
REPORT

Engineering
Reliable Mobile
Applications
Strategies for Developing Resilient
Client-Side Applications

Kristine Chen, Venkat Patnala,
Devin Carraway & Pranjal Deo
with Jessie Yang

Kristine Chen, Venkat Patnala,
Devin Carraway, and Pranjal Deo

with Jessie Yang

Engineering Reliable
Mobile Applications

Strategies for Developing Resilient
Client-Side Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05741-3

[LSI]

Engineering Reliable Mobile Applications
by Kristine Chen, Venkat Patnala, Devin Carraway, and Pranjal Deo, with Jessie
Yang

Copyright © 2019 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisition Editor: Nikki McDonald
Development Editor: Virginia Wilson
Production Editor: Deborah Baker
Copyeditor: Bob Russell, Octal Publish‐
ing, LLC

Proofreader: Matthew Burgoyne
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2019: First Edition

Revision History for the First Edition
2019-06-17: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Engineering Relia‐
ble Mobile Applications, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Engineering Reliable Mobile Applications. 1
How to SRE a Mobile Application 2
Case Studies 15
SRE: Hope Is Not a Mobile Strategy 29

iii

Engineering Reliable
Mobile Applications

Modern mobile apps are complex systems. They mix multitiered
server architecture run in data centers, messaging stacks, and net‐
works with sophisticated on-device functionality both foreground
and background. However elaborate, users perceive the reliability of
the service through the devices in their hands. Did the application
do what was expected quickly and flawlessly? At Google, the shift to
a mobile focus brought SRE to emphasize the true end-to-end user
experience and the specific reliability problems presented on
mobile. We’ve seen a number of production incidents in which
server-side instrumentation taken by itself would have shown no
trouble, but where a view inclusive of the user experience reflected
end-user problems. For example:

• Your serving stack is successfully returning what it thinks are
perfectly valid responses, but users of your app see blank
screens.

• Users opening your maps app in a new city for the first time
would see a crash, before the servers received any requests at all.

• After your application receives an update, although nothing has
visibly changed, users experience significantly worse battery life
from their devices than before.

These are all issues that cannot be detected by just monitoring our
servers and datacenters. For many products, the user experience
(UX) does not start or reach the server at all; it starts at the mobile
application that the user employs to address their particular use

1

case, such as finding a good restaurant in the vicinity. A server hav‐
ing five 9’s of availability is meaningless if your mobile application
can’t access it. In our experience, it became increasingly important
to not just focus our efforts on server reliability, but to also expand
reliability principles to our first-party mobile applications.

This report is for people interested in learning how to build and
manage reliable native mobile applications. In the sections that fol‐
low, we share our experiences and learnings from supporting and
developing first-party native mobile applications at Google, includ‐
ing:

• Core concepts that are critical to engineering reliable native
mobile applications. Although the content in this report primar‐
ily addresses native mobile applications, many concepts are not
unique to these applications and are often shared with all types
of client applications.

• Phenomena unique to mobile applications, or to integrated
stacks that service them.

• Key takeaways from actual issues caused by or related to native
mobile applications.

Because they’re a critical part of a user-facing stack, mobile applica‐
tions warrant SRE support. By sharing what we’ve learned along the
way as we’ve designed and supported mobile applications over the
years, we hope to equip you to deal with the challenges particular to
your own mobile application production environments.

How to SRE a Mobile Application
We can compare a mobile application to a distributed system that
has billions of machines—a size three to four orders of magnitude
larger than a typical large company’s footprint. This scale is just one
of the many unique challenges of the mobile world. Things we take
for granted in the server world today become very complicated to
accomplish in the mobile world, if not impossible for native mobile
applications. Here are just some of the challenges:

Scale
There are billions of devices and thousands of device models,
with hundreds of apps running on them, each app with multiple
versions. It becomes more difficult to accurately attribute

2 | Engineering Reliable Mobile Applications

degrading UX to unreliable network connections, service unre‐
liability, or external factors.

Control
On servers, we can change binaries and update configurations
on demand. In the mobile world, this power lies with the user.

In the case of native apps, after an update is available to users,
we cannot force a user to download a new binary or configura‐
tion. Users might consider upgrades to be an indication of poor-
quality software and assume that all the upgrades are simply
bug fixes. Upgrades also have tangible cost—for example,
metered network usage—to the end user. On-device storage
might be constrained, and data connection might be sparse or
nonexistent.

