.. Case Studies in

. Infrastructure
Change

i Mdnagement

How Google Rebuilds
the Jet While Flying It

Wendy Look & Mark Dallman
' S

. ® .
Y - @
REPORT

£Y Google Cloud

Want to know
more about SRE?

To learn more, visit google.com/sre

http://google.com/sre

Case Studiesin
Infrastructure Change

Management
How Google Rebuilds the Jet

While Flying It

Wendy Look and Mark Dallman

Beijing + Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

(ase Studies in Infrastructure Change Management
by Wendy Look and Mark Dallman

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or cor-
porate@oreilly.com.

Editors: Virginia Wilson and John Interior Designer: David Futato
Devins Cover Designer: Karen Montgomery
Production Editor: Nan Barber lllustrator: Rebecca Demarest
Copyeditor: Gary Gorski

October 2019: First Edition

Revision History for the First Edition
2019-10-23: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Case Studies in
Infrastructure Change Management, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

978-1-492-07602-5
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Preface

1.

Table of Contents

Introduction.oovviriiiniiiiniiininennss

Infrastructure Change Management

. Case Study 1: Moonshot................ccoovvunnen

Overview

Tools

Processes
Lessons Learned

. Case Study 2: Diskless.........ooevvveiiiennnnnn.

Overview

Jet Part Swapping
What Didn’t Work?
Lessons Learned

Preflight Checklist................coooviiiiiiies,

CONCUSION . v v e vt ie i i ieienennenens

19
20
22
23
25

Preface

The Infrastructure Change Management (ICM) program at Google
drives migrations, deprecations, and other large-scale infrastructure
changes. Case studies in this report explore how infrastructure
change projects are managed at Google. From these case studies,
we'll provide insight into lessons learned from these different
approaches, and provide an overview of techniques, processes, and
tools that worked (or didn’t work).

Acknowledgments

Sue Lueder, Brian Gustafson, Kate Ward, Salim Virji, Alex Matey,
Derek Balling, Mike Koivunen, Patrick Bernier, Olivier Ansaldi,
Shari Trumbo-McHenry, Janet Wu, Steven Schirripa, Simon O’Gor-
man, John Reese, and Sabrina Farmer.

Special thanks to Jessie Yang, and to the tech reviewers, Niall
Richard Murphy and Grace Petegorsky, as well as to Betsy Beyer.

CHAPTER1
Introduction

How do you as an engineering practitioner know if the change
project you are managing qualifies as “infrastructure change™?

o Are the terms upgrade, migration, or decommission part of the
change definition?

o Does your change affect multiple teams, organizations, prod-
ucts, and services within the company?

o Does your change impact engineering capabilities to maintain
current plans, configurations, processes, or to apply software or
policy changes?

If your answer to the above questions is yes, you are rolling out a
large-scale infrastructure change.

We define infrastructure change management (ICM) as the execution
of a planned, large-scale infrastructure change in order to increase
project velocity, reduce cost, and lessen the overall pain inflicted on
affected teams and customers.

A cliché, though apt, idiom for this kind of large-scale infrastructure
change is “building the jet while flying it” Keeping the jet in flight
and on course while building and rebuilding it requires an enor-
mous amount of people to work as a team. If an engine dies, the
crew needs to assess the situation, determine a corrective course of
action, and ensure the safety of passengers onboard while commu-
nicating the issue in the right way, at the right frequency, to avoid
widespread panic.

Large-scale infrastructure change works the same way, requiring
coordination and communication with many teams, good processes
and documentation, risk identification and management, monitor-
ing, and tracking of the change progress. You can't ignore the low-
probability but highly catastrophic events that can crop up mid-
flight. Exercises like the Wheel-of-Misfortune' (disaster role
playing) and DiRT? (annual event to push production systems to
limit and inflict actual outages) are good ways to uncover these. The
SRE Workbook also describes a number of organizational change
management frameworks that may be useful to consider alongside
infrastructure change.’

Infrastructure Change Management

These changes require strong processes and project management to
ensure decisions are well-informed and communicated. The ICM
program at Google, consisting of a dedicated team of technical pro-
gram managers (TPMs), does just that: centrally driving migrations,
deprecations, and other large-scale changes to infrastructure. Pro-
grams that ICM supports go through the following life cycle:

Concept Phase
Someone has an idea for a large-scale infrastructure change that
could benefit from ICM support.

Backlog Phase
ICM performs a feasibility assessment of the concept proposal,
compares its effort costs against the expected outcome, and
ranks it in priority against other initiatives.

Planning Phase
People build an actionable project plan, publish target sched-
ules, create objectives and key results for impacted teams, define
key milestones and deliverables, and identify stakeholders and
staffing. The goal of this phase is to take a concept proposal
from the backlog and turn it into a work-about execution plan.

1 For more info, see https://landing.google.com/sre/sre-book/chapters/accelerating-sre-on-
call/.

2 For more info, see https://landing.google.com/sre/sre-book/chapters/lessons-learned).

3 Consider using any of the frameworks referenced in the SRE workbook chapter:
Organizational Change Management in SRE.

2 | Chapter 1: Introduction

https://landing.google.com/sre/sre-book/chapters/accelerating-sre-on-call/
https://landing.google.com/sre/sre-book/chapters/accelerating-sre-on-call/
https://landing.google.com/sre/sre-book/chapters/lessons-learned/
https://landing.google.com/sre/workbook/chapters/organizational-change/

Execution Phase
In this phase, the project is under active execution. Impacted
teams have product area (PA)-wide objectives and key results
are centered around compliance with the program’s goals.

ICM also provides dashboards to track infrastructure change pro-
gress across all active programs, as well as a tool called Assign-o-
Matic that quickly maps production groups to best contacts. Many
groups aren't associated with a product nor do they point to a
human. Assign-o-Matic’s heuristics for identifying the best contact
solve the difficult and time-consuming problem of finding the right
owner. Driving over a dozen active infrastructure change programs,
ICM manages the complex network of dependencies that exist
between them, so that the jet stays aloft with minimal-to-no impact
to passengers.

