
REPORT

Creating a
Production
Launch Plan
For a Successful Launch,
Planning Isn’t Optional

Alec Warner & Vitaliy Shipitsyn
with Carmela Quinito

Compliments of

To learn more, visit google.com/sre

Want to know
more about SRE?

https://google.com/sre

Alec Warner and Vitaliy Shipitsyn,
with Carmela Quinito

Creating a Production
Launch Plan

For a Successful Launch,
Planning Isn’t Optional

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07594-3

[LSI]

Creating a Production Launch Plan
by Alec Warner and Vitaliy Shipitsyn, with Carmela Quinito

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: Rachel Monaghan

Proofreader: Rachel Head
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-11-13: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Creating a Pro‐
duction Launch Plan, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Creating a Production Launch Plan. 1
What Does a Launch Plan Look Like? 2
Benefits of Launch Planning 2
Elements of a Successful Launch 6
Launch Structure and Execution 16
What to Do on Launch Day 23
Case Study: Lessons Learned from a Product Launch 26
Wrapping Up 32

Appendix: Launch Plan Template. 35

iii

Creating a Production Launch Plan

You are responsible for a cool new product with excellent feedback
from user studies, and you can’t wait to get it into end users’ hands.
You publish a spectacular press release and sit back, ready to enjoy
the praise indicating that your product has surpassed people’s
dreams. Your product’s hashtag shows a great reception, at first.
Then you start noticing some complaints. Your operations team
pages you that things are melting down.

What happened during the product launch? It could be that when
the entire world took notice, the product’s code collapsed under the
heavy load; or that the infrastructure the product relies on respon‐
ded to the shockwaves of load by rejecting requests, to protect from
unexpected attacks; or that the people overseeing the launch were
not prepared to execute on a coordinated response. A launch plan
can prevent these kinds of issues by involving all relevant parties
and processes to help ensure a controlled progression through the
launch.

In this report, we describe the components of a launch plan at Goo‐
gle and offer practical methods you might apply to reduce produc‐
tion launch risks for your own products. We include lessons we have
learned about what works well for launching Google products,
including large products, new features for existing products, and
even small products. The lessons we describe are adaptable for
consumer-oriented services regardless of company size or a pro‐
duct’s user base. How much control you have over the product’s
architecture, source code, and operational tuning affects how adapt‐
able you may find these practices. Those with enterprise-oriented

1

1 Also see Chapter 27, “Reliable Product Launches at Scale,” written by Google SREs, in
Site Reliability Engineering (O’Reilly).

services should find most of this advice relevant, though your imple‐
mentation may differ.

We hope that after reading this report you will share our opinion
that launch planning isn’t optional. You know your situation best.
We encourage you to choose the practices that are most relevant to
you and adapt them to your circumstances.1

What Does a Launch Plan Look Like?
The launch plan is a document that communicates the scope and
timeline of all proposed changes in production, assembles all rele‐
vant points of contact and mitigation, and records the actual launch
progression along with any follow-up actions after the launch. It
prepares your product for the critical step of transitioning from pre-
to post-launch. We provide a template of a launch plan document in
the appendix of this report.

Sometimes a launch consists of stages like Alpha and Beta, which
permit you to pause and stabilize the product, and move on to the
next stage after validating. Such launch stages, which we’ll discuss
later in the report, might each have a launch plan of their own.

The launch plan as we have defined it may seem obvious, or even
superfluous, but we’ve found that it’s essential for a successful
launch. Why? We’ll get into the benefits next.

Benefits of Launch Planning
Because launch planning is not free of cost, it’s important to estab‐
lish firmly what value it can bring, as well as which circumstances
are more likely to deliver which benefits. This section covers just
that. We believe that the organizations that choose to put effort into
launch planning will reduce overall launch friction, and honing the
launch practices we describe later in this report will lead to better
launch outcomes on a shorter timeline and at lower costs.

2 | Creating a Production Launch Plan

https://oreil.ly/KGWBW

Managing Risks Instead of Hoping for Luck
No one wants publicity disasters or end user complaints to mar their
product launches. You must be aware of all issues that might need
attention in order to choose what actions to take; at the same time,
you need to discern which issues are actionable and, among those,
which actually deserve action.

Launch planning manages the risks that might lead to those unfor‐
tunate outcomes. Hope is not a strategy for launches; you might not
have time for surprises once you initiate the launch, so don’t count
on luck getting you through!

Launch planning manages risk by helping you:

• Generate risk scenarios of potential launch failures or poor user
experience.

• Build mitigation strategies for risk scenarios, and determine the
relative mitigation costs.

• Prioritize mitigation work for the most impactful or disruptive
risk scenarios, and accept the less likely risks.

• Focus resources toward mitigating launch risks earlier during
product development, instead of trying to retrofit them closer to
launch.

You have to decide where to spend the effort to gain meaningful
improvements, and where the effort will be ineffective or even cost-
prohibitive. Balance what risks you want to manage against what it
will cost you in time, money, or staffing.

When you cannot anticipate confidently how a particular launch
scenario might unfold, developing appropriate backup or fallback
launch plans expands your options for managing related risks. This
process might involve making a plan B—and sometimes a plan C.
For example, if your product starts running out of resources, will
you try to get more resources or start to throttle user adoption? And
do you even have the option to do either? How quickly will you be
able to throttle or completely disable the product if it starts degrad‐
ing other systems? To lower the risk of being unprepared, allocate
sufficient effort to evaluating the need for backup plans and devel‐
oping these plans, and decide under what conditions you might
invoke them.

Benefits of Launch Planning | 3

Having tested and validated product behaviors and launch processes
is another category of risk management benefits that launch plan‐
ning brings. You probably already tested product behaviors before
launch; what’s easier to overlook are transitional states for the cus‐
tomers or their data when you’re launching new product versions.
For example, when all supported versions of your mobile client
application have to upgrade their local database to a new format,
you might want to retain the ability to revert to the original format
in case a rollback is needed. Such one-time steps in the launch pro‐
cess may be harder to validate. After you identify where the launch
could go wrong, you can do what’s necessary to counter those risks.

Allowing Quick Adjustments
The preparations inherent to launch planning can enable your orga‐
nization or team to make quick and informed adjustments to launch
decisions or product attributes. This preparedness can be useful
should something unexpected happen, whether due to external fac‐
tors you cannot control, changes in business conditions, unanticipa‐
ted technical limitations, or environmental events.

Launch planning allows for quick adjustments because:

• Analysis and preparations involved in managing launch risks
help bring out technical parameters and capabilities of the
product and the infrastructure.

• Knowledge of those parameters and capabilities can help you
create action plans that are more likely to execute as expected.

• Organizing sound action plans is more likely to result in delib‐
erate and optimal responses rather than knee-jerk reactions—
especially under time pressure.

Adjusting quickly may be especially valuable:

• After the launch reaches the point of no return—when suffi‐
cient commitments have been made, and rolling them back to
cancel the launch is no longer practical.

• Post-launch, after you gain new information that helps you
decide what’s optimal to do next. You can simply select the pre‐
pared and sound action plan to execute.

4 | Creating a Production Launch Plan

Being prepared for more than a single course of events also enables
you to launch more cautiously, with pauses or adjustments. You
don’t have to be right on all launch predictions. Instead, observe
how the events are unfolding, and pick which options fit the reality
best. For example, if early during launch you observe aggressive user
adoption (good) and concerns for future resource capacity arise
(bad), you could pause further ramp-up until resources can be pro‐
visioned, if you’ve planned for this possibility.

Communicating Effectively
Being able to communicate with the right people at the right time
can make a big difference during a launch. The number of people
involved in or affected by a launch can vary. While a product feature
might require just a few people, an entire product might require col‐
laboration among multiple teams or organizations.