Monitoring
We need to tolerate potential inconsistency in the mobile world
because we’re relying on a piece of hardware that’s beyond our
control. There’s very little we can do when an app is in a state in
which it can’t send information back to you.

In this diverse ecosystem, the task of monitoring every single
metric has many possible dimensions, with many possible val‐
ues; it’s infeasible to monitor every combination independently.
We also must consider the effect of logging and monitoring on
the end user given that they pay the price of resource usage—
battery and network, for example.

Change management
If there’s a bad change, one immediate response is to roll it back.
We can quickly roll back servers, and we know that users will no
longer be on the bad version after the rollback is complete. On
the other hand, it is impossible to roll back a binary for a native
mobile application on Android and iOS. Instead, the current
standard is to roll forward and hope that the affected users will
upgrade to the newest version. Considering the scale and lack of
control in the mobile environment, managing changes in a safe
and reliable manner is arguably one of the most critical pieces
of managing a reliable mobile application.

In the following sections, we take a look at what it means to be an
SRE for a native mobile application and learn how to apply the core

How to SRE a Mobile Application | 3

tenets of SRE outside of our datacenters to the devices in our users’
pockets.

Is My App Available?
Availability is one of the most important measures of reliability. In
fact, we set Service-Level Objectives (SLOs) with a goal of being
available for a certain number of 9’s (e.g., 99.9% available). SLOs are
an important tool for SREs to make data-driven decisions about reli‐
ability, but first we need to define what it means for a mobile appli‐
cation to be “available.” To better understand availability, let’s take a
look at what unavailability looks like.

Think about a time when this happened to you:

• You tapped an app icon, and the app was about to load when it
immediately vanished.

• A message displayed saying “application has stopped” or “appli‐
cation not responding.”

• You tapped a button, and the app made no sign of responding
to your tap. When you tried again, you got the same response.

• An empty screen displayed or a screen with old results, and you
had to refresh.

• You waited for something to load, and eventually abandoned it
by clicking the back button.

These are all examples of an application being effectively “unavail‐
able” to you. You, the user, interacted with the application (e.g.,
loaded it from the home screen) and it did not perform in a way you
expected, such as the application crashing. One way to think about
mobile application reliability is its ability to be available, servicing
interactions consistently well relative to the user’s expectations.
Users are constantly interacting with their mobile apps, and to
understand how available these apps are we need on-device, client-
side telemetry to measure and gain visibility. As a well-known say‐
ing goes, “If you can’t measure it, you can’t improve it.”

Crash reports
When an app is crashing, the crash is a clear signal of possible
unavailability. A user’s experience might be interrupted with a crash
dialog, the application might close unexpectedly, or the user might
be prompted to report a bug. Crashes can occur for a number of rea‐

4 | Engineering Reliable Mobile Applications

sons when an exception is not caught, such as a null-pointer derefer‐
ence, an issue with locally cached data, or invalid server response,
thereby causing the app to terminate. Whatever the reason, it’s criti‐
cal to monitor and triage these issues right away.

Crash reporting solutions such as Firebase Crashlytics can help col‐
lect data on crashes from devices, cluster them based on the stack
trace, and alert you of anomalies. On a wide enough install base, you
might find crashes that occur only on particular app or platform
versions, from a particular locale, on a certain device model, or
according to a peculiar combination of factors. In most cases, a
crash is triggered by some change, either binary, configuration, or
external dependency. The stack trace should give you clues as to
where in the code the exception occurred and whether the issue can
be mitigated by pausing a binary rollout, rolling back a configura‐
tion flag, or changing a server response.