One such program that ICM supported was the two-year Map-
Reduce deprecation. MapReduce,* a flagship framework for large-
scale data processing at Google, had been in maintenance mode
since 2013. However, MapReduce usage continued to increase and
by August 2017, users processed nearly 30 EiB of input and pro-
duced over 7 EiB of data. The goal of this infrastructure change pro-
gram was to migrate all users off the MapReduce backend onto
Flume, a higher-level application programming interface (API) built
on top of MapReduce, which simplified expression of large-scale
data computations.

Flume made it easier to build data-processing pipelines. The design
goal was to make pipeline creation easier and more efficient. Rather
than programming and tying together a series of independent Map-
Reduce stages, we wrote one program with Flume and let it handle
the execution details. By abstracting away from the low-level infra-
structure, we did not need to work with all the underlying primitives
—the panoply of data storage formats, parallel execution primitives,
and job controller systems available at Google. Flume took care of
all that, providing numerous benefits including reduced runtimes,
less maintenance, and the ability for Google to focus on supporting
a single platform for all users.

4 More information is available online (https://static.googleusercontent.com/media/
research.google.com/en//archive/mapreduce-osdi04.pdf).

Infrastructure Change Management | 3

In August 2018, MapReduce was deprecated and replaced by Flume.
During 2018, 50% of 30-day active build targets migrated off Map-
Reduce and, by September 2019, over 45% of the remaining active
targets were off MapReduce. As of 2019, Flume was rolled out to
over 99% of C++ and Java pipelines, and the Flume support rotation
was staffed with 12 engineers. Migrating to a new API and execution
environment came at a cost to users. ICM helped minimize this cost
and drive the migration alongside the many others in flight.

In this report, we provide two case studies on large infrastructure
changes at Google: (1) a two-year effort to migrate all of the compa-
ny’s systems from Google File System (GFS) to Colossus and (2) a
six-year effort to remove local disk storage for all jobs and move
toward Diskless compute nodes. For each of these case studies, we
provide an overview, the project’s impact, the tools and processes
used to manage the change, as well as individual lessons learned
after each completed change. We conclude with a collection of key
takeaways to consider when implementing a large-scale infrastruc-
ture change at your own organization. We hope that by sharing what
worked and didn’t work for us in these changes, other organizations
may learn from our best practices and prepare for any anticipated
risks that might occur along the way.

4 | Chapter1:Introduction

CHAPTER 2
Case Study 1: Moonshot

In this section, we discuss a large-scale project called Moonshot. We
share several examples of tools, processes, and techniques that
pushed the project forward and conclude with a postmortem of les-
sons learned from the project.

Overview

In 2010, the senior Storage SRE leadership declared that the Moon-
shot project would soon be underway. This project required teams
to migrate all of the company’s systems from GFS' to its successor,
Colossus, by the end of 2011. At the time, Colossus was still in pro-
totype, and this migration was the largest data migration in the his-
tory of Google. This mandate was so ambitious that people dubbed
the project Moonshot. As an internal newsletter to engineers put it:

If migrating all of our data in 2010 still sounds like a pretty aggres-
sive schedule, well, yes it is! Will there be problems such as minor
outages? Probably. However, the Storage teams and our senior VPs
believe that it's worth the effort and occasional hiccup, and there
are plenty of incentives for early adopters, including reduced quota
costs, better performance, and lots of friendly SRE support.

The initial communication completely undersold the effort, com-
plexity, and difficulty of this project. In reality, it took a full two
years to migrate all of Google’s services from GFS to Colossus.

1 For an introduction to GFS, see this paper: https://ai.google/research/pubs/pub51.

https://ai.google/research/pubs/pub51

GFS was designed in 2001 as Google’s first cluster-level file system. It
supported many petabytes of storage and allowed thousands of
servers to interact with thousands of clients. Machines would run a
daemon called a chunkserver to store blocks of data (chunks) on the
local filesystem while the GFS client code split the files into a series
of chunks and stored them on the chunkservers, replicating the
chunks to other chunkservers for redundancy and bandwidth. The
“GFS Master” kept the list of chunks for a given file along with other
file metadata. GFS created shadow replicas so a new GFS Master
could be selected if the primary one was down.

GFS limitations only started to surface roughly six years later. These
were some of the limitations encountered:

» Google production clusters were larger, holding more than just
thousands of machines.

o User-facing, “serving” systems like Gmail increasingly used GFS
as the backend storage. Failures lasting minutes resulted in out-
ages to these systems that were no longer acceptable.

o RAM stored the chunk locations and was limited by the maxi-
mum amount of memory you could physically put in a single
machine.

o There was no persistent index of chunk locations, so restarting
the GFS Master required recomputing the map of chunk loca-
tions. When a GFS cell (a virtual unit of measurement that rep-
resents a group of datacenter machines all managed by the same
process) “restarted” for any maintenance reason, the master
took 10-30 minutes to retrieve the full inventory of chunks.

o The GFS Master itself ran on a single machine as a single pro-
cess. Only the primary master processed mutations of file sys-
tem metadata. Shadow master processes running on other
machines helped share the workload by offering read-only
access to the GFS metadata.

o The GFS Master software couldn't take full advantage of SMP
hardware because portions of the GFS Master software were
single threaded. Plans to make software multithreaded were in
the works but this option would still not be enough to meet the
growing demand within a few years.

In early 2006, Google developers made available the initial imple-
mentation of Colossus—the eventual, though not originally

6 | Chapter2: Case Study 1: Moonshot

intended, replacement for GFS. The developers had built Colossus
with the specific purpose of being a backing store for giant BigTa-
bles.” By the summer of 2007, Colossus was developing into a proper
cluster file system that could replace GFS as the cluster-level filesys-
tem for BigTable. The developers set up the first production Colos-
sus cell in January 2008, and videos began streaming directly from
Colossus two months later.

Initially, many engineers were hesitant with the change to Colossus.
Some resented the “mandate from above,” feeling that they “had no
choice” “This is a huge headache for us,” another said in an inter-
view.

Other engineers, however, were more optimistic. As Ben Treynor,
VP of engineering, pointed out, “Moonshot is an extremely impor-
tant initiative to Google. It is important enough that in order to
make the fast progress necessary, we are willing to take greater risk
in order to accomplish its goals—even to the point of taking out-
ages, so long as we don’t lose Customer data” This sentiment was
summed up neatly by another engineer when they remarked, “It’s
crazy but it might just work”

Every year, Google’s user base and services increased, and GFS could
no longer support this ever-evolving ecosystem. We needed to move
our systems to a cluster-level file system that was fault tolerant,
designed for large-scale use, enabled more efficient use of machine
resources, and provided minimum disruption to user-facing serv-
ices.

