The stack protection with cookies has been disabled for the project as well as
the optional optimizations. 2 Listing 6.1 shows the vulnerable function of the server application.

LISTING 6.1: VULNERABLE FUNCTION

1 char buf [1024];
2 wchar_t tb[64];
3

4 void svr_run(int ssock)
5 {
6 char string [1024];
7 int csock , i, pos;
8 struct sockaddr_in csa;
9 socklen_t csalen;

10

11 swprintf(tb, L"string: %p", string);
12 MessageBox (0, tb , 0, 0);
13

14 csalen=sizeof(csa);
15 csock = accept(ssock , (struct sockaddr *)&csa , &csalen);
16 if (SOCKET_ERROR == csock)
17 {
18 ERR(WSAGetLastError ());
19 return;
20 }
21

22 for(pos = 0; (i=recv(csock , buf , 1024, 0)) > 0;)
23 {
24 memcpy(string+pos , buf , i);
25 pos += i;
26 }
27 }

Line 1 specifies a static buffer ”buf” which is 1024 bytes in size. This buffer is the source buffer
used in the overflow. In line 6 the function local buffer ”string” of size 1024 bytes is defined. This
buffer is the target for the overflow. The overflow happens in the lines 22–26. In line 22 the
recv function writes 1024 bytes it receives from csock into the global buffer ”buf” and returns the
number of written bytes which is stored in the variable i. For each of the received 1024 bytes the
memcpy in line 24 copies the contents of the buffer ”buf” into the buffer ”string” and updates the
offset position where it places the contents in the next iteration of the loop. After the first 1024
byte are copied into the buffer ”string” there is no more space available and due to the improper
bounds checking of the copy function the received data is copied into the adjacent stack frame.
If the input is carefully crafted this can be used to gain control over the program.

6.3.2. Shellcode

This section shows a small example shellcode which can be used to exploit the vulnerable func-
tion in Listing 6.1 with the use of return oriented programming.

Figure 6.3 only uses a limited set of the available gadgets to better show the greater concept of
return oriented programming. At the top of the figure the actual shellcode layout on the stack is
presented. The numbers used in the shellcode in Figure 6.3 are specific offsets for one compiled
version of the vulnerable server and should not be the center of attention. The light blue fields
hold the input for the selected set of gadgets. The light red block is the epilogue of the exploited
function. The light purple blocks are gadgets from the analysed library. During testing the be-
haviour of the emulator showed some unaccountable stack corruptions upon exploitation of the
function in debug mode. The origin of the corruptions could not be determined but is believed to

2Optimizations might reorder variables on the stack or even put them in a different context. Therefore to keep the layout
of variables as defined in the code, optimizations are disabled.
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SHELLCODE = X ∗ 1296+ SP + PC + R4 + R5 + R6 + R7 + R8 + LR + MBR4 + MBR5 + MBLR +A ∗ 60 (6.1)

SP = '\xc4\xfd\x02\x10'

PC = '\x88\x11\xf9\x03'

R4 = '\x24\xf7\xf7\x03'

R5 = '\x00\x00\x00\x00'

R6 = '\xb8\xfe\x02\x10'

R7 = '\x00\x00\x00\x00'

R8 = '\x00\x00\x00\x00'

LR = '\x70\x11\xf9\x03'

MBR4 = '\x11\x22\x33\x44'

MBR5 = '\x55\x66\x77\x88'

MBLR = '\xf4\x18\x01\x00'

0x00011974 ADD SP, SP, #0x530

0x00011978 LDMFD SP, {SP,PC}

0x03F91188 LDMFD SP!, {R4,R5,R6,R7,R8,LR}

0x03F9118C BX LR

0x03F91170 MOV R3, R5

0x03F91174 MOV R2, R6

0x03F91178 MOV R1, R7

0x03F9117C MOV R0, R8

0x03F91180 MOV LR, PC

0x03F91184 BX R4

0x03F7F724 SUB SP, SP, 0x20

0x03F7F728 LDR LR, [dword_3F7F74C]

0x03F7F72C ADD R5, SP, 4

0x03F7F730 STR R5, [SP]

0x03F7F734 LDR R4, [LR,0xC8]

0x03F7F738 MOV LR, PC

0x03F7F73C BX R4

0x03F7F740 ADD SP, SP, 0x20

0x03F7F744 LDMFD SP!, {R4,R5,LR}

0x03F7F748 BX LR

Á

Â

Ã

Ä

Å

Æ

À
À

À

À The shellcode which is used to exploit the function is split into three logical parts which provide input for the library
instruction sequences.

Á The two 32 bit words which are located in the shellcode at positions 1296 and 1270 are the arguments for the LDMFD
instruction.

Â The control flow is now passed to the first library instruction sequence.

Ã The arguments which are needed for the LDMFD instruction present in the first instruction sequence are passed
through the stack. The execution is continued at the address specified by the last argument popped from the
stack.

Ä No arguments from the stack are needed for the function call gadget as they are already present in the right registers
due to the earlier LDMFD instruction.

Å Control flow continues at the address which is present in register R4. The register points to the address of the function
MessageBoxW + 4 bytes. Adding 4 is necessary to avoid that the function destroys the carefully chained gadget
frames on the stack with an STMFD instruction. The arguments of the MessageBoxW function have been prepared
in the previous instruction sequence where register R2 holds a pointer to a string.