Service-Level Indicators
As defined in Site Reliability Engineering, by Betsy Beyer, Chris
Jones, Jennifer Petoff, and Niall Richard Murphy (O’Reilly, 2016), a
Service-Level Indicator (SLI) is “a carefully defined quantitative
measure of some aspect of the level of service that is provided.” Con‐
sidering our previous statement about servicing users and their
expectations, a key SLI for an app might be the availability or latency
of a user interaction. However, an SLI is a metric, and usually an
aggregation of events. For example, possible definitions of SLIs for
the “search” interaction might be as follows:

Availability SLIsearch =
eventssearch code = OK

eventssearch

Satisfying Latency SLIsearch =
eventssearch latency < = 300ms

eventssearch

An application can be equipped with client-side telemetry to record
events as well as attributes (e.g., action, location) and qualities (e.g.,
the end state, error code, latency) of a user interaction. There are
performance monitoring solutions such as Firebase Performance
Monitoring that capture and transport logged events from mobile
devices and generate client-side SLI metrics like those we just pre‐

How to SRE a Mobile Application | 5

http://bit.ly/2IyVR2c
http://bit.ly/2ZiSX8w
http://bit.ly/2MMMyRF
http://bit.ly/2MMMyRF

sented for production monitoring or analytics. As with other user
data, monitoring data should be collected and stored in a privacy-
compliant way—for example, to adhere to policies such as the Euro‐
pean Union’s General Data Privacy Regulation (GDPR). Here is an
example log event, to capture the performance of a voice search
interaction:

{
 "producer": "apps/search",
 "task": {
 "time": {
 "seconds": 1541666363,
 "nanos": 563117717
 },
 "action": "VOICE_SEARCH",
 "country": "us"
 },
 "result": {
 "code": "OK",
 "latency": {
 "nanos": 157291863
 }
 }
}

To derive an SLI metric from an event, we need a formal definition
of which set of events (e.g., the critical user interactions from ver‐
sions within a support horizon) and the event success criteria (e.g.,
code = OK). This model allows the telemetry to be durable to
changes, where events logged on clients can contribute to one or
more SLIs. These logged events can also apply to different success
criteria. It supports more advanced use cases such as slicing an SLI
metric along dimensions like country, locale, app version, and so on.
Furthermore, it allows for more sophisticated definitions of reliabil‐
ity; that is, an Availability definition in which success is “code = OK
AND latency < 5s” is more consistent with user-perceived availa‐
bility and thresholds for abandonment.

After you have high-quality SLI metrics, you might consider setting
the overall reliability goals in the form of SLOs—the number of 9’s
you’d expect to deliver. SLOs can be very useful in the context of
real-time monitoring and change management, and they also can
help set engineering priorities. If an application is not meeting its
reliability goals, the time spent in feature development can be diver‐
ted to performance and reliability work (or vice versa, when an app
is consistently exceeding its goals).

6 | Engineering Reliable Mobile Applications

Real-Time Monitoring
SRE teams love real-time metrics: the faster we see a problem, the
more quickly we can alert on it, and the quicker we can begin inves‐
tigating. Real-time metrics help us see the results of our efforts to fix
things quickly and get feedback on production changes. Over the
years, many postmortems at Google have looked at the early symp‐
toms of an incident and called for improvements in monitoring to
quickly detect a fault that, in retrospect, was pretty obvious.

Let’s look at server monitoring as an example. For this example,
most incidents have a minimum resolution time that is driven more
by humans organizing themselves around problems and determin‐
ing how to fix them rather than the promptness of the alerting. For
mobile, the resolution time is also affected by the speed with which
fixes, when necessary, can be pushed to devices. Most mobile experi‐
mentation and configuration at Google is polling oriented, with
devices updating themselves during opportune times of battery and
bandwidth conservation. This means that even after submitting a
fix, it might be several hours before client-side metrics can be
expected to normalize.

In spite of the latency just discussed, we do find that on widely
deployed apps, even if the majority of the installed population
doesn’t see the effects of a fix for hours, client telemetry is constantly
arriving. Therefore, it becomes a near certainty that some of the
devices that have picked up a fix will also, by chance, upload their
telemetry shortly afterward. This leads to two general approaches
for actionable feedback:

• Design low-latency error ratios with high-confidence denomi‐
nators (to control for normal traffic fluctuation), so after push‐
ing a fix, you can immediately begin looking for a change in
error rates. There’s a small cognitive shift here: an SRE looking
at an error ratio curve needs to mentally or programmatically
scale the change they see by the fix uptake rate. This shift comes
naturally with time.

• Design metrics such that the metrics derived from device tele‐
metry include the configuration state as a dimension. Then, you
can constrain your view of error metrics to consider only the
devices that are using your fix. This becomes easier under
experiment-based change regimes, in which all client changes
are rolled out through launch experiments, given that problems

How to SRE a Mobile Application | 7

almost always occur in one or another experiment population,
and the ID of the experiment that caused the problem (or that
contains a fix) is consistently a dimension in your monitoring.