To say that the migration was complex is an understatement. What
started as a four-person team operation later turned into engineers
volunteering their time as 20%ers® and, eventually, a dedicated 14-
18 SRE team members per site to support the Colossus storage layer
after the migration.

Pushing the project forward required most service owners to man-
ually change their job configs to work with the new storage system.
In other words, it required work from several SREs, software engi-

2 For more info about BigTables, please read https://ai.google/research/pubs/pub27898.

3 Dedicated 1 day (20%) of a 5-day week time for a personal project. See Chapter 5 in the
book “The Google Way” by Bernard Girard: http://shop.oreilly.com/product/
9781593271848.do

Overview | 7

https://ai.google/research/pubs/pub27898
http://shop.oreilly.com/product/9781593271848.do
http://shop.oreilly.com/product/9781593271848.do

neers (SWEs), TPMs, SRE managers, product managers (PMs), and
engineering directors. Moonshot also exposed issues with systemic
resource usage spurring the “Steamroller” project, a split effort to
reorganize how machine-level resources were allocated across the
entire Google production fleet.

Below is a high-level, very simplified view of what the overall Moon-
shot migration entailed.

How to get from: To:
Total Disk Capacity in a Cluster Total Disk Capacity in a Cluster
| Capacity allocated to GFS | | Capacity allocated to Colossus |

Total Disk Capacity in a Cluster

Capacity allocated to GFS

Capacity allocated to users " Free |

Total Disk Capacity in a Cluster
GFS Colossus

Capacity allocated to users |

Total Disk Capacity in a Cluster
GFS Colossus
| Capacity allocated to users | | Free | | Users |

Total Disk Capacity in a Cluster

Rinse hand
repeat this step rs
until you have 2 Colossus
no more GFS! ‘]'IA Capacity allocated to users | | Free ” Users |

Total Disk Capacity in a Cluster

Capacity allocated to Colossus

Capacity allocated to users ” Free |

Tools

As with any large-scale infrastructure change, creating the appropri-
ate change structure and policies became critical to ensuring suc-
cessful implementation of the change. Google SREs created
migration tools that automated as much work as possible. These

8 | Chapter2: Case Study 1: Moonshot

tools helped teams migrate successfully to Colossus with less effort,
and some are described in detail below.

Quota and storage usage dashboard

A custom-built dashboard used to identify how much quota each team
historically used. This was instrumental in showing the trending
resource usage across machines, teams, and PAs. Note that
“resource” here is defined as both storage and compute resources.
For the Moonshot project, this identified where a GFS quota could
be reclaimed for Colossus. This dashboard became so effective that
it eventually turned into a widely accessed and supported tool for
viewing resource utilization across the machine fleet.

Quota move service

A custom-built service designed specifically for Moonshot, to periodi-
cally free up quota from a source cell up to a minimum threshold, and
add such freed quota to the destination cell.

This service enabled automatic, fine-grained moves of quota from
GFS to D (discussed later in the Steamroller section) such that as the
storage usage changed, the quota adjusted and kept appropriate
headroom for the service maintained on both sides, to avoid disrup-
tions. Think of the analogy of moving water from one bucket to
another, except instead of just moving the water, the buckets were
also resized (destination bucket grew bigger, source bucket grew
smaller) so that each bucket had a similar amount of empty space in
it at all times.

Migration planning and scheduling tool

A custom-built tool that provided a free quota loan when you moved,
and created your scheduled migration window, intended at a time that
was least disruptive to your service. This tool analyzed your file’s
directory structure, determined how to separate your data into
chunks for moving, generated the namespace mapping files needed
to copy data from GFS to Colossus, and generated the commands to
perform the bulk data migration.

Tools | 9

Migration tracking tool

A custom-built, frontend webserver, used to keep track of all GFS to D
migrations for Moonshot, create or update migrations for users, and
identify available capacity of each datacenter, for migration needs. The
Moonshot team used this frequently for the execution and monitor-
ing of the project throughout its phases and to communicate the
data back to relevant stakeholders, for review.

Bulk data migration service

An internally built service used for bulk copying files from one location
on GFS/Colossus to another destination in production. This is still
used to this day for data copies of arbitrary sizes. The Moonshot
team used it to move files oft GFS to Colossus, one directory at a
time.

These tools automated a non-trivial amount of work, and helped the
team manage and track the migration, as well as the quota, so that
team members would not have to do so manually themselves. The
tools made the migration less troublesome and minimized human
error. Besides tools, however, there were additional ways to make
the migration easier. One way was to use processes to manage the
migration.

Processes

We define processes as predefined methods of engagement, or
methods used to execute the project. Moonshot used a number of
processes within the team and outside the team to successfully move
the project along.

In one internal process, the Moonshot team set up a weekly progress
check-in meeting for those directly working on the project. People
used this meeting to discuss updates on Colossus feature develop-
ment, migration tooling development, Colossus rollout status, ser-
vice migration status, risks and blockers on the critical path to be
addressed, and so on. In some meetings, team members identified
outdated documentation, missing procedures, and communication
opportunities to increase awareness for affected customers. These
turned into action items assigned to owners who followed up and
provided an update at the next meeting if needed. In one instance,
meeting attendees identified that the migration itself needed a sepa-

10 | Chapter2: Case Study 1: Moonshot

rate meeting for more in-depth discussion, so they made that hap-
pen. Such a process facilitated communication within the team and
helped team members manage the project more easily.

In another internal process, the Moonshot team divided the migra-
tion into phases, limiting the number of services it impacted at the
same time. Video and Bigtable were the first customers on Colossus
since GFS limitations hit them heavily and they were actively look-
ing for a replacement storage system. Migrating these two early
adopters helped the Moonshot team realize the time it would take to
migrate a service at a per cell level and the tactical steps necessary
for the migration (e.g., how to turn up a Colossus production and
test cell, when to add and remove quota, etc.). Later on, they set up a
pilot phase for two quarters, and a few smaller services (e.g. Analyt-
ics, Google Suggest, and Orkut) elected to migrate to Colossus. With
each phase, the team discovered and addressed complexities before
proceeding. Some lessons learned that were folded in later include
defining what the common required migration tasks were per ser-
vice, auditing file paths and permissions after migration was com-
plete, understanding how much quota was needed to turn up a
Colossus cell while the service was still running in GFS serving cell,
and much more.