Launch planning can improve communication by helping you:

• Identify and keep track of all the parties who might have to
communicate before and after a launch starts.

• Distribute and keep current the knowledge of what features will
be launching and when.

• Convey anticipated demand from teams and infrastructure, as
well as discover impractical or infeasible expectations.

At Google, we circulate the launch plan to all stakeholders, devel‐
oper teams, and SRE teams involved in the launch. We look for feed‐
back from any relevant teams and domain knowledge experts, and
follow up as needed. We rely on this shared knowledge to prepare
others for the decisions we might make during launch, and we pro‐
vide them with the playbook of how the launch might unfold.

Reaching out to all relevant teams affected by the product also com‐
municates what those teams should expect at launch. Communicat‐
ing expectations can help prevent overloading of dependent
services, avoiding alerts from unexpected shifts in service demand,
saving time, and minimizing stress. Marketing and press teams are
not technical, but may also require certain levels of readiness and
hands on deck for managing issues during highly visible launches or
at times of low staffing.

Benefits of Launch Planning | 5

Improving Launch Processes Over Time
You want to be sure that launch planning pays off. While there’s no
doubt that planning is necessary, depth and rigor come at a cost, and
not every launch requires the same amount.

Launch planning scales beyond improving any particular launch
because:

• A systematic approach to launches permits improving processes
over time. This might include collecting signals for the future—
what worked well or not, what was impactful or not, and where
you simply got lucky.

• Increasing the value and reducing the costs of the planning
effort leads to more streamlined planning, permitting more rig‐
orous planning applied cost-effectively to more launches.

• The abilities to evaluate the costs of a launch, build launch
taxonomy, and provide signals for future planning are direct
results of the planning in the first place.

At Google, defining the taxonomy of launch stages for a product
formalized the progression through the product’s commitment to its
users. It also made team expectations more consistent across the
company. After a sufficient number of launches, we began to define
launch checklists that drive launch planning, properly assigning
focus areas and degrees of rigor to specific launch stages.

Elements of a Successful Launch
Before we go into the details of how to build and execute on the
launch plan, let’s first establish what elements of products and
organizations could contribute most to a successful launch. We’d like
to share some of the lessons we’ve learned at Google. They have hel‐
ped our teams get familiar with their products’ relevant characteris‐
tics, ensuring that a product will operate well when launched and
aligning it with business needs. Some of these elements may be best
addressed early in the product development cycle.

Focus on the Product
To be well prepared, you will need to really understand the
attributes of the product you’re about to launch. These attributes

6 | Creating a Production Launch Plan

include the product’s interactions with the environment, the expect‐
ations of its end users, and the development history of the product.

Start launch planning early
Some elements of launch planning should be included in product
design and development. The architecture choices you make deter‐
mine a product’s scaling limits and deployment options. Through‐
out product development, try to engage with the teams who own
dependent products, to determine their limitations. Evaluate the
risks the product’s needs might present to your company’s infra‐
structure if the product is wildly successful.

The earlier you consider launch needs and start these interactions,
the more opportunities you and other teams will get to accommo‐
date requirements or advice. It’s never too early to start a plan. In the
worst case, you might have to revisit some issues when you have
more of the product designed, implemented, or integrated. If you
discover you started planning late, you can still choose what changes
to make and determine whether to adjust the launch timeline.

Some feedback may force you to change the architecture of your
product. You could uncover that the wrong or nearly obsolete tech‐
nology was used, or at certain scaling the software may reach unac‐
ceptable limits. You can then decide whether to pivot right away or
do something later; either way, you’ll make fewer wrong assump‐
tions, preventing some waste in development.

Get traffic projections
Estimate demand for the product using whichever means can rea‐
sonably forecast it for this particular launch. We express demand as
traffic—the number of operations per unit of time (for example,
requests per second or per hour).

How do you project demand for a product that has no users? You
could ask customers about their estimated use cases. You could
onboard a small number of users and measure their use cases, then
project the demand outward by talking to customers who have not
yet adopted the product’s solutions. You could look at request rates
on the old system your product is replacing, or at comparable prod‐
uct or feature rollouts in the past.

You will need traffic estimates for several key time ranges: the day of
launch when the interest peaks (the first 24–48 hours), the near-

Elements of a Successful Launch | 7

term range while the newness still exists (1 week), the medium-term
range that permits you to evaluate the growth slope (1 month), and
a long-term range that targets any perceived macro conditions (6–
12 months).

Product features that significantly impact production infrastructure
might need more time to prepare for launch. For example, if you
expect to consume unusual amounts of bandwidth or memory, pro‐
visioning those resources may take time. High cost of projected
resources might involve a longer approval process from the business
side, or a longer time to physically provision resources. Even worse,
off-the-shelf solutions could have scaling limitations, and if product
demand might exceed them, significant architecture changes may be
necessary. For example, if a relational database has an upper limit on
transaction throughput, there’s only so much scaling you can
accomplish by adding more CPU or memory, which doesn’t scale
horizontally.

Accuracy of estimates is more important for the near-term horizon,
because you have more time to adjust over the longer term, plus
those estimates can rely on some history. Underestimating traffic for
the day of launch by 100% can be disastrous, but doing the same for
six months later is insignificant.

Longer-term estimates are useful for long-term capacity planning
for your product or its dependencies. Production infrastructure sup‐
ports many products, and will expand or contract the resource foot‐
print in anticipation of demand. Short-term oversubscription or
reserve resources support dynamic fluctuations, but this scenario
either risks not having capacity for all services or wastes money on
idle resources. Depending on your organization, the value of longer-
term projections may be higher or lower.

Know the impact of all production traffic the product will add.
Exposing a product to the world may amplify even the tiny traffic
streams it adds to exceed what the product itself or any of its depen‐
dencies is provisioned for. For example, identify all remote proce‐
dure call (RPC) types your product sends, and the RPCs those RPCs
might trigger, and so on. For all identified cases, you will want to
obtain an explicit approval from the respective service owners, and
record somewhere how much was approved in case you revise num‐
bers significantly later.

8 | Creating a Production Launch Plan

Review the product’s architecture
Thoroughly review the product’s architecture from the perspective
of functional stability. Get the diagrams of how the product’s com‐
ponents interact and what they depend on. Every software entity has
some API and an owner who ensures that API delivers its function.
This point in launch planning is where you extract who the points of
contact are, what service-level objectives (SLOs) are provided, what
RPCs your product sends, and how much resources of various types
those RPCs cost. You will use all of this information later.

Using these details, look for what might go wrong. Review the
assumptions critically, interview component owners if needed, and
record any questions or concerns for resolving definitively. The out‐
put of this process is a Risks and Mitigations table, which you give
to the appropriate developer or operations teams to resolve before
the launch date. These risks are systemic issues that code or configu‐
ration changes should eliminate, not action items for the launch day.
Discoveries discussed in other sections on product analysis would
also go into a Risks and Mitigations table (see Table 1 for an example
entry).

Table 1. Example entry for the Risks and Mitigations table

Risk area Risk description Failure mode Mitigation strategy Status
Self-inflicted
DoS attack by
own clients

Clients that
synchronize polling or
compound retries can
saturate networks.

Product becomes
unavailable to
other users.

Clients must add
exponential backoff and
jitter wherever polling
or retries are used.

Low
launch
risk—
DONE

Evaluate lifecycle expectations for the product’s dependencies. If the
product depends on a deprecated system, replacing it with a modern
alternative before the launch will be cheaper, if time permits—more
so if mitigation costs associated with a deprecated system are large.

It may seem too late to do an architecture review by the time you’re
planning the product launch, but that’s not the case—it’s never too
late to uncover blind spots, and you can defer implementing the
mitigations until after the launch, if appropriate.