We typically employ two kinds of real-time monitoring, white-box
and black-box, which are used together to alert us of critical issues
affecting mobile apps in a timely manner.

White-box monitoring
When developing an app, we have the luxury of opening a debug
console and looking at fine-grained log statements to inspect app
execution and state. However, when it is deployed to an end-user’s
device, we have visibility into only what we have chosen to measure
and transport back to us. Measuring counts of attempts, errors,
states, or timers in the code—particularly around key entry/exit
points or business logic—provides indications of the app’s usage and
correct functioning.

We have already alluded to several standard types of monitoring,
including crash reports and SLI metrics. We also can instrument
custom metrics in the app to monitor business logic. These are
examples of white-box monitoring, or monitoring of metrics
exposed by the internals of the app. This class of monitoring can
produce very clear signals of an app’s observed behaviors in the wild.

Black-box monitoring
Black-box monitoring—testing external, visible behaviors of the app
as if the user performed those actions—is complementary to white-
box monitoring. Generally, probing is a kind of black-box monitor‐
ing in which a regularly scheduled “test” is performed. For
applications, this entails starting a current version of the binary on a
real or emulated device, inputting actions as a user would, and
asserting that certain properties hold true throughout the test. For
example, to exercise the search “user journey,” a UI test probe would
be written to install and launch the app on an emulator, select the
input box, type a search term, click the “search” button, and then
verify that there are results on the page.

Black-box monitoring gives us a signal about the UX. A continu‐
ously running prober can give us success or failures for particular
user journeys in the application that can be attributed to the applica‐
tion itself or any number of external factors that affect it, such as a

8 | Engineering Reliable Mobile Applications

dependent server endpoint. Even though black-box monitoring has
more coverage of failure modes, it does not easily indicate whether
the failure is internal to the application. This is why we view white-
box and black-box monitoring to be complementary and why we
use them together for better coverage of the app.

Performance and Efficiency
When was the last time your phone ran out of battery at the most
inconvenient time? The battery is arguably the most valuable
resource of a mobile device—in fact, it is what enables the device to
be “mobile” in the first place. Mobile applications on a device share
precious resources, such as the battery, network, storage, CPU, and
memory. When one application abuses or wastes those shared
resources, it does not go unnoticed. No application wants to be at
the top of the battery or network usage list and attract negative
reviews. Efficiency is particularly important if you expect your app
to be used on lower-end devices and in markets where metered net‐
work and other resources have nontrivial cost to the user.

The platform as a whole suffers when shared resources are misused,
and, increasingly, the OS places limitations to prevent abuse. In
turn, platforms provide tools (such as Android Vitals) to help
attribute and pinpoint problems in your own app. Google’s internal
applications have incentives to care about system health factors that
affect user happiness, such as battery life. In fact, feature launches
that would have decreased mean device battery life by as little as
0.1% have been blocked from launching precisely because of their
negative effect on user happiness. Many small regressions across
applications, features, and platforms create a tragedy of the com‐
mons and poor overall experience. Antipatterns that lead to issues
with performance and efficiency, dubbed as “known bads,” are iden‐
tified and published on internal and external developer guides (e.g.,
Android Developer Guide).

Teams at Google are required to identify their use cases—both when
the screen is on and when it is off—that might affect performance
metrics. These include use cases such as key user flows, frequently
encountered flows, and the use cases expected to have high resource
usage. Teams do a variety of internal testing to collect statistics on
mobile system components such as battery, memory, and binary
size. Any unexpected regressions are triaged and fixed before
launch, and any expected regressions beyond predefined thresholds

How to SRE a Mobile Application | 9

http://bit.ly/31shBFH
http://bit.ly/2X9j04O

are approved only after careful consideration of the trade-offs vis-à-
vis the benefits a feature user would acquire. As a result of this pro‐
cess, much of the system health testing is automated and reports are
easily prepared for review.

Change Management
We recommend a number of best practices when releasing client
applications. Many of these practices are based upon the principles
expressed in Site Reliability Engineering. Best practices are particu‐
larly important to SRE because client rollbacks are near impossible
and problems found in production can be irrecoverable (see “Case
Studies” on page 15). This makes it especially important to take
extra care when releasing client changes.