For processes external to the team, Moonshot created various com-
munication channels to ensure ongoing feedback and prevent com-
munication from getting lost in one person’s inbox. Some examples
of this included creating a dedicated project announcement mailing
list and wuser list (e.g. moonshot-announce@google.com and
moonshot-users@google.com), setting up office hours for one-on-
one consulting, creating an exception procedure for folks who could
not migrate by the targeted deadline, creating FAQs and migration
instructions, and creating a form for users to submit feature requests
or bug issues discovered. Each of these opened up transparency to
questions and answers raised, and gave people a forum to collec-
tively help one another. Office hours were set up to provide one-on-
one consulting, for specific use cases.

Using these processes within the team and outside the team made
information flow easier. These processes encouraged regular feed-
back, as well as communication and information sharing, within the
immediate team and between teams. This kept the project moving
and prioritized execution.

Processes | 11

We've seen that processes are important for managing infrastructure
change, but when the infrastructure change involves migrating huge
amounts of data, we need to consider capacity as well. We talk about
that in the next section.

Capacity Planning

Shortly after the senior Storage SRE leadership announced Project
Moonshot, the Moonshot team discovered the storage migration
from GFS and chunkserver-backed Colossus cells, to D-backed
Colossus cells, required effectively creating CPU, memory, and stor-
age resources out of thin air. The Borg* ecosystem had no visibility
into GFS chunkserver resource accounting since GFS predated its
time so there was not enough quota to turn up a D cell for the
Moonshot migration. Therefore, the senior Storage SRE leadership
announced the Steamroller project, an effort to address this prob-
lem, in an internal engineering announce list:

“Because this is a prerequisite for the Moonshot migration, there is
no “opt out” planned. In the case of extreme emergency, a limited
deferment may be possible. Note: private cells and dedicated
resources are exempted from this procedure, but are expected to
have their own migration plans to accomplish Moonshot goals”

What is D?

Before we discuss the Steamroller project in more detail, we need to
briefly introduce you to the D° (short for ‘Disk’) server, the equiva-
lent of GFS Chunkservers, which runs on Borg. D formed the lowest
storage layer and was designed to be the only application with direct
read and write access to files stored on the physical disks. The physi-
cal disks were connected to the machines it ran on. Similar to how a
GFS chunkserver managed reading and writing the raw chunk data
while the GFS Master kept track of the filesystem metadata, the D
server managed access to the raw data while Colossus managed the
map of what data was on which D server. The Colossus client talked
to Colossus to figure out which D servers to read/write from, and
then talked directly to the D servers to perform the read/writes.

4 Cluster management system for scheduling and managing applications across all Goo-
gle data centers. For more info, see https://ai.google/research/pubs/pub43438

5 For a high level storage overview, see https://landing.google.com/sre/sre-book/chapters/
production-environment/

12 | Chapter2: Case Study 1: Moonshot

https://ai.google/research/pubs/pub43438
https://landing.google.com/sre/sre-book/chapters/production-environment/
https://landing.google.com/sre/sre-book/chapters/production-environment/

See below for a visual overview.

Colossus Bigtable

A 4

| Curators | | Curators | | Curators |
A

*r 3
< : : Colossus
GFS Master o Clients
o I
; A 4 ; ; h 4
OullEc|Em||| | DO | HO || OW
| N []
50| |Om||00
GFS Chunkservers - . D - - D
[[] =
D Servers

To get D-backed Colossus on Borg, there needed to be available
storage resources to spin up D servers in each cell. The Moonshot
team created a separate dedicated team across the development team
and SREs, to acquire resources for D through the Steamroller
project.

The Steamroller project

The Steamroller project primarily focused on recovering resources
from the production fleet so that these resources could be repur-
posed to turn up D cells for Moonshot. The project covered rolling
out general critical infrastructure changes as well, in order to mini-
mize the number of disruptive events. This included rightsizing
quota usage and applying Borg job resource limits, removing and
preventing overallocation of cells, reinterpreting Borg job priorities
on what gets scheduled first, and a few more.

In order to accomplish these goals, every team had to manually
modify their configurations for all production jobs, one Borg cell at
a time. They then had to restart their Borg jobs to match the new
reallocation of capacity. The Borg job configurations had been writ-
ten earlier when resources were plentiful and sometimes included

Processes | 13

generous padding for future growth possibilities. The modifications
“steamrolled” these resources and also placed every Borg job into
containers to impose these limits.

From a numbers perspective, the Steamroller project was successful.
The team completed the project within the short span of a year,
reclaiming a large amount of shared Borg resources from Borg jobs
and returning a non-trivial amount back to the fleet. This enabled
the Moonshot project to move forward since there were enough
resources to allocate to D. From a change management perspective,
however, several factors did not go well.

For example, the Steamroller team used a 90-day usage period to
identify the 100th percentile for RAM and 99th percentile for CPU.
The team used this as the new baseline measurement for each Borg
job to be applied after restarting the jobs but did not take into
account the small spikes in RAM usage. Therefore, if any tasks went
over their new memory limits, even by a small amount, Borg killed
them immediately, causing localized service disruptions and latency.

In another example, Google engineers felt that the Steamroller team
communicated the project timeline in a pressing tone, which made
engineers feel that they received notice of the upcoming change too
late, and had limited information apart from the email. In hindsight,
Moonshot’s initial schedule turned out to be overly optimistic—
which caused the aggressive timeline—but this only became clear
after a critical mass of work had already begun.

Finally, in one last example, the Steamroller project failed to get the
initial staffing request of at least four full-time TPMs, and only
received two TPMs. If the project had more TPMs, they could have
engaged more with service owners during the initial service notifi-
cation, exception review process, and the manual effort put in to
overcome the lack of robust self-service tools. Management recog-
nized the shortfall in staffing at the time and made decisions to
delay communication of the project, limit automation effort, and
reduce the scope of the project.