Æ Upon termination of the MessageBoxW function the control flow continues at the address specified in the gadget frame
on the stack.

FIGURE 6.3.: SHELLCODE EXAMPLE
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lie in the way the emulator works in debug mode. It can not be verified if this behaviour is present
in release mode as well because the stack is not observable. Also, for an exploit developed for
Windows Mobile the attacker must always conform to the restrictions Windows Mobile puts on
the stack pointer and the frame pointer. Otherwise the exploit will not work. Another important
issue with exploitation is that the slot of the process can not be guessed with 100% reliability.
Therefore exploiting can be difficult if no information leakage can be used to guess the used slot.
Even though this is not a problem for the offsets in the library, the stack pointer and frame pointer
must be set correctly inside the stack frame area of the current slot.

6.3.3. Conclusion

With the proof of concept exploit accompanied by the shellcode it has been shown that return
oriented programming on the ARM architecture is possible. Even though the exploit does not
use a larger part of the possible gadgets, it shows one important point: exploitation with return
oriented programming on ARM works, and if done with an automated search algorithm for gadget
selection, it is also efficient.





7. Conclusion and further work

The previous chapters have shown that return oriented programming on the ARM architecture
is possible. Also, it was shown that the algorithms developed in this thesis can automatically
extract the described gadgets from a library. As discussed, platform independent algorithms for
the extraction of instruction sequences are important to be able to handle the growing architecture
diversity encountered.

In this final chapter the further areas of research in the topic of return oriented programming
are introduced. These areas are not part of the thesis but are believed to be important to the
further development of tools for return oriented programming.

7.1. Automatic gadget compiler

One of the logical next steps in the area of return oriented programming is that not only the
gadget search algorithms are able to find instruction sequences automatically but that also the
combination of gadgets will be automated. Compiling of gadgets into a return oriented program
automatically has some prerequisites that must be met within the initial gadget search process.
There must be a clear definition about the pre- and post-conditions of an instruction sequence.
The complexity of the instruction sequence must be deterministic, the side effects of the gadget
must be known, and they must be avoided by the implemented compiler.

7.2. Gadget description language

Even if the pre- and post-condition calculations performed in the algorithms have already con-
tributed to defining a description language for gadgets and their possible combinations, to be
able the efficiently program a compiler, a description language is needed. The language could
abstract the process even further from the analyst and could be easily adaptable even by people
with little or no assembly background.

7.3. Live system scanning

Another area of research which would be a vital addition to the field of return oriented program-
ming would be to integrate a live system scanning like described in Pablo Soles work on DEPlib
Sole. The system should be able to stop the execution of the currently running process and save
its state. When the state has been saved it should scan all available linked libraries and extract
the possible gadgets from them. This would enable an attacker to not rely on static analysis of the
libraries which might be present when the bug is triggered but to analyse the state of the program
exactly when the bug is triggered. This also solves the problem of offsets within the targeted
program and allows the attack to avoid offset errors.

7.4. Partial function reconstruction

The algorithms which have been developed in this thesis have the potential to be useful within
other fields of static analysis as well. The path analysis functionality presented could be used
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to understand single paths in the program. This would for example be useful for input crafting
or general understanding of the function in question. Even though the algorithms right now do
not enable an analyst to ask these questions the change in program logic is only marginal. Even
though the depicted idea is not generally solvable in all cases, the cases which can be solved
provide great benefit to the analyst.

7.5. Attack vector broadening

All presented work in this thesis is also applicable to heap overflows and possibly other bug
classes as well, but there is no publicly available documentation where return oriented program-
ming has been used for any other attack vector but stack based buffer overflows. The broadening
of the use of return oriented programming in combination with other exploit techniques is believed
to provide good results.

7.6. Polymorphism

For each of the searched gadgets the algorithms can find multiple instruction sequences which
perform the same operation. Therefore the following scenario is part of further research: For
each attack a payload is used which specifies what the exploited process should do after control
has been hijacked. In most cases this payload is identical for each attack carried out. The
algorithms in this thesis enable the attacker to perform any of the operations using a different
instruction sequence for each attack. Therefore the attacker can use a unique attack pattern for
each attempt rendering some of the defensive mechanisms useless and make incident response
more complicated.

7.7. Conclusion

In this thesis novel algorithms for return oriented programming on ARM and the problems during
their implementation have been discussed. The implementation of the resulting system is the first
tool which uses a platform independent intermediate language to perform the gadget search and
it is the first tool for return oriented programming on ARM. The necessary background about the
ARM architecture was presented and the differences to other architectures in regard to return ori-
ented programming where shown. The Windows mobile operating system was also described to
be able to understand what differentiates a mobile operating system from a desktop system, and
why some limitations apply to the mobile world only. As all presented algorithms use the meta-
language REIL as their basis, the meta-language, its instructions, and the used REIL VM where
introduced. The presented proof of concept exploit showed that return oriented programming is
possible on the ARM architecture. The thesis made is therefore proven. In this final chapter some
of the future areas of work have been outlined which are believed to be of importance for return
oriented programming and its further automation. It is hoped that the described research areas
will receive sufficient attention in the close future and lead to further results and techniques that
are applicable to modern real world operating systems.
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