Check resource needs
Armed with traffic estimates and an understanding of the product’s
architecture and RPC flows, you can look at accuracy of resource
provisioning. You will need to identify distinct classes of operations

Elements of a Successful Launch | 9

in terms of resource use. You could then rely on synthetic or replay
performance testing to evaluate how the product scales with the rel‐
ative traffic or data growth, and how it behaves under edge condi‐
tions, some of which we describe shortly.

Consider a video sharing service as an example. It needs two funda‐
mental features—upload and play back a video—and they are vastly
different. Playback requires selecting the video instance encoded for
the streaming client and sending bytes to the client. Uploading
involves receiving the entire video, doing content analysis for policy
violations, sending it through a pipeline for generating encoded
instances, and creating video metadata. The upload and view fea‐
tures thus have different CPU, memory, and storage needs. The rates
of use differ too; for example, expect fewer uploads than views per
video. Add up the resources for all uploads separately from the
resources for all views. As traffic estimates change, you can properly
adjust the right resource types.

Appropriately provision resources geographically. You could expect
different countries with different consumer technology to upload
and view videos differently. Users in some places might be upload‐
ing videos of higher quality. Others might have lower internet band‐
width, resulting in lower-resolution views and few uploads.

Next, consider possible failures for each class of operation and how
they might impact resource consumption. Look for opportunities to
reduce resource use. Resource use is not a launch risk but a quality
attribute of the product’s susceptibility to the exposure to the entire
world’s traffic. This section covers some examples; record the possi‐
ble failures in the Risks and Mitigations table.

When operations fail, any resources consumed up to that point
might be completely wasted, so look for opportunities to return
errors as early as possible. For example, when uploading a video,
check for the video stream’s format validity continuously, instead of
validating the video once it is uploaded in its entirety. Another risk
is from workflows that may cause severe resource drains. If a bug in
transcoding of uploaded videos to all supported formats creates
garbage frames, the system may not be allowed to re-encode all vid‐
eos at once but instead be rate-limited to the safe fraction of CPU
and network resources not consumed by current uploaders and
viewers.

10 | Creating a Production Launch Plan

2 See Chapter 22, “Addressing Cascading Failures,” in Site Reliability Engineering.
3 We assume your organization has selected and adopted relevant practices; to learn

more, see Chapter 4, “Service Level Objectives,” in Site Reliability Engineering.

Similarly, a product may require significantly more resources when
operating on a cold cache. If pointers to stored videos are lost when
the cache clears, all video view requests start going to the video
metadata service. A sufficiently large traffic spike might result in an
outage. Launch capacity planning must ensure that this fact is not
lost after launch, and the product continues to reserve enough
capacity to avoid exposure to cascading failures.2 To help measure
the needed capacity, you could upload a large set of videos in QA
and then flush the cache to see how the system responds. If it does
well, then you gain confidence that the same might happen in pro‐
duction at similar load levels.

Evaluate the user experience
Traffic estimation and resource provisioning set up your product for
sustaining its launched services under load from user traffic. To
make sure the product provides good service that satisfies end user
expectations, you need to document the product’s availability and
latency goals—the SLOs.3

Review whether SLOs have been well defined for the product’s core
features. Pay attention to the balance of the costs and value of SLO
metrics. Achieving low latency or high availability gets more expen‐
sive quickly, but it may not be necessary in most cases. A chat appli‐
cation might need good latency and to never lose characters when
users are typing in interactive sessions, but a video playing service
can afford a few dropped frames or a larger delay before starting
playback.

If your organization hasn’t adopted SLO practices, recall that users
naturally grow to expect certain performance, and those expecta‐
tions become the implicit and effective SLOs. Try to predict these
SLOs the best you can, for the most critical use cases.

Consider whether dependencies are providing SLOs from which
your product could still meet its own SLOs. For inadequate SLOs,
you may have to relax your product’s SLOs, negotiate with the
dependency’s owners for a better SLO, or replace the dependency
with another.

Elements of a Successful Launch | 11

https://oreil.ly/Y5Alx
https://oreil.ly/QQUQy

4 Your organization probably has monitoring products with which to integrate; read
more in Chapter 4, “Monitoring,” in the Site Reliability Workbook (O’Reilly).

5 Read more in Chapter 21, “Handling Overload,” in Site Reliability Engineering.

Finally, review whether you have monitoring metrics sufficient to
measure whether product properties are meeting all relevant SLOs.
Keep in mind that it may be necessary to modify your product to
enable the telemetry needed for SLOs or any other monitoring
needs.4

Create product resilience plans
Look for scenarios that could put your SLOs at risk, and what
options you can choose from.

Review how the product will behave if some of its components are
failing or overloaded, whether it’s a temporary spike or a permanent
rise. This review will improve the chances of sustaining the user
experience you expect the product to provide. Functional mitiga‐
tions include implementing load shedding and throttling of requests
incoming to a service,5 as well as stabilizing behavior of the UI when
some of its backends are fully or intermittently failing.

Review disaster recovery for your data. The product should have
backups, and the teams should have experience recovering the data
fully. Data corruption risks, especially if they can go unnoticed, must
be added to your Risks and Mitigations table.

Evaluate Operational Sustainability
After focusing earlier on whether the product’s architecture and
underlying infrastructure can sustain public demand, let’s now con‐
sider the capabilities of teams building and supporting the product,
before and after it launches.

As the end users begin to rely on the product’s availability, and even
more so if ecosystems begin to develop around the product, the cost
of product outages to your company increases. This scenario may
lead your company to tighten the availability objectives (SLOs) for
the product, which imposes more operating constraints and raises
operating costs. Therefore, you need to be clear about how this
might evolve and who will support the product through it. Because
the cost of tightened SLOs rises as they get closer to 100%, eventu‐

12 | Creating a Production Launch Plan

https://oreil.ly/Kp5dX
https://oreil.ly/Nm2K3

6 Read more in Chapter 5, “Eliminating Toil,” in Site Reliability Engineering.

ally likely exceeding the value of the product, expect to maintain a
cost/value equilibrium as the value of a product changes over time.
This scenario also means that poor adoption of the product might
justify reducing SLOs for the product.

Selecting the operations teams
The goal of hiring managers is to verify that the teams supporting
the product after it launches have sufficient operating capacity to
absorb it, and some reserve to accommodate unexpected or miscal‐
culated toil.6

First, estimate the operational costs for the specific team to run this
specific product. The product architecture defines the technologies
and infrastructure capabilities, which translate into specific costs.
What’s more critical is whether these technologies align well to the
team’s existing practices. Does adding this product dilute or improve
the operating efficiency? Poor alignment will increase the cognitive
load on the team while reducing the reuse of the production exper‐
tise and hands-on skills. The difference can be drastic!

For example, if the new product uses the same technologies as all the
other products a team supports, the added operational costs may be
limited to a fraction of the costs for running the product’s resource
footprint. A product that doubles the team’s resource footprint
might increase toil by only 5–10%. If, on top of that, the new prod‐
uct uses different technologies, operational costs also add up pro‐
portional to the number of new technologies, perhaps growing by
40–80%. These numbers are made up, but they illustrate the point
that a typical team operating at 80% capacity can absorb an increase
in operational costs of 5–10% but not 40–80%. By aligning the tech‐
nologies the products select with the technologies SRE teams oper‐
ate, you improve the products’ sustainability past launch.