On a positive note, Steamroller did unblock the Moonshot project.
The Moonshot project proceeded as shown in the Byte Capacity Uti-
lization graph below. This graph shows the increase of Colossus uti-
lization and the decrease of GFS utilization within the fleet.

14 | Chapter2: Case Study 1: Moonshot

Byte Capacity Utilization
100%

75%
Colossus Utilization

50%

25%

GFS Utilization

0%

10/1/2010 1/1/2011 4/1/2011 7/12011 10/1/2011 1/1/2012 4/1/2012

Looking back on Moonshot and Steamroller, there were many les-
sons learned that may be useful for your own organization. We
explore what we learned below.

Lessons Learned

The Moonshot project was the first large-scale data migration ever
implemented at Google. Moonshot did not reach its advertised goal
of moving off GFS to Colossus/D within one year but as Sabrina
Farmer, VP of Engineering, mentioned, “[it] achieved several other
very important but unstated goals. Focusing only on the advertised
goal means we miss the other benefits a project brought” Therefore,
we hope these lessons learned shed insight into what went well and
what did not, so you can apply them to your own infrastructure
change.

The Moonshot project forced all teams to migrate by the target dead-

line.
People felt they had no choice with this declared mandate. The
team asked service owners to “swap out a known and tested
storage system for one that was incomplete and had a compara-
tively low number of ‘road miles.” Rather than forcing all teams
to migrate by a target deadline, it would have been better to col-
laborate closely with the teams supporting complex services and

allow smaller teams more time in the background to migrate.

LessonsLearned | 15

Smaller teams often have less free capacity dedicated to taking
on additional complex projects such as a migration.

The Moonshot team was comprised of 20%ers.

The migration team consisted of a handful of SREs, SWEs, PMs,
and TPMs from various teams, who volunteered to work 20% of
their time to make the migration happen. Such a distributed
team meant they had both broad and deep levels of domain
knowledge (for BigTable, GFS, D, and Colossus) to push the
project forward. However, the fact that they were 20%ers and
based in different offices in varying time zones added more
complexity to the project. Eventually, management pulled in
these SREs to work 100% on the migration effort and grouped
them together, but it would have helped to have had a core
migration team from the start. Nevertheless, if it’s not possible
to get what the team requested—such as what happened with
Moonshot—you make do with what you have. Regarding
Steamroller, one engineer summed this lesson up nicely when
they said, “Develop for the team you have, not the one youre
promised.”

The Moonshot and Steamroller teams made conscious trade-offs
between developing automation and meeting the deadline.

As a result of the aggressive deadline, the migration team did
their best to automate the data migration as much as possible by
using various tools, as we discussed earlier. What would have
helped is using a robust workflow engine that automatically
migrated data for the users, after fulfilling a set of requirements.
Much of the migration required users to run commands, wait,
and then run some more commands. Creating a workflow
engine would have reduced the overhead for migrating. In the
words of one TPM on the Steamroller project, “It was very
hands on . . . we had to look at a lot of monitoring as the migra-
tion happened and then manually move” Before rolling out a
large-scale infrastructure change in your organization, make a
conscious assessment of the tradeoffs (in the context of the tri-
ple constraint model®) and understand what risks you will

6 Time, scope, and cost information is available online (https://www.pmi.org/learning/
library/triple-constraint-erroneous-useless-value-8024).

16

Chapter 2: Case Study 1: Moonshot

https://www.pmi.org/learning/library/triple-constraint-erroneous-useless-value-8024
https://www.pmi.org/learning/library/triple-constraint-erroneous-useless-value-8024

accept. This may expose any considerations around your project
to an effective discussion.

Each change as part of the Moonshot project caused a rippling effect of

customer frustration.
Even though the migration team had published information
regarding the migration, Colossus’s improved performance
compared to GFS, and what people should expect from the
migration, people still had questions and expressed frustration
when the time came to migrate and when even more changes
took place—such as the Steamroller project. Therefore, we
learned that it’s helpful to widely advertise a large-scale infra-
structure change through many different channels, for example,
large, Google-wide, technical talks; office hours; user mailing
lists; and company-wide announcements. Keep in mind, how-
ever, that there will always be someone unhappy with the
change. The best you can do is reduce the blast radius of the
change to affected users. You do this by automating as much of
the manual work as possible, getting support from your techni-
cal influencers (i.e., your tech leads, engineering managers, or
others of hierarchical seniority) to help disseminate information
and by utilizing the different communication channels men-
tioned.

We applied these lessons learned from Moonshot to several infra-
structure change management projects we worked on afterward,
including our next case study, Diskless.

Lessons Learned | 17

CHAPTER 3
Case Study 2: Diskless

From 2012 through 2018, Technical Infrastructure (TI) teams rolled
out a Google-wide change to production: to remove local disk stor-
age for all jobs and move toward Diskless compute nodes, aka cloud
disks.! Such resource disaggregation reduced cost through improved
server platform availability, tail latency, and disk utilization. This
move to “prod without disk,” the vision of Technical Leads Eric
Brewer, Luiz Barroso, and Sean Quinlan, was principally motivated
by the following considerations:

o The performance of a spinning disk was growing at a slower
rate than that of CPU, SSD, or networking. Over time, the
amount of storage “trapped” behind an interface increased
faster than the speed of that interface.

o Network-attached storage enabled migration of compute across
machines, without losing storage while hugely accelerating the
physical maintenance of machines. Storage-specific hardware
eliminated the barrier to network-attached storage.

« Separating compute and storage devices improved tail latency.
Previously, hundreds of jobs competed for limited disk quota
and bandwidth at the same time. In a Diskless world, you

1 Luiz A. Barroso, Urs Holzle, and Parthasarathy Ranganathan, “Disk Trays and Diskless
Servers”” Section 3.4.1 in The Datacenter as a Computer: Designing Warehouse-Scale
Machines. 3rd ed. (Morgan&Claypool, 2019), 66.https://books.google.com/books?
id=b951DWAAQBA]J

19

https://books.google.com/books?id=b951DwAAQBAJ
https://books.google.com/books?id=b951DwAAQBAJ

scheduled I/O with quotas and did parallel reads; that is, you
sent three parallel read requests and used the first one that came
back and canceled the others (“best of three”).