Release safety is especially critical because a broken new version can
erode user trust, and that user might decide to never update again.

Staged rollout
A staged rollout is a term used in Android development that refers to
releasing an update to a percentage of your users that you increase
over time. iOS refers to this practice as Phased Releases. All changes
should go through some sort of staged rollout before releasing fully
to external users. This allows you to gradually gather production
feedback on your release rather than blasting the release to all users
at once. Figure 1-1 shows an example of a release life cycle, includ‐
ing a staged rollout.

Figure 1-1. Release life cycle with a staged rollout in which 1% of users
receive the new version, then 10% of users, then 50% of users, before
releasing to all users

10 | Engineering Reliable Mobile Applications

http://bit.ly/31xMnNC

Internal testing and dogfooding (using your own product internally)
is rarely enough to fully qualify a release because developer devices
are not typically representative of the actual user population. If the
platform supports it, it can be useful to add an extra stage between
internal and external users in which you release to a subset of exter‐
nal users that choose to receive beta versions of your application
(open beta in Android or TestFlight in iOS). This widens the pool of
devices and users, meaning that you can test on a larger set of users
while not affecting the entire world, and adds an extra step of release
qualification.

Experimentation
Unlike traditional services, client applications tend to exist in a very
diverse ecosystem. Each user’s device differs from the next, depend‐
ing on platform version, application version, locale, network, and
many other factors. One issue we’ve noticed when conducting a
staged rollout is that some metrics, such as latency, can look great on
the newest version for the first few days but then change signifi‐
cantly for the worse after a week. Users who have better networks
and/or devices tend to upgrade earlier, whereas those who have
worse networks and/or devices upgrade later. These factors make it
less straightforward to compare metrics of the newest version to the
metrics of the previous version and tend to result in manual inspec‐
tion of graphs, with low confidence in the correctness of the signal.

When possible, we recommend releasing all changes via experi‐
ments and conducting an A/B analysis, as shown in Figure 1-2, over
a staged-rollout process. This helps reduce the noise significantly
and enables simpler automation. Control and treatment group selec‐
tion should be randomized for every change to ensure that the same
group of users are not repeatedly updating their applications.

How to SRE a Mobile Application | 11

Figure 1-2. A/B experiment analysis for mobile change

New code is released through the binary release and should be dis‐
abled by using a feature flag by default.

Feature flags are another tool to manage production
changes, and you need to use them according to the
relevant distribution platform’s rules (e.g., Apple’s App
Store has specific rules on allowed changes).

Releasing code through the binary release makes the feature avail‐
able on all users’ devices, and launching the feature with a feature
flag enables it for a smaller set of users that is controlled by the
developer, as illustrated in Figure 1-3. Feature flags are generally the
preferred way to make changes to the client because they give the
developer more control in determining the initial launch radius and
timeline. Rolling back the feature flag is as simple as ramping the
launch back down to 0%, instead of rebuilding an entire binary with
the fix to release to the world.

When using feature flag-driven development, it is especially impor‐
tant to test that rolling back the flag does not break the application.
You should perform this testing before the flag launch begins.

12 | Engineering Reliable Mobile Applications

https://apple.co/2KPkomn
https://apple.co/2KPkomn

Figure 1-3. Example stages of a feature flag ramp: A feature flag’s
functionality is tested first on internal users before rolling out in stages
to production users. If an issue is found on a subset of production
users, it can be rolled back and the code is fixed before ramping the
feature flag to 100%.

Upgrade side effects and noise
Some changes can introduce side effects simply by the process of
upgrading to the newest version of the code. For example, if the
change requires a restart to the application, the experiment group
(the group that received the change) needs to take into account the
side effects of restarting an application, such as the latency increase
caused by cold caches.

One way to address side effects is to create something like a placebo
change in which the control group receives a no-op update, and the
users go through much of the same behavior as the experiment

How to SRE a Mobile Application | 13

group without receiving the change. You need to do this carefully
because there can be negative user effects like excessive battery or
data consumption.