Second, estimate how the operating costs might change with the
product’s growth. Use the same timeline as you did for traffic
projections. Expect that the resource footprint will increase, the rate
of feature developments may increase, and some of the technologies
might change—you’ll have discovered these scenarios when evaluat‐

Elements of a Successful Launch | 13

https://oreil.ly/L5mZ_

7 Read more in Chapter 17, “Identifying and Recovering from Overload,” in the Site Reli‐
ability Workbook.

8 Read more in Chapter 29, “Dealing with Interrupts,” in Site Reliability Engineering.
9 Chapter 20, “SRE Team Lifecycles,” in the Site Reliability Workbook offers guidance rele‐

vant to organizations of all stages of maturity and growth.

ing the product’s architecture. Make sure the teams will not run out
of capacity7 to support the products on the projected timeline.

Finally, evaluate how efficient the teams are at handling their exist‐
ing operational load.8 Is there room to absorb unexpected discover‐
ies immediately past launch, or is the team just getting by? Is the
team’s health on a stable trajectory, or might adding another product
endanger the team as a whole?

When the product is operated by the developer team and doesn’t
have an SRE team, the same concerns generally apply, though
instead of selecting the right team you will be assessing the needs to
staff the team appropriately or make any other changes to mitigate
identified risks.9

Impact of technical debt
Consider technical debt within the product as a factor affecting the
operational sustainability.

Timeline pressure for time to market or in product dependencies
may require technical problems to be worked around and deferred
for later resolution. While workarounds accomplish the timeline
objectives, the future still holds a problem. Launches typically follow
a pattern of getting user feedback and delivering on the next set of
features. Any delays for technical debt will extend the timeline for
bringing more value to the users. As technical debt continues to
accumulate through these cycles, so will the proportion of bugs, roll‐
backs, and product stability efforts. Technical debt diminishes the
capacity of the operations teams to support future launches.

Prioritizing debt reduction might depend on business needs at the
moment. If the organization can consistently afford to hold bug-
fixing sprints and feature freezes, debt reduction will help reduce
toil and manage product costs.

14 | Creating a Production Launch Plan

https://oreil.ly/vKi2z
https://oreil.ly/lfdGA
https://oreil.ly/25PP-

Accommodate Business Needs
Considering a product in isolation—that is, separate from its busi‐
ness value and impact—is a mistake. The engineers and SREs must
work with the business partners to optimally balance overall needs
for the organization. Working together applies to launch plans too:
launch planning teams must always consider business requirements,
not only to avoid idealistic expectations but also to prevent those
requirements from driving unilateral product decisions. Consider‐
ing business requirements may be easier or harder to accomplish
depending on the size of the organization and its structure, and the
relative importance of the product. For example, your company’s
product managers could work with sales and executive units to learn
how the products map to the company’s roadmap. Product incidents
incur risks to the business, such as revenue loss from an outage;
therefore, having a method to quantify these risks is important so
that the business can make a decision about their potential impact.
Quantifying risks enables launch planners to make a case for the
value of planning; if work is done ahead of time, future incidents
can be mitigated.

Perfect is the enemy of good
Evaluating a product for launch planning might highlight that the
product is not perfectly ready for launch. That’s OK. Launching a
perfect product is not the goal. Rather, you might want to launch the
product as soon as it can practically meet its end users’ goals,
without exposing the end users to undue risks or damaging the
company’s reputation. Launching a product as soon as it meets user
goals delivers value sooner, and reduces losses from mistakes unre‐
lated to the product’s reliability.

Sometimes you can’t avoid a launch because of a committed date,
despite uncovering significant product or infrastructure issues.
Launch planning processes can be especially valuable here. By their
nature, they will provide a framework for exposing all relevant risks,
which can then be stack-ranked against the available time and the
probability of remediation. If any best practices evolve from your
organizational experience with launch planning, they might provide
higher-confidence mitigation options, as well as helping identify
unreliable options.

Elements of a Successful Launch | 15

Management must support launch planning
Launch planning effectively targets reliability, but reliability is
harder to accomplish and sustain without management support.
When stakeholders and product managers consistently allocate
resources to new features rather than more reliability, the balance
inevitably shifts toward more risk. This situation would be further
compounded by the lack of a launch plan—launch planning can
indeed be viewed as an impediment to delivering features, especially
when it delays launch or requires more development costs. As a
result, safe and successful launches become harder to achieve, and
the costs of planning per launch rise; launches are less frequent, less
rigorous, and provide less improvement from launch to launch.

Work toward engineering and management agreeing on the costs
and benefits of launch planning. You want management who will
stand behind and defend launch planning against pushback for
higher feature velocity or cost-cutting. If you don’t have this sup‐
port, you should absolutely still try to plan before launching; just be
prepared for reduced budget and power to effect change.

Launch Structure and Execution
From all the principles and guidelines described earlier, you will be
building a list of specific, ordered activities to execute in preparation
for and on the launch day. At each step, you should know what’s
required, what to do, and how to tell that it was completed. Have a
clear owner accountable for the entire launch plan.

You could use a simple text document or build a comprehensive
software system to manage launch planning at scale. Starting with a
simple spreadsheet to manage the details is often easy; you can have
separate sheets for launch prerequisites, actions on the day of
launch, actions for days after the launch, contact and escalation
information, and miscellaneous information. You can move into a
more complex solution after using spreadsheets for a number of
launches. However you manage the launch planning content,
remember to select technologies that allow teams to collaborate on
the launch plan and share it widely.

If you already have generic launch templates, you might scale them
down to match the needs of a particular launch, making informed

16 | Creating a Production Launch Plan

decisions about what is irrelevant but with confidence that you have
not overlooked the important bits.

Launch Stages
If possible, break up launches into stages (the launch template in the
appendix includes two stages). The breakdown has two dimensions:
by product status or features, and by the amount of diverted user
traffic. You can combine the options from either dimension.

You could make some product features available first, deferring the
other features until later stages for practical or logistical reasons. At
Google, we formally distinguish Early Access Preview (EAP), Alpha,
Beta, and General Availability (GA) launch stages. EAP and Alpha
have only some of the final product features, though the riskiest fea‐
tures tend to launch there for earliest evaluation by actual custom‐
ers. Beta and GA have full features but differ in the degree of
production maturity and product support available to the end users.

You could slowly divert user traffic to the new features, instead of
launching 100% everywhere. Start by opening the product to a small
proportion of your customers. As you monitor progression from 1%
to 2%, 5%, and 10%, you are ready to pause and roll back in the case
of any incident, or move toward 100%. Alternatively, you could
open the product to some limited geography, expanding first to one
region, then deploying to all remaining regions. The specific choices
depend on how many users are available to start using your product;
the number should be large enough to provide meaningful quality
estimation. You might value the slow progression also because it
builds monitoring data to evaluate product impact under the
increasing load.

However you choose to progress through a launch, determine if it
has a point of no return. What might reaching the point of no return
look like? A simple case is when media companies have published
the public announcement for your product—the announcements
cannot be “unpublished.” Subtler cases may include industry events
that cannot be moved, or business contractual commitments to
deliver specific product features. When such circumstances reduce
your flexibility, launch planning can provide you with some coun‐
termeasures.

If possible, “dark” launch your product or its new components. At
Google, the “dark” property means that we avoid visibility of the

Launch Structure and Execution | 17

new features, while exposing them to the users. To implement a dark
launch, you could modify your public clients to make requests on
your product without rendering the results to users. The product
would throw away the results as late as possible, perhaps in the
frontend or even on the client. This process permits a much slower
rollout schedule for extra safety, and can still involve canary testing
over a gradually increasing percentage of users. Importantly, you
can push the point of no return significantly past most of the points
of the launch plan. Be careful not to abuse the end user’s trust and
computing resources.

Launch Checklists
A launch checklist organizes the remaining tasks for the launch (see
the appendix for a preproduction checks example). Think of a
launch checklist as a useful planning tool as well as an accountability
and verification tool. If the product consists of multiple compo‐
nents, you can break down the checklist by each component, pro‐
viding easy access to its launch status.