« Independently provisioning compute and storage on different
cycles improved datacenter total cost of ownership (TCO) and
the ability to scale.

+ On shared machines, spinning disk reliability decreased com-
pute reliability; 25%-30% of production task deaths were attrib-
utable to disk failure.

« Removing one resource type (local disk) simplified the provi-
sioning and configuration of services that had to be managed.

This section talks about the Diskless effort and what tools and pro-
cesses we used for this project. We conclude with what worked and
didn’t work for Diskless, as well as lessons learned.

Overview

Diskless was a multi-year, multi-project effort to enable Google’s
software stack to run on platform servers without local hard drives.
As these diskless servers began to percolate throughout the fleet, the
software stack had to run in a Diskless environment. Otherwise,
jobs would not schedule and run, and services would become
unavailable.

Google had historically used two types of production servers: index
and diskfull. Index servers had one or two Serial AT Attachment
(SATA) disks, and diskfulls had six or more. Storage-specific hard-
ware, deployed in 2013 and considered Google’s first storage appli-
ance, delivered disk servers that provided remote storage without
local compute. Before this, each disk in a tray ran Borg to coordinate
resources and tasks running on the local machine. Now with the
storage-specific hardware, Borg and compute tasks did not run on
local spinning disks, but elsewhere in the cell. This configuration
optimized the storage service and hardware, providing significant
tail latency improvements, and opened the door to resource disag-
gregation.

Though production servers always had at least one hard drive,
teams generally avoided using it in the serving path. Specifically, the
service needed to continue serving requests despite an all-too-
common local disk failure. This consideration was reinforced with

20 | Chapter 3: Case Study 2: Diskless

the move to Borg, Google’s cluster management system. Borg did
not offer durable storage for tasks. Instead, that function was pro-
vided by Colossus, Bigtable, and other storage systems. Most Borg
local disk use was limited to a handful of standard cases: binary
staging, logging, and miscellaneous “scratch” usage. This made it
easy—theoretically—to excise disk from the picture and move to
Diskless compute nodes.

By 2014, Platforms Engineering? approved the diskless server plat-
form and Google accelerated software development work to support
it. Two years later, job conversion to Diskless began rolling out,
reaching two-thirds of production, and diskless server machines
started arriving in Borg.

Current v.s. Future Cluster
Current Cluster Future Cluster
-
’

I \I I \I
1 I

1 ! | !
I ! | !
I ! I !
I ! I !
I ! | !
I ! I !
I ! I !
I ! | !
I ! I !
I ! I !
I ! I !
I ! | !
I ! I !
\ ! \ !

Figure 3-1. Diskless architecture change overview

The Diskless migration plan revolved around the aforementioned
use cases of local disk. At the heart of Diskless was the base software
stack—13 software sub-tracks that effectively replaced the local disk
with a remote option, or some flavor of a remote procedure call
(RPC) system. The primary goals of these sub-tracks were to:

2 The team that designs, develops, deploys, tests, and supports hardware and software for
Google’s data centers and delivers Google’s global computer.

Overview | 21

o Support the transition to Diskless compute nodes.
+ Minimize new dependencies for serving jobs.

o Keep per-team migration costs to a minimum.

Actuating these tracks and moving to a Diskless-ready world
required some additional tooling, described below.

Jet Part Swapping

The overall migration process provided two paths to Diskless: (1) an
explicit conversion for sophisticated teams that preferred direct con-
trol and (2) an “autoconversion” option for all others. Cell conver-
sion essentially ensured that when jobs requested a legacy disk, they
were given a RAM filesystem instead. Autoconversion meant that
the system applied this “bait and switch” administratively, unbe-
knownst to the user. Autoconversion was enabled cell by cell, prior
to the arrival of Diskless machines in the cell, and was how most
jobs became diskless ready.

Additional control was added, by allowing the automatic option to
be turned on or off manually. The Diskless team never touched jobs
directly; automatic changes altered defaults and took effect the next
time a user touched a job.

The migration team used a tool called Subspace to notify users
about actions they needed to take, to make their jobs Diskless ready.
Subspace was the centralized notification and routing system for
Google’s infrastructure. This tool made it easy to send notifications
for thousands of jobs, across every product at Google, about pro-
duction resources—without maintaining a database of contacts.

In terms of project management, the team used Google Sheets to
track the majority of the project artifacts: per-product area notes,
contacts, status, timelines and schedules for the base software track,
migration-blocking bugs, lists of blocked users, and week-over-week
Diskless adoption statistics. Dashboards supplanted many of these
and made it easier to track base rollout status and diskless adoption
across Google (broken down by job, CPU usage, owner, and product
area, providing a much-needed, fine-grained targeting of users).

Once built, the tooling and processes worked well. Unfortunately,
tooling, docs, and dashboards were built mostly in 2016, only after
the program ran into trouble. By then, the timeline was getting too

22 | Chapter 3: Case Study 2: Diskless

protracted, and core engineering teams were burning out. The pri-
mary four members of the Diskless team had been fielding one
migration question after another. As one team member put it:

“[over the next year] we were getting multiple user support ques-
tions a day for migration (sometimes dozens). The fan-in situation
wasn't sustainable. Because everyone waited until a few specific
quarters to migrate, [the rush arrived] and when that rush comes,
you can't just spin up team members like VMs”

What Didn’t Work?

Most production changes to support Diskless were non-events or
straightforward for most teams to implement. One aspect worth
mentioning, though, was that the migration itself (building the core
software and core functions) was not the largest burden. In the
words of one lead engineer on the project:

“It was [as if] . . . the larger company had built up cross product of
hundreds of frameworks, config languages, resource planning sys-
tems, quota management systems, automation frameworks, scripts,
custom monitoring, etc. And you implicitly “own” the problem of
every integration point a third party team has built (in the expecta-
tions of the users)”

In addition to this complexity, the effort stumbled on many fronts,
including staffing, planning, communication, and risk management.

Staffing

Similar to Moonshot, except for a few sub-projects, the Diskless
project was insufficiently staffed. People who could have influenced
staffing changes did not realize what was necessary for the company
to provide staffing. Perhaps this could have been addressed by better
training on how to ask for more staffing on a project. For example,
this affected the debug logging side of Diskless. One engineer put it
this way:

“We had to do volunteer rotations across our wider logs team to

consult with people and explain to them how to move in to the new

version because the support load of the migration overwhelmed the
team.”