Support Horizons
The power lies with the user to update a client application, which
means that as newer versions of a particular application are released
over time, we can never quite remove the older versions. Users
might not update for a variety of reasons, such as the device having
no more available storage space, or users making the explicit choice
to disable autoupdates. However, there can be a strong motivation to
update an application, such as for security or privacy fixes. Some
applications even force an update to remain usable or show an
update dialog to encourage the user to update.

As client applications grow and add more functionality and features,
some things become impossible to do in older versions. For exam‐
ple, if you add a new critical metric to your application in version
2.0, that metric will be available only in versions 2.0 and up. It is not
sustainable for SRE to support all possible versions of a client, espe‐
cially when only a small fraction of the user population is on older
versions, over time. Because supporting too many older versions
resembles archaeology more than systems management, we deliber‐
ately limit SRE’s support horizon and place the choice of handling
older versions into the hands of product development teams. These
teams have a better understanding of how old code behaves under
current circumstances. It depends on the update rate, but from our
experience, limiting SRE support to about one or two years and then
letting the development teams handle older versions of code has
been a good rule of thumb to follow.

Server-Side Impact
When making client changes to apps that have a server-side compo‐
nent, it is important to keep in mind the impact that those changes
have on the server side. There can be thousands of clients talking to
your servers at any given time. There is a very real possibility of a
bug or outside phenomena suddenly overloading your servers—we
have seen a number of these events.

The number of daily requests is, to some extent, proportional to the
population of the application, and your servers are likely scaled to

14 | Engineering Reliable Mobile Applications

that population already. Problems arise with unintended phenom‐
ena such as time synchronization causing requests to spike at regu‐
lar intervals, or large global events causing an unexpectedly high
number of requests. Client releases can also cause unintended con‐
sequences if new or changed remote procedure calls (RPCs) are
introduced in the latest version and the servers are not appropriately
configured to handle them. Consider proving during release qualifi‐
cation that no unexpected RPCs will occur in new releases. If possi‐
ble, your release qualification should include a fully productionized
release run with no test conditions required. At Google, we’ve had
cases in which exercising the live APIs exposed problems in app
release candidates not revealed by hermetic testing.

To learn more about how to handle these kinds of
issues, refer to the section “Thundering Herd Prob‐
lems” on page 22.

Case Studies
In this section, we address the topics covered in the previous section
through several concrete examples of client issues that we’ve
encountered. We discuss practical takeaways for each case study,
which you can apply to your own applications.

SLIs and SLOs: Learning to Monitor the (Very, Very)
Long Tail
In 2018, an SRE team at Google was in the early stages of onboard‐
ing a component of Google Play Services, one of the most widely
deployed Android packages. Similar to onboarding a production
service, we devised questions to come up with a reasonable defini‐
tion of what job the software was meant to do, ways to measure how
well it did that job, and what levels of reliability were consistent with
the success of the product. The first question helped identify
“actions” that the software was meant to perform, the second helped
determine the SLIs that measure how well it’s performing them, and
the last question set the SLOs—the goals against which the most val‐
uable SLIs are assessed.

If this had been a classic server, we might have mapped the service
actions to the RPCs exported, identified which of those RPCs repre‐

Case Studies | 15

sented user-critical actions, selected SLIs to measure RPC failures
and latency, and established SLOs around which failure ratio or
latency is tolerable given its user exposures. More sophisticated
servers tend to group sequences of user interactions together into
“critical user journeys” and contextualize user interactions, to
inform which SLOs go with the users in different contexts (e.g., an
infrequently used Settings page versus the primary display pane in
your email). Server frameworks at Google have evolved to make
actions uniform and automatically expose the appropriate SLIs,
which simplifies putting critical user journeys and SLOs together.

Unfortunately, our mobile component did not fit this mold. First,
the mobile component’s function was to carry metrics and monitor
telemetry from other apps while being as gentle as possible on the
user’s bandwidth, flash wear, and battery life. Although its actions
were often derived from user actions, users never interacted with it
directly. Fine, we thought. Google has lots of backend systems no
one ever sees, and the actions-SLI-SLO approach still works for
them. We sketched out an RPC-like SLO derived from telemetry
actions taken by apps, and began measuring it. Almost immediately,
we ran into a significant finding: by the simple ratio of successful
actions versus attempted ones, our component was failing almost
half the time. This discovery triggered an extensive investigation.
Was the measurement broken, or was the component itself failing
that much? Our component was the instrumentation system—was
this metamonitoring misleading or blinding in itself? How was this
problem distributed among an installed population of billions? We
eventually made two important observations:

The range of potential failures at the tail is enormous
We’d actually anticipated this going into onboarding but never
attempted to measure it before. For almost any given dimen‐
sion, through our monitoring data, we could find problems
somewhere on the axis. Older OS versions with long-fixed bugs
or compatibility quirks? Yes, more susceptible to failure. Older
versions of our own software component? Also more affected.
Devices with less RAM? Definitely more likely to fail. Devices
whose only telemetry was recorded in safe-boot or other recov‐
ery states? Also likely to fail. Were specific versions of our soft‐
ware affected? Some more than others, but not enough to
explain the overall issue. What about known bugs or those
found during investigation? Also involved. Many of these fac‐

16 | Engineering Reliable Mobile Applications

tors affect one another—for example, older OS versions tend to
be found on aging hardware. We eventually built a huge map of
suspected contributing causes and their potential overlaps so
that we could attribute failures among a known set of causes.
We then could say with some confidence that we’d accounted for
enough of the failures so that if all those problems were fixed,
we’d be happy with the result.

Usage of your software is a leading cause of failure in your software
Telemetry systems need to put data somewhere—they need a
working free storage, a working network, or both. When we
assessed the distribution of failure among our device popula‐
tions, rather than compute simple failure ratios, we found that a
near majority of all telemetry data globally was being lost. In
spite of this, however, we noticed that most devices were, in fact,
totally healthy and experiencing no loss at all—the loss, even
among our dozen known causes, was concentrated in only
about 2% of the devices. Furthermore, those devices were, in
fact, producing (or trying to produce) more telemetry data than
the other 98% combined. In some cases, the failure was external
(e.g., failing flash storage), but in many other cases, the failure
itself was the result of pathological cases in logging and meas‐
urement, which was causing pushback from our component
and as a result, amplifying the losses on a modest population of
broken devices.

Key takeaways

• If a component’s functionality is shared across multiple apps on
the same device, badly broken installations of apps should not
interfere with other applications on the same device. In our
case, we designed a more intelligent pushback mechanism and
simple isolation rules to limit cross-app impact. We also added
instrumentation to clearly indicate when a failure is actually
caused by just one misbehaving app.

• Metamonitoring should, to the extent possible, have failure
modes independent of monitoring so that you’re not trying to
explain skews in your data with other skewed data. Here, we
designed a new metamonitoring system to be robust in the face
of most known faults, including full filesystems, various forms
of filesystem metadata corruption, and most crash loops, and

Case Studies | 17

capable of producing a viable signal when the main telemetry
system is broken or impaired.

• It helps to define SLIs and SLOs based around “device hours”
when the telemetry system was working rather than whether
any given event was handled successfully. In effect, this is a
mobile-ification of the “happy users” SLO design principle: you
base your SLO around the users your software serviced well
rather than how users’ individual actions affected your code.

• It’s also valuable in defining your SLOs to measure “conform‐
ant” situations in which correctly written software should be
expected to perform well, and nonconformant ones when it
cannot realistically do so: for example, count periods when the
filesystem was full or situations in which the device never had a
usable network and separate them for SLO purposes from those
in which SRE would make a reactive intervention to fix things.
Nonconformant cases are still interesting and generate ideas for
product improvements, now that they’re well understood. For
an SRE team, though, they are projects for future improve‐
ments, not causes for alerts.

• Set expectations that future releases and experiments are gated
on acceptance criteria derived from the SLOs. In other words,
software changes have a neutral-or-better effect on SLO compli‐
ance, given the conformance criteria. This helps catch future
cases of “slow burn” SLO slippage.

Doodle Causes Mobile Search App Errors
Google Doodles are an iconic piece of Google’s brand, and are
implemented by a harmless UI change. In one specific incident
however, a new doodle was released without a configuration field
set, causing the Google Search mobile application to fail whenever
the user tried to access a view with a doodle, such as the search
results page.

Doodles go live in a certain country when the time for that country
hits midnight, and the search app results graph showed sharp
increases on the hour mark as the doodle reached more countries, as
shown in Figure 1-4. The shape of the increase indicated some kind
of server-side configuration change, but it was unclear which con‐
figuration was the cause.