Because each launch needs its own checklist, you might want to cre‐
ate a reusable process to bootstrap them. Following this advice,
Google starts with generic checklist templates we’ve built over time,
rather than building checklists from scratch every time. Launch
engineers rely on their experience and interviewing product engi‐
neers to determine what elements are applicable, trim away every‐
thing else, and reset all status fields. The guidelines included with
the remaining action items provide a self-sufficient path to complet‐
ing the entire checklist.

Launch checklists eventually become historic references to all the
artifacts related to a product launch. Subsequent launch stages of the
same product can rely on the earlier launch checklists to expedite
planning.

Launch Actions and Status
If you think of the launch plan as a series of action items, each
action item has at least these properties:

Timing
When the action item is needed and how long it is expected to
take.

18 | Creating a Production Launch Plan

Owner
The contact accountable for this action item and responsible for
managing and verifying it.

Executor
Who will actually perform the action item. If possible, assign
someone different from the owner. This separation of responsi‐
bilities allows the executor to focus on the actions and the
owner to focus on processes and verification.

Actions
One or two actions to perform, simple enough not to need fur‐
ther breakdown of ownership, communication, or verification.

Status
Whether this action item has been started, blocked, completed,
verified, and so on. This property gives all observers the same
situational awareness—the launch at any moment is in a clearly
defined and clearly communicated state.

Verification
How to determine that the actions occurred completely and
successfully.

Rollback
How to undo the actions if needed. Having a rollback on hand
is a responsible action, and capturing it at the time of defining
actions is convenient.

Associate other properties with each action item if they will be use‐
ful later on. For example, describe whether the action item is
required or recommended, attach documentation that the executor
can follow to resolve the action item, or reference any relevant poli‐
cies or standards. Aim for whatever helps the launch succeed or pro‐
vides input for launch reviews, post-launch analysis, or future
launches. Your organization will be able to develop reusable launch
templates and continuously improve them.

Creating launch actions is very much like general project planning,
but we supply it as a set of specific minimal practices we’ve found to
work well at Google, for small and large launches.

Launch Structure and Execution | 19

Launch Controls
Minimizing the amount of change needed during the launch is
important. Ideally, you only have to do simple production changes
such as a self-contained runtime configuration change, and not a
more complex change like restarting your application servers.
Before the launch, you already have deployed all necessary code to
production and it is available for real live verification.

A more complex launch plan might require a sequence of changes.
During the launch, you can imagine going through a series of pro‐
duction changes where more and more product components begin
to act according to the launch plan. We find that engineers are often
more capable of reasoning about these configuration changes as
opposed to other launch methods, such as the rollout of a new appli‐
cation version. Configuration changes are easy to visualize, which
also improves understanding and code review.

Documenting Launch Decisions
Many decisions will be made on the way to launching a product.
You should document all relevant deliberate decisions so that you
know who made the choices and why. Documenting decisions
avoids the need to conduct archaeology. You are aiming for discov‐
erability of reasons for decisions, to enable an informed response at
launch and evolution afterward. The goals include consistency of
shared knowledge accessible to people who do not directly interact.
Remember that even simple production changes can have a large
impact, and you must be ready to escalate quickly. People new to the
company should be able to find what they need to know quickly.

While the discoverability is most important closer to the actual
launch, the reasoning and historic context for decisions grow in
value further in the future. Architecture and configuration nuances
might make little sense years after the launch, possibly because the
underlying infrastructure has changed significantly. An easy solu‐
tion is to link decision documents into launch checklists.

Anywhere coordination is necessary, plan and document it. This
document should include who should coordinate what with whom
and under what circumstances, how to find substitute experts, and
what to do if key people are not available. Don’t overlook knowing
the business decisions that need to be made about product behavior

20 | Creating a Production Launch Plan

at launch, the ordering of any stack-ranked fallback options, what
traffic patterns to expect, and who decides whether escalations are
needed. Documenting coordination is about handling planned and
unplanned cooperation between people.

Note that the reason for tracking who made decisions is informa‐
tion, not blame. You want to know who can provide more context
for a decision. You might care whether someone had the technical or
organizational authority to make the decision, or whether the deci‐
sion needs to be escalated to establish it as a plan of record. You do
not need to know whom to blame when decisions lead to poor out‐
comes.

Insights into Launch Progress
Make sure you know how to determine the progress of the launch—
that is, how to compare the actual and the expected conditions at
each action item, and evaluate whether to advance the launch or
look for corrective measures. You will likely rely on launch check‐
lists and the documented decisions covered in the previous section.
However, the point of monitoring launch progress is for the people
familiar with the infrastructure and communications to know how
to get the right answers quickly.

Include status monitoring and verification proportionately to the
production impact of each step. The larger the scope or destabilizing
capacity of an action is, the more nuanced you will want the insights
to be, and the more proactive communication of potential issues
you will want.

Timing of action items should be carefully reviewed in advance to
ensure correct ordering and allow enough time for each item. The
allocated time should include time to complete operations, perform
verification, allow for alerts to occur, and gather metrics. A common
mistake is to assume that a simple action does not need much time
—but simple actions may cause changes that take time to verify. In
some cases, you may need to allow time to see if user interactions
cause alerts. Rollbacks and retries can multiply the projected times
at least twofold. Allow enough time to progress through each step. If
you need to cut the time short, you are making a trade-off for more
risk—only do so intentionally.

Be in a known, stable, and previously documented state at all times
during launch. Include overnight holds if necessary, to ensure stable

Launch Structure and Execution | 21

pauses and to allow engineers time to recover and reassemble. Over‐
night holds should identify clear state and metrics that are being
watched for stability.

Progress tracking officially starts when the final decision to “go”
with the launch is made. At that point, you should send a notifica‐
tion to the stakeholders and all other relevant contacts. This notifi‐
cation informs them that the launch really is occurring. Sending the
notification is important because as the plans were changing, people
may have heard different versions of what will launch and when.
The notification should include a link to the launch plan and details
of how to communicate with the launching team if necessary.

Create a tracking ticket specifically for this launch, and publish it in
the launch plan. Anyone interested in details can follow along for
status updates, which you will communicate to the team. The track‐
ing ticket also leaves a documentation trail for launch-related events
and issues, which can be easily reviewed if needed.

Managing Precise Time of Launch
The action items that actually launch the product should coordinate
carefully with messaging, public announcements, press embargo
lifts, and other external communications. Consider whether you
want press releases before or after the product is available. Include
the relevant action items at the right place in the launch plan.

Beware of promising more than what the infrastructure and SRE
teams can realistically deliver. For example, launching at precise
times like at 10:00 a.m. may be difficult, so you should carefully
communicate the timing of product availability to the public. Data
pushes usually drive launches, and they might be run only at fixed
intervals. On top of that, data pushes may fail, delaying the update
until an emergency push or next scheduled push succeeds. Unexpec‐
ted problems may cause rollback of a successful push. As you
develop the launch plan, you will become familiar with the available
precision.

Be prepared for a scenario where the press embargo ends prema‐
turely, or someone leaks the launch (accidentally or intentionally),
or both. If any of these scenarios happen, you may be under pres‐
sure to launch sooner than planned. During launch planning, con‐
sider which parts of the launch can be accelerated, which must not
be accelerated, and what the risks of such accelerations are.

22 | Creating a Production Launch Plan

Communicating schedule changes with all contacts is especially crit‐
ical, because if they are expecting events on the wrong schedule, you
cannot count on their assistance even if they are available. Schedul‐
ing is a good point to consider in assembling a command center
during launch, as discussed in the next section.

