Site Reliability Engineering

Distributed ImageServer

Non-Abstract Large System Design in 1 Hour
Problem Statement

Let’s identify the problem at hand
The Problem Space
Our Mission:

Design a planet-scale image-serving system that users can use to upload, search for, and view images.
Gather Requirements

Let’s identify what we know and what we need
“There are millions of images online! It’s overwhelming to find the ones I care about. I want to search images by keyword.”

“I like to share photos of my travels with my friends and family, but I don’t want those photos to linger on the internet forever!”

“It is extremely painful when I can’t quickly and reliably access my favorite cute cat photos when I need them.”
Key Product Requirements

1. **Easy To Use**
 - Simple and intuitive UX.
 - Can’t Find Features
 - User Toil

2. **Reliable Service**
 - System Performance.
 - Slow Service
 - Data Loss

3. **Data Integrity**
 - Data boundaries.
 - Privacy & Security
 - Unexpected Data Expiration
Detailed Requirements

1 Million Global Users

50 Uploads / User / Day

Upload Page

Search

user or tag

... 10 results / page

Detail View
An SLO is a Service Level Objective, a measurable guide to specific system performance.
Detailed Requirements: SLOs

Detail View page *(1 image, full-resolution):*

- serve within **200ms** at 99.9 percentile
- *(HTTP 200)*

Search page *(10 thumbnails):*

- serve within **250 ms** at 99.9 percentile
- *(HTTP 200)*

SLOs only apply to data that is **30 days or fresher**.
Stuff That’s Available To Us Out Of The Box

- Reliable Network
- Globally Distributed Storage
- Datacenters: 3 Global Regions
- Hardware: HDD Machines, SSD Machines
Sample Solution:
Abstract Design
System Diagram: Upload

Upload Service

Storage

Metadata Service

microservices

Upload Page
Upload: Scaling Services

replicated and sharded microservices

Upload Service

Storage

Metadata Service

DISK
Upload: Scaling Services

HTTP Load Balancer

Upload Service

HTTP Load Balancer

Storage

DISK

Metadata Service

Upload Page
Upload: Scaling Services

HTTP Load Balancer

Upload Service

Storage

Metadata Service

DISK

Upload Page
System Diagram: Download

HTTP Load Balancer

Download Service

Storage

DISK

Metadata Service

speed up retrieval using caches
Why separate services?

HTTP Load Balancer

Upload Service

Download Service

DISK

Metadata Service

Upload Page

Detail View
System Diagram: Search

HTTP Load Balancer

Search Service

Storage

DISK

Metadata Service

speed up retrieval using caches

Search user or tag

10 results / page
A Closer Look At The Metadata Service

Stores Metadata:
- Uploading User
- Tag(s)
- StorageID
- Description

Size: 8 KB / Image
ImageServer System Diagram

HTTP Load Balancer

Upload Service

Search Service

Download Service

Metadata Service

Storage

Upload Page

Detail View

Search

user or tag

10 results / page
Reminder: Questions
Sample Solution:
Provision the System & Evaluate against SLOs
Questions To Answer

How many machines do we need to allocate to each microservice?

Can we meet our SLO latency requirements?

SLOs

Download:
200ms at 99.9 percentile

Search:
250ms at 99.9 percentile

Coverage:
30 days or fresher data
Provisioning

- Provisioning is an art.
- Simplify where possible
- Over-provision by default
- Granularity: units of one machine
Storage: Images

Uploaded image content:
1 million users
 * 50 img / user / day
 * 4 MB / img
~ = 200 TB / day

or, for 30 days retention:
~ = 6 PB / 30 days

average image size = 4 MB
thumbnail size = 256 KB
data time to live = 30 days
Storage: Metadata

Uploaded image metadata:
1 million users
* 50 img / user / day
* 8 KB / img
~ = 0.5 TB / day

or, for 30 days retention:
~ = 15 TB / 30 days

→ 4 HDD machines or 8 SSD machines
Bandwidth: Upload

Avg load
= 200 TB / day
= ~2500 MB / s

Peak load = 1.25x avg load
= ~3500 MB / s
= ~30 Gbps

30 Gbps inbound, 30 Gbps outbound → 3 machines

Machine:
- 24GB RAM
- 2TB SSD or 4TB HDD
- 10Gbps ethernet
Bandwidth: Download

Avg load
= 400 TB / day
= ~5000 MB / s

Peak load = 1.25x avg load
= ~6500 MB / s
= ~60 Gbps

60 Gbps inbound,
60 Gbps outbound
→ 6 machines

Machine:
24GB RAM
2TB SSD or 4TB HDD
10Gbps ethernet
Bandwidth: Search

Avg load = ~2000 MB/s

Peak load = ~20 Gbps

20 Gbps inbound, 20 Gbps outbound

→ 2 machines

Machine:
24GB RAM
2TB SSD or 4TB HDD
10Gbps ethernet
Bandwidth: Metadata

Upload, Download, and Search each call Metadata Service.

Each call → read or write image metadata.

1.5 Gbps inbound, 1.5 Gbps outbound

→ 1 machine

Stores image metadata, Indexed for efficient searches

average img metadata size = 8 KB

data time to live = 30 days
Latency: Metadata

1. Receive image metadata over the network
 = <1 ms

2. Write image metadata
 = ~1 ms on SSD

Total latency = ~2 ms

Reminders:
- HDD time: ~10 ms / 8 KB
- SSD time: <1 ms / 8 KB
- Network time: <1 ms / 8 KB
Latency: Upload

1. Write image metadata
 = ~2 ms
2. Write image to storage
 = ~200 ms
3. Send image to UI
 = ~5 ms

Total latency = ~210 ms

Reminders:
- Metadata time: ~2 ms / img
- Storage time: ~200 ms / img
- Network time: ~5 ms / img
Latency: Download

1. Read image metadata
 = ~2 ms
2. Read image from storage
 = ~100 ms
3. Send image to UI
 = ~5 ms

Total latency = ~110 ms
Meets the SLO requirement.

Reminders:
- 99.9% ops finish in <200ms
- Metadata time: ~2 ms / img
- Storage time: ~100 ms / img
- Network time: ~5 ms / img
Latency: Search

1. Get query matches = ~2 ms
2. Read thumbnails from storage = ~100 ms
3. Send results to UI = ~1 ms

Total latency = ~105 ms
Meets the SLO requirement.

Reminders:
- 99.9% ops finish in <250ms
- Metadata time: ~2 ms / img
- Storage time: ~100 ms / img
- Network time: ~1 ms / search
Reminder: Questions
<table>
<thead>
<tr>
<th>Service</th>
<th>Bandwidth</th>
<th>Storage</th>
<th>Machines Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Download</td>
<td>6</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Search</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Metadata</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Bill of Materials

Final count of machines:

3 upload +
6 download +
2 search +
8 metadata

= 19 per DC * 3 DCs * 1.25 (for infra tax + more load spikes)
= 72 machines
Advanced Optimizations

- Caching
- Storage backend degradation
- Capacity growth (per year, retention)
- Privacy requirements (GDPR anyone?)
- Toil (rollout, maintenance) - more a process thing though
Last thoughts

- Start simple and iterate
- Flexibility vs. Premature future-proofing
- Make data-driven decisions

Take breaks and enjoy the process!
Distributed ImageServer

Non-Abstract Large System Design in 1 Hour

More material like this at https://googlesre.page.link/sre-classroom!