Regardless, for an effort of this size and complexity, senior program
managers should have been added from the beginning. In 2016,
additional VPs joined the effort and enlisted TPMs across every PA

What Didn't Work? | 23

to bolster it. By the end of 2016, over two-thirds of all Borg jobs
were Diskless ready.

Planning

Due to the huge complexity and scope of this project, Diskless
required more effort and staff than anticipated. This led to schedule
slips, difficulty getting teams involved, and lack of understanding on
when and how to act. Moreover, although the diskless platform
arrived on a set schedule, the software implementation schedule
shifted frequently. Software systems needed to be Diskless ready
before their users could migrate. Before a jet can take off, all parts—
passenger compartment, wings, cockpit, all infrastructure—need to
be ready too.

The Diskless project introduced support for remote debug logs
(RDLs) primarily to decouple the lifespan of logs from the lifespan
of individual jobs and have the logs be independent of whether a
task or alloc stayed active. Initially, the system garbage collected the
logs as soon as a job was done, so people missed the opportunity to
view the logs if they were not timed well. The engineering effort and
ongoing cost of disk usage for remote debug logs versus the cost of
alternative hardware—such as SSD—wasn't deeply considered or
accounted for during initial design decisions. RDLs and the teams
that operated them added significant cost in terms of time and
money. In addition, the migration was complex for power users with
large, revenue-critical applications at Google, further exacerbating
the situation, and put those users and revenue at risk.

Moreover, the core Diskless team did not thoroughly collect require-
ments on some critical user journeys (such as debug logging), which
resulted in a solution with different features and behaviors than
those of the local disk. Some of these—easy task searching and filter-
ing, new debugging, and analysis capabilities that were not previ-
ously possible—were wins but others led to regressions and new
challenges for SREs operating and debugging the services.

Communication

Subspace worked well for communicating necessary production
changes, and the Diskless team used the tool to make numerous
public announcements of upcoming changes. In spite of this, how-
ever, the Diskless effort as a whole lacked a clear communication

24 | Chapter 3: Case Study 2: Diskless

plan. Due to the volatile schedule, the migration team found it diffi-
cult to communicate firm dates, along with any urgency for reques-
ted work. It was only later in the project, when additional TPM
support was brought in, that there was a clear engagement with the
PAs and impacted teams. At this point, dashboards and reporting
also became available, and they provided significant visibility on the
migration progress.

Unexpected challenges

“Most teams had to twiddle a bunch of things,” was the comment
from one engineer. Becoming Diskless ready required a lot of time
and work, particularly for those who had local disk usage outside
the norm. It was difficult to track down these teams well, nor align
on priorities with them and their management chain. Moreover,
many teams who used disk in “normal” ways ran into small issues.
Many things lurk under the hood of a complex code base with a nor-
mal level of technical debt.

Lessons Learned

The Diskless effort was not an easy project by any means. Here are
some of the lessons we learned along the way.

Infrastructure change protocol

Updating and evolving basic infrastructure was hard and clarity was
needed on guidelines, priorities, and engagement protocols so that
the most revenue-critical, risk-averse clients weren’t the guinea pigs.

Clear communication

We should have communicated clearly to the impacted teams and
the entire management chain. The motivation for the change should
be clear to those doing the work; teams should be able to explain
why they’re doing it. VPs and directors needed to be briefed on the
program, timelines, priorities, and expected range of impacts to
teams. As in the case with Moonshot, support from technical influ-
encers was a key factor. When things were broken—staffing
included—we should have escalated. It was critical that the right
TPM staff engaged early on to ensure continuous and effective com-
munication.

LessonsLearned | 25

Avoid hard deadlines

The design path chosen for Diskless made deadlines hard and
inflexible, and the consequences of missed deadlines severe—jobs
would not schedule and Google would go down. If the software
wasn't ready when machines showed up, it was a bad thing. At the
time, Google’s processes were not prepared to couple hardware and
software so tightly. There were hard deadlines and we needed to
mobilize the entire company. SREs, whose mission it is to keep the
system reliable, bore the brunt of that pressure. The dynamic range
of constraints meant that any change deadline you chose was a bad
one. It would have been better to use a phased approach, gaining
experience with the change as you go.

Managing a major change across every team at Google when a hard
deadline was approaching was impossible. To put this into perspec-
tive, Google’s culture empowered every engineer, regardless of their
position, to have local incentives and a strong sense of shared values
in engineering. This made managing a project from the top down
(unless it was universally urgent) extremely difficult. People resisted
supporting the change because top-down project management was
not Google culture. As one engineer put it:

“We really didn't see much real momentum until people realized
the deadline was deadly serious . . . although this aggressive dead-
line was controversial among affected stakeholders, subjectively it
did seem to help create a sense of urgency and ’skin in the game’
that was not present before”

Looking back, one of the reasons Google has become more success-
ful is precisely because it managed to decouple the software and
hardware from one another despite the number of setbacks. Diskless
was one such large program that helped accomplish this. In the next
section, we'll dive into what common lessons you can take away
from both studies as well as others we've identified that can be prac-
tical tips to consider.

26 | Chapter 3:Case Study 2: Diskless

CHAPTER 4

Preflight Checklist

The lessons learned here are specific to each of the case studies
examined, but may be modified to fit your individual needs. We've
also listed 10 general guidelines to keep in mind when implement-
ing a large-scale infrastructure change at your organization. Regard-
less of the size of your organization, applying these key takeaways
may help mitigate the challenges of rolling out a large infrastructure
change.

1. Establish a core team (if it doesn’t yet exist) to manage the
infrastructure change in the company

Staff the effort with the right people from the beginning to
ensure projects smoothly launch and land. At a minimum, there
should be full-time engineers (to build code for the migration
tools and assist with answering questions), technical project
managers (who facilitate communication, tracking, and meeting
deadlines), and an executive sponsor (who helps push this
change at the top, to ensure it gets prioritized).

2. Pilot with the more technically savvy, low-risk customers first

These customers are more aware of what features they need and
can provide useful feedback to improve the migration before a
large rollout. In addition, try to select the customers that are
considered to be low risk (i.e., unexpected issues would not stop
operations for them).