What to Do on Launch Day
The launch plan should specifically call out what to do on launch
day, and who will perform the planned actions. Before launch day,
the launch plan should have been circulated to all relevant teams—
developers, production, marketing, press—and all required action
items on the launch checklist must be marked as completed. Now
that you are ready for takeoff, it’s time to go over what might help
with launch execution!

Organizing a Command Center
Despite all the preparation, you must be ready to react to changing
conditions in the moment. If that time comes, knowing who has the
responsibility, authority, and expertise appropriate for the situation
is critical. A production crisis is not the time to be looking up who
those people might be.

You will want to include people from all essential roles. Subject mat‐
ter experts—for the launching product and its main components—
will be able to reason about the product’s behavior in unexpected sit‐
uations. Any other experts who were involved in technical choices
and spotting problems during preparations for launch will be valua‐
ble. On-call engineers for the dependent products will be able to
provide sufficient assistance as part of their on-call shift, but do keep
them informed and reminded of the planned launch. Members of
marketing and press can assess what’s happening and communicate
externally if needed. You may need executives on hand for highly
visible launches. A natural way to assemble such an extensive list of
people is by making notes as you are building the launch plan; you
can then just review the contacts for availability near the launch day.

Make sure everyone accountable is available; ideally, you will have
backups for people in these roles. A launch may turn into a produc‐
tion incident, and preparing ahead of time reduces time to mitigate.

What to Do on Launch Day | 23

10 Read about incident management at Google in Chapter 9, “Incident Response,” of the
Site Reliability Workbook.

If your company has incident management processes,10 consider
reviewing them. Capture phone numbers, pager numbers if applica‐
ble, and email addresses, and verify that people will be available
across time zones. Depending on the combined risks and required
coordination, you might decide to all be present in the same place,
physically or virtually; this place is sometimes referred to as a “war
room” or “command center.” During a “boring” launch, people in
the command center could just do their normal work from their lap‐
tops; they’ll be ready to jump into face-to-face discussions if needed.

Document for others in advance how everyone will communicate
during the launch. What conference rooms will they use? Will they
fit enough people if more people need to join? In addition to physi‐
cal locations, create a chat room for internal communications. If
your company offers multiple communication mediums, publish the
backup solution. At Google, we fall back to IRC if Google Chat is
not available.

Before you start, consider making a PDF or even a hard copy of the
launch plan to protect against any service outages at a critical time.
If not the entire plan, you need at least the contacts and the day-of-
launch actions with instructions in case you get stuck mid-launch.

Transitioning from “Before Launch” to “After Launch”
The transition from pre- to post-launch is the critical step during
launch. You are already most likely committed to the launch; the
press release is out, for example. You are potentially exposing new
code to public traffic it has never experienced before. Fortunately,
your launch preparation steps will have reduced the risks to a practi‐
cal minimum. All you have to do is have action item executors and
owners go through them one by one.

In a classic sense, the transition consists of the production changes
that expose the product to public traffic. For staged launches, it
could mean merely increasing the size of the public user base, such
as going from Alpha to Beta. Some transitions could last for days, if
gradual traffic ramp-up was planned.

24 | Creating a Production Launch Plan

https://oreil.ly/KR20N

You might notice that so far we have focused on things that happen
in preparation for launch, and spent only a short segment covering
the day of launch and the transition. Our goal in this approach was
to represent the proportion of effort we allocate to planning, and the
quality we strive for in that preparation. In our experience, lack of
preparation tends to shift the costs toward the day of the launch,
and maybe more days recovering from a launch gone poorly. These
costs could take the form of an “all hands on deck” response or
unrecoverable opportunity loss. Where the balance should be for a
particular launch is up to you.

After the Launch
The launch typically doesn’t end on launch day. Any abnormalities
identified and mitigated during the launch need sustainable, perma‐
nent solutions.

Status should be actively or at least occasionally monitored until a
reasonable demand cycle has completed, meaning that the initial
traffic spikes have passed and more periodic traffic patterns can be
expected to start to repeat. This cycle could be days or weeks for dif‐
ferent organizations, depending on the business and the behaviors
of its customers.

Multiple demand cycles with distinct periods could be overlaid
when useful. For example, a day-night-day cycle captures the full 24-
hour demand cycle of a product. A weekday–weekend cycle cap‐
tures a regular week for many cultures, with spikes or drops during
the weekdays or weekend. Sometimes a single spike of demand is
the most telling, such as a flash sale at a retailer between 9:00 and
11:00, and you would not need to track an entire weekday–weekend
cycle.

Not everything in the launch process needs to happen for every
launch. There are always trade-offs between doing more work up
front (an investment) and achieving some kind of benefit or busi‐
ness value. Next we’ll look at a case study that demonstrates how to
navigate those trade-offs. It covers the activities undertaken by the
Dauntless team to achieve success, highlighting launch planning
activities that were valuable.

What to Do on Launch Day | 25

11 10X is a general rule of thumb based on Google’s experience engineering software sys‐
tems. In our experience, systems do not fare well when demand is 10 times higher than
what the system was designed to handle. These systems typically require major engi‐
neering changes in order to service the heightened demand; this requirement is why
this exercise is valuable, as it can deliver these pain points before the scenario occurs in
production.

Case Study:
Lessons Learned from a Product Launch
Google and Phoenix Labs worked together to prepare for the prod‐
uct launch of Dauntless, a free-to-play role-playing game (RPG).
Created by Phoenix Labs, Dauntless supports cross-play between
different platforms such as the PlayStation 4, Xbox One, and the
Epic Games store. Within a week of its launch the game had mil‐
lions of players. How did the team manage the launch process and
achieve a successful launch? How can you learn from this example
when executing your own launch process?

Planning Ahead of Time
The plan began early, with a pairing of Google Cloud and Phoenix
Labs to ensure the success of the launch. While the game was
launched publicly in May 2019, planning itself began in mid-2018.
Do not underestimate how valuable this lead time is—forgoing it is
a key factor in launch failures. Most products have some kind of
plan, even if it’s business-focused; however, planners often neglect
stakeholders until the last minute, which reduces the time to resolve
issues. The Dauntless plan began long before the launch itself, pro‐
viding a lot of time to execute the plan and enable a successful
launch.

Holding a Scaling Session
The Dauntless team underwent a scaling review to evaluate how the
game would operate in the production environment. One practical
addition was to employ a “worst case” exercise—that is, imagining
the worst-case scenario for demand for the game. If you expected a
million players and 10 million showed up, what would happen?
Would the game work? If not, what would break first in the game?
This is commonly called a “10X exercise.”11 The goal is to expose

26 | Creating a Production Launch Plan

architectural pain points of a system by exploring where you expect
the system to begin breaking down.

The result of this exercise was a series of risks similar to the Risk cat‐
egories described in Table 1. The team grouped these risks into
buckets according to their likelihood of occurrence. Risks that were
likely to occur had mitigations or scaling plans. Less likely risks had
a lower priority. Grouping risks served as an aid to the planning
team to prioritize the work appropriately.

Load simulation
In the scaling review session, we were often relying on the experi‐
ence of engineers, architects, and developers to point out likely pain
points of the existing workload and its architecture. While pointing
out pain points is useful, the humans involved are unlikely to brain‐
storm all problems ahead of time. In the case of Dauntless, the team
also prioritized a production-scale load test to try to simulate its
potential user base.

Load simulation can be costly. The Dauntless team had to run an
instance of the game as well as pay for computing capacity to gener‐
ate the game activity of thousands of players. Load simulation is not
free from capital cost as well as operational costs; instead of working
on the game, developers built testing infrastructure.

However, the benefit is typically worth the cost of such an exercise.
A number of key learnings came out of the simulation. The advan‐
tage of the simulation is finding these potential problems ahead of
launch day, discussing their impact on the business, and then priori‐
tizing fixes to the product. Finding issues before users have access to
the product can help provide a smooth user experience during the
launch as well as after.

Denial of service
Like many internet-facing applications, Dauntless has a component
that attempts to detect and mitigate denial-of-service (DoS) attacks.
This component was triggered during the load simulation, causing
the component to attempt to “mitigate” the load simulation. This
attempt resulted in a partial production outage and halted the load
simulation. Ideally the load simulation would produce no problems;
in practice, that is rarely the case. The Dauntless team learned that
the DoS component did function, they saw how the game operated

Case Study: Lessons Learned from a Product Launch | 27

when the component was active, and they gained experience in con‐
figuring the component in a real incident. This practical experience
is valuable in crafting improved procedures for future incidents.

Reviewing the Architecture Design
Google’s Customer Reliability Engineering team offered a design
review for the Dauntless architecture. The design review relies on
Google’s expertise in running large-scale systems. Google has done
hundreds of reviews of production systems and has done design
reviews with other Google Cloud Platform (GCP) customers. The
intent of the review is to highlight areas that seem to contradict les‐
sons learned from our experience with Google’s production plat‐
form, as well as customers on GCP.

The result of the design review was a list of potential areas for devel‐
opment. We ranked these areas based on their potential impact to
the product and business, and provided some prospective mitiga‐
tions. The intent was not to fix every item called out; instead, we
wrote short plans of action to mitigate risk. Prioritizing and plan‐
ning in this way allows us to avoid costly development investments
and complexity the product may not actually need. We can deter‐
mine if the complexity and investment are needed later, after a load
simulation or even after launch day.

Table 2 lists some of the items raised in the Dauntless design review.

Table 2. Risks raised during the design review exercise with notes and
mitigation

Area Risk Notes Mitigation
Game APIs did not
have autoscaling
enabled.

High Large surges in player count
are expected, and the game
APIs should be able to scale up
and down automatically
without human intervention.
This will enable automated
operation of game APIs,
instead of 24/7 human
operation.

Team agrees that autoscaling
should be enabled before
launch day; will determine
what blockers are necessary to
be resolved prior.

28 | Creating a Production Launch Plan

Area Risk Notes Mitigation
The Content Delivery
Network (CDN) might
go down, taking the
game offline.

Low Dauntless’s CDN vendor has
pretty good uptime,
historically speaking.

Mitigation (e.g., paying for two
separate CDN vendors) tends to
be expensive and operationally
complex. CDN failure is rare.
We accept this risk; no
recommended actions.

Database: has the
team executed a
successful restore
from a database
replica?

Medium Possible in theory to restore
database state from a backup/
replica, but this has never
been done in production.

Action: try it and confirm we
can do it. Document the
process.

Database: concern
that writes might
overwhelm the
throughput of the
datastore without a
sharding strategy.

High Sharding the database can
provide greater total
throughput for the database
layer.

Action: the Dauntless team
committed to sharding some of
the databases in order to
sustain gaming performance.

Designing for Resilience
Dauntless’s architecture helped the team remain agile in the face of
unexpected events. Multiple Google Cloud regions host the Daunt‐
less game world. Typically, players form a hunting party and are dis‐
patched to a specific game server for the hunting portion of the
game. Dauntless uses a latency test to find the closest server to the
users to provide them with the best experience. However, sometimes
the closest server is full and cannot accept additional players. Serv‐
ing those users from the next closest server, sometimes in a different
geographic region, then becomes a benefit. For example, a group of
players on the East Coast of the US might play on a West Coast
server.

This feature provides a strong failover and balancing capability to
Phoenix Labs. If a region is having issues, is unstable, or is providing
a bad user experience, Phoenix Labs can direct users to other nearby
regions while still offering a suitable gaming experience. The work
required to build this capability is notable—some of the regions are
far apart (60–80 ms round trip), and this additional latency can
impact gameplay. The Dauntless team had to make significant
investments in their game platform to support this kind of experi‐
ence at a satisfactory level.

Case Study: Lessons Learned from a Product Launch | 29

12 Pun intended.

Adapting Post-Launch
Once Dauntless launched, the launch process was not over; in fact, it
had only just begun. Some organizations adopt a waterfall approach
and think, “Hey, we did all this launch planning and we adopted all
the critical mitigations, so everything will go fine on launch day, and
if anything goes wrong it means we failed.” This was not the
approach the Dauntless team took to for launch day. They anticipa‐
ted that things could go awry; the value of the launch planning is
not in ensuring a perfect event-free launch, but instead in its ability
to provide the necessary background and support so the organiza‐
tion can be agile when things go wrong.

Autoscaling
The design review had called out autoscaling—that is, automatically
scaling capacity up or down with player demand—as an item that
should be enabled prior to launch day. Autoscaling was appropri‐
ately staffed and deployed; however, an unforeseen scaling issue
caused the autoscaler to malfunction during the launch. It turned
out the autoscaler would have to be modified mid-launch in order to
achieve its goals. Modifying the autoscaler is a daunting12 task to
undertake in the middle of a game launch, but a meeting of the
minds between Phoenix Labs and Google produced a new
autoscaler design that was deployed quickly to mitigate the
situation.

Database
The “worst case,” or 10X, review had called out the database as a
bottleneck that scaled 1:1 with player count. As the game continued
to gain players in the first couple of days, the database began to hit
bottlenecks. The database has a primary with a number of secon‐
dary replicas. One problem the team experienced was that the repli‐
cas were struggling to keep up with the primary, causing them to fall
further and further behind. Out-of-date replicas eventually become
ineffective for serving users, leading to a loss of serving capacity,
lack of resilience, and extra expense of paying for replicas that pro‐
vide no value. The Dauntless team did not observe this behavior
during the load tests, because replication was not enabled then to

30 | Creating a Production Launch Plan

save on testing costs—leading to the first occurrence of this problem
in production during the launch of the game.

The Dauntless team anticipated this problem in the design review of
the game architecture, so they had some mitigation ideas planned.
Only a subset of the database was experiencing a high write rate, and
the team migrated these tables into a different storage system that
could sustain that rate.

Login Queue
As players rapidly show up to play the game—at game launch, but
also during other times of day or game events—having players log in
all at once can lead to uneven demand on the game servers. Some‐
times uncontrolled demand happens, which can cause instability for
players already in the game. A lack of demand control from end user
devices means that recovering from instability or routine game
maintenance, like a software rollout, can be difficult. Phoenix Labs
decided to provide a smooth gameplay experience for a preset num‐
ber of players instead of a degraded experience for all players.

The Login Queue is a feature that Phoenix Labs can enable to con‐
trol the speed at which players are admitted into gameplay. This fea‐
ture enables the company to offer a consistent playable experience
for players who have already joined the game, while communicating
to queued players when they might be able to play. Controlling the
speed is often better than providing an unstable gaming experience
for all players. It allots room for the game operators to control the
demand for gaming resources and to smooth out spikes in demand
from players. Instead of having a poor gaming experience—players’
games freezing, getting kicked out, or getting stuck at a loading
screen—excess player demand goes into a queue that Phoenix Labs
manages. The queue is not on all the time, but Phoenix Labs can
enable it opportunistically during periods of instability or unexpec‐
ted player demand in a region.

Case Study: Lessons Learned from a Product Launch | 31

Lessons Learned
The Dauntless launch utilized a number of launch activities, includ‐
ing an architecture review, a scaling session, and post-launch modi‐
fications to the application architecture. We did not discuss some of
the common launch activities, such as capacity planning and setting
up a command center for launch day; in our experience many
organizations are doing these activities already.

Dauntless benefited from the flexibility to adjust to unknown factors
both during the launch and after, specifically with regard to demand
for the game: how many concurrent players would there be for the
game, and how would the game respond? Instead of spending sig‐
nificant time and resources trying to formulate perfect estimates or
making the game perfectly responsive, the team focused on imple‐
menting the Login Queue to manage demand for the game
resources.