3. Understand trade-offs up front as much as possible

27

While establishing a core team is critical, it's not always possible
to have dedicated people working on the migration project or,
perhaps, the program complexity was not well understood at
the outset. Clarify at the start the lost opportunity costs in the
project, such as delivery delays, low quality project communica-
tion, or unmanaged migration risks for critical services. By
doing such clarification up front, the team can identify and pro-
actively accept the risks brought in due to these constraints.

. Understand your customer requirements

Before the change project starts, gather user requirements to see
what specifically they want in a system and for what purpose.
Even if their use cases will not be built in the same way in the
new system, it helps to ensure you're building the right tools for
the right audience, to ensure a smooth migration. As you gather
the requirements, you may also come across unique corner
cases. By gathering corner-case situations up front, you front-
load your risk and ensure you have sufficient slack in the sched-
ule, to either prioritize the requirements or collaborate with the
team to adjust their workflows so that it works with the new
system.

Publish your plan of record

A plan of record confirms the project plan and key decisions, as
agreed on by the project stakeholders. This includes, at a mini-
mum, a glossary of key vocabulary, project goals, project time-
line, and key milestones, with assigned owners. It’s essential to
have one source of truth to revisit, when plans change. Within
Google, we share this plan of record broadly, both inside and
outside the project team. In doing so, this provides transparency
in what teams can expect from the project and transparency for
how decisions were made.

Push the migration out in phases

The migration itself is a disruption to service operations. Even
with a plan in place, significant risks still exist. Staging the
migration in phases relevant to the scale of your organization is
an effective way of implementing the change. As issues emerge
during earlier phases, you have time to update tools, techniques,
and processes before the risks impact more services in later pha-
ses. An example of a phased migration approach could be early/

28

Chapter 4: Preflight Checklist

alpha testing, voluntary migration, assisted migration, forced
migration, and then deprecation of the old service.

7. Automate as much of the manual, repeatable process as possi-
ble

Depending on how large the infrastructure change is and how
many people it affects, automating relevant processes saves time
for engineers, so they can focus on more complex issues, and
avoids burdening users with manual and toilsome work. For
example, in Moonshot’s case, a migration scheduling tool was
built to identify an appropriate time for the migration to take
place. This tool took into account cluster maintenance time and
launch dates for the service. Think about how much time it
would take for you to build an automated tool to perform a pro-
cess, and how much time you would spend manually perform-
ing the process for each service. This helps you determine the
return on investment (ROI) of creating a tool versus manually
handling the process.

8. Test early and often

Having a testing environment setup for users, to test whether
their service functions on the new infrastructure, is critical for
uncovering and mitigating technical risks. Testing should simu-
late, as closely as possible, the behavior that the production
environment offers, when services are migrated. Any deviation
from that behavior exposes more risk.

9. Communicate early and often

For a large-scale infrastructure change, issues may crop up at
any time. Those leading the implementation of the change must
continually communicate early and often about this change and
through the right channels. People are often frustrated when
any change occurs, and more so if it was not communicated
clearly enough or to the right people. Therefore, communicate
early and often to reduce the resistance to the change. Some
examples of how you can do this include creating an FAQ, send-
ing announcements to relevant internal engineering newsletters
or mailing lists, presenting at company-wide all-hands meet-
ings, offering one-on-one consulting, and creating a landing
project page containing relevant information.

10. Create appropriate escalation and exception procedures

Preflight Checklist | 29

It's not uncommon for a service to need an exception or exten-
sion to a large-scale infrastructure project. This occurs because
a change may not have the features a team needs, because there
are conflicting and committed project deadlines, or for other
valid reasons. Regardless of the underlying context, providing
escalation and exception procedures ensures that teams are
aware of the proper channels, to communicate and collaborate
with the change team. When creating these procedures, gather
details such as the name of the service requesting the extension,
how much more time they would need, and the justification for
such an extension.

30

Chapter 4: Preflight Checklist

CHAPTER 5
Conclusion

The case studies we've discussed provide two tales of foundational,
large-scale infrastructure change: one of replacing Google’s dis-
tributed file system with its successor; the other of decoupling stor-
age and compute. In both instances, the jet (or, at least, an engine)
was rebuilt mid-flight and, in both cases, at least one lesson was
clear: think about all the ways your infrastructure change can break
your users, then don't let the infrastructure change break them.

This requires a pre-flight checklist and some paranoia: know how
things can go wrong, consider the whole spectrum of bugs, from
benign to catastrophic, and their range in rarities.

Regardless of the type of infrastructural jet youre piloting and fixing
along the way, we hope these case studies will be as instructive for
you as they were for us.

31

About the Authors

Wendy Look has been at Google since 2012, starting out with the
internal Information Technology support team (aka Techstop) and
is now a Technical Program Manager in Site Reliability Engineering
(SRE) at Google Switzerland. She holds a BA degree in Japanese and
Chinese from Hamilton College, and is a current MS candidate at
Bentley University studying Human Factors in Information Design.
She currently lives in Zurich, Switzerland, spending every sunny
weekend enjoying the mountains.

Mark Adam Dallman is a Technical Program Manager in Site Relia-
bility Engineering (SRE) at Google, specializing in infrastructure
change and capacity management. He’s studied mathematics, philos-
ophy, and computer science at the University of Wisconsin-Madison
and Columbia University. In his spare time, he enjoys cycling and
playing speed chess.

	Copyright
	Table of Contents
	Preface
	Acknowledgments

	Chapter 1. Introduction
	Infrastructure Change Management

	Chapter 2. Case Study 1: Moonshot
	
 Overview

	
 Tools

	Quota and storage usage dashboard
	Quota move service
	Migration planning and scheduling tool
	Migration tracking tool
	Bulk data migration service

	
 Processes

	Capacity Planning
	
 The Steamroller project

	
 Lessons Learned

	Chapter 3. Case Study 2: Diskless
	Overview
	
 Jet Part Swapping

	
 What Didn’t Work?

	
 Staffing

	
 Planning

	
 Communication

	Unexpected challenges

	
 Lessons Learned

	Infrastructure change protocol
	Clear communication
	Avoid hard deadlines

	Chapter 4. Preflight Checklist
	Chapter 5.
 Conclusion

	About the Authors