We can highlight a few more useful practices. The scaling exercise
and architecture review are exercises designed to explore what the
team knows about an application and to aid in decision making
about what mitigations to build into the application. Trading off fea‐
tures against launch velocity is an important exercise. Brainstorming
potential problems and solutions is routinely cheaper than imple‐
menting such a solution. Often we can do the on-demand engineer‐
ing work post-launch, to implement the discussed solutions.
Planning exercises eliminate the surprise of potential problems we
might encounter and allow us to offer predesigned solutions, reduc‐
ing the stress of post-launch management.

Wrapping Up
In this report we organized the many different areas of launch plan‐
ning, offering a selection of relevant examples based on lessons
learned at Google. We hope these examples will be useful for you to
build upon to develop launch practices that fit your specific needs.
You could look at this report as an aid to help you determine where
your product could use help on the way to its users. Use it to aid you
in building a launch checklist, and follow the checklist to launch.

Aim to sustain launch planning practices over time by scaling the
launch planning process to the size of the launch and the teams
involved. Some products might launch fine with little planning,

32 | Creating a Production Launch Plan

while others could require long and rigorous planning efforts. Some
organizations might have small operations teams. Others might have
just one product and launch product features instead of entire prod‐
ucts. Only you know what amount of planning will benefit each par‐
ticular launch. By practicing launch planning, your organization can
build up the degree of proficiency it needs.

Remember that for a successful launch, planning isn’t optional. Plan
your launches and launch successfully with confidence!

Wrapping Up | 33

Appendix: Launch Plan Template

This is a generic template for a launch plan. Google does not have a
single unified template, and often different business units will have
their own customized versions for their product lines. Keeping that
in mind, feel free to customize this template to your own business
by adding or removing sections, processes, approvers, links to arti‐
facts, and so forth.

Text formatted [in italics] is the text that the launch plan owner is
expected to delete or replace with launch-specific text.

Status
[Adjust this list as needed and remove stakeholders that are not
relevant.]

Stakeholder role Email Signoff
Marketing
Security
Site Reliability Engineering
Product Manager
Technical Program Manager

Summary
[Write a few sentences about what, why, and when you are launching.
Describe the scope of the launch—include the list of changes, and what
is not in scope.]

35

Related Documents
[Include links to documents relevant to this launch. Common docu‐
ments include:]

• Link: Privacy document
• Link: Design document
• Link: Test plan
• Link: Rollout plan

Testing Guidelines
• Environment: [QA, staging, etc.]
• Whitelisting: [Instructions on how to whitelist a customer to

access new functionality.]
• What to test: [Define a scope for what people should be testing

and what to look for.]
• Other information:

— One-time manual and/or exploratory tests (new features):
[Link to QA test request]

— Number of manual regression tests added:
— Number of integration/large tests added:
— Unit test coverage %: [If below required 70% coverage, include

rationale for exception]
— Test signals: [Unit tests, integration tests, continuous build sta‐

tus, etc.]
— Bug triage done: [Yes, No, N/A]

36 | Appendix: Launch Plan Template

Checks for Trusted Tester Stage
[Checks in this and the following sections cover many possible appro‐
vals, some of which will not be relevant for your launch. Feel free to
remove rows that are not needed.]

Check Owner Note
Dev code and test complete [Any exceptions or

other concerns.]
QA testing complete and no blocking bugs
UX and PM signoff on feature [Any exceptions or

other concerns.]
All the dependent servers have the correct
permission granted

Checks for Production Stage

Check Owner Note
QA test complete and no production-blocking bugs [Any exceptions or

other concerns.]
Final signoff from non-eng partners (L10N, PR, legal,
marketing, security, privacy, export, open source,
etc.)

 [Localization of
strings, help center
articles, dev
notifications, legal
reviews.]

Support page updated
Early Access Program (EAP) or Trusted Tester
Program (TTP) process

Signoff from engineering partners (upstream and
downstream dependencies)

Production readiness (capacity planning,
configurations, load testing, onboarding, etc.)
complete

Launch monitoring and alerts in place
Product metrics verified
Email to stakeholders with a heads up sent

Appendix: Launch Plan Template | 37

Checks for Post-Launch Stage

Check Owner Note
QA automation added to daily regression suite
Experiment cleanup complete

Rollout Schedule
[Adjust these steps and percentages to the needs of your launch. If an
experiment document exists, point to that; don’t put dates in multiple
locations.]

Rollout step Date Note Owner
Trusted tester [Required, 5+ days.]
Production 1% [Check basic health metrics and catch

exceptions for ~1 day. Get SRE approval
before each bump in traffic.]

Production 5% [Run long enough to get significant results
for launch monitoring metrics.]

Production 20%
Production 100%
Experiment cleanup

Launch Monitoring
[List each team or component involved in the launch here:]

• Component A (Owner team X)
— [List all dashboards and metrics you will be monitoring to

ensure the launch is going as expected. These include basic ser‐
vice health metrics.]

• Component B (Owner team Y)
— [List all dashboards and metrics you will be monitoring to

ensure the launch is going as expected. These include basic ser‐
vice health metrics.]

38 | Appendix: Launch Plan Template

Plan for Emergency Rollback
[Cover at least the following:]

• Who are the decision makers?
• If rollback is needed and approved, how do we roll back?
• What is the impact of rollback?

Product Success Metrics
[What logging is available to measure the success or failure of this
feature?]

Appendix: Launch Plan Template | 39

About the Authors
Alec Warner is a senior site reliability engineer who has been at
Google since 2007. His early work focused on traditional IT systems
administration, while his later work focused on operating planet-
scale storage systems. Today he works on Customer Reliability Engi‐
neering, assisting customers in operating reliably on Google Cloud
Platform. Outside of work Alec likes space, hiking, climbing, and
adventurous activities.

Vitaliy Shipitsyn is a staff software engineer in Site Reliability Engi‐
neering at Google. He works on the resilience of Google’s produc‐
tion infrastructure, and on convergence and adoption of production
best practices across Google. Vitaliy’s experience includes several
years of consulting for internal and external product launches at
Google, helping engineering teams adopt SRE practices, and run‐
ning services for BeyondCorp at Google. He obtained his MS degree
from Ohio University in 2000.

Carmela Quinito is a technical writer for Site Reliability Engineer‐
ing at Google. She writes documentation on products that help Goo‐
gle engineers manage their production systems. Prior to Google, she
worked in technical support for 10 years. She holds a computer
engineering degree from the University of the Philippines-Diliman.

	Cover
	Google
	Copyright
	Table of Contents
	Chapter 1. Creating a Production Launch Plan
	What Does a Launch Plan Look Like?
	Benefits of Launch Planning
	Managing Risks Instead of Hoping for Luck
	Allowing Quick Adjustments
	Communicating Effectively
	Improving Launch Processes Over Time

	Elements of a Successful Launch
	Focus on the Product
	Evaluate Operational Sustainability
	Accommodate Business Needs

	Launch Structure and Execution
	Launch Stages
	Launch Checklists
	Launch Actions and Status
	Launch Controls
	Documenting Launch Decisions
	Insights into Launch Progress
	Managing Precise Time of Launch

	What to Do on Launch Day
	Organizing a Command Center
	Transitioning from “Before Launch” to “After Launch”
	After the Launch

	Case Study: Lessons Learned from a Product Launch
	Planning Ahead of Time
	Holding a Scaling Session
	Reviewing the Architecture Design
	Designing for Resilience
	Adapting Post-Launch
	Lessons Learned

	Wrapping Up

	Appendix A. Appendix: Launch Plan Template
	About the Authors