18 | Engineering Reliable Mobile Applications

http://bit.ly/2XIUkND

Figure 1-4. Graph showing client app failures as the problematic doo‐
dle hits new regions

Engineers found the offending errors in logs, and from there they
were able to find the root cause. The configuration was fixed and
released, but errors did not go down immediately. To avoid calling
server backends, the client code cached the doodle configuration for
a set time period before calling the server again for a new configura‐
tion. For this particular incident, this meant that the bad configura‐
tion was still on user devices until the cache expired.

A client-side fix was also submitted to prevent the client from crash‐
ing in this situation. However, a few months later, there was a simi‐
lar outage with a similar root cause—except this time the outage
only affected versions without the fix. After that, server-side guards
were put in place to prevent a bad configuration from being
released.

Key takeaways

• Multiple teams might be contributing code to your application
or releasing changes that affect your client in unexpected ways.
It’s especially important to have clear documentation on your
clients’ dependencies, such as server backends and configura‐
tion mechanisms.

• There was a lack of defense-in-depth in the original fixes, which
resulted in a similar issue happening later. Client-only fixes are
often not enough because your application will almost always
have users on older versions that don’t receive the fix for a vari‐
ety of reasons (e.g., they never update their application). When

Case Studies | 19

possible, we recommend implementing a server-side fix, as well,
to increase coverage.

Always Have Multiple Ways out of Trouble
One fine afternoon, a Google engineer made a simple four-character
change to a configuration file. It was tested on a local device, run
through automated testing, committed to production, and rolled
out. Two issues subsequently emerged: (1) due to a build error, the
change was applied to old application versions that could not sup‐
port it; and (2) the configuration change was rolled out to a wider
population than intended. When the problematic configuration was
downloaded to a user’s device, sufficiently old versions would fail on
startup, and once they failed, they would continue to fail by reading
the cached configuration before they were able to fetch a new, fixed
version of the configuration. Thus, affected devices were stuck and
required manual intervention (see Figure 1-5). Google engineers
had to inform the affected users via a push notification to manually
upgrade. Requiring users to correct problems caused by software
bugs is never a good outcome; besides creating a burden for users,
manual intervention also causes a long recovery duration.

Figure 1-5. Graph of daily active users (DAU) of the app on the affec‐
ted version range, over a two-week period leading up to and after the
outage

20 | Engineering Reliable Mobile Applications

Older releases in the wild, in general, increase the risk of change.
Multiple preventative strategies exist to manage that risk, including
“heirloomed” configuration frozen in time to limit the exposure to
change, multiversion application testing, and experiment-controlled
rollouts that allow early detection of crashes on particular devices.

Key takeaways

• Looping incidents represent a surprisingly large magnitude of
risk. They can break an application or device in a way in which
the only recovery mechanism is manual (i.e., clearing data).

• Beware of optimizations which substantially alter the execution
flow or runtime assumptions of apps. The configuration cach‐
ing in this incident was motivated by a desire to reduce app
startup time, but it should have begun with the objective, “Can
we make config fetching faster?”, before developing a custom
configuration life cycle mechanism.

• Always validate before committing (i.e., caching) a new config‐
uration. Configurations can be downloaded and successfully
parsed, but an app should interpret and exercise the new ver‐
sion before it becomes the “active” one.

• Cached configuration, especially when read at startup, can make
recovery difficult if it’s not handled correctly. If an application
caches a configuration, it must be capable of expiring, refresh‐
ing, or discarding that cache without needing the user to step in.

• Similar to backups, a crash recovery mechanism is valid only
when it has been tested. When applications exercise crash
recovery, though, it’s a warning sign. Crash recovery can con‐
ceal real problems. If your application would have failed if not
for the crash recovery, you are again in an unsafe condition
because the crash recovery is the only thing preventing failure.
Monitor your crash recovery rates, and treat high rates of recov‐
eries as problems in their own right, requiring root-cause inves‐
tigation and correction.

• Anything (device or network constraints, bad UI, user annoy‐
ance, and so on) that causes users to not want to update their
applications is akin to accumulating debt. When problems do
happen, the costs are substantially magnified. Old application
releases never entirely go away, and the less successful your

Case Studies | 21

updates are, the larger the population that can potentially be
affected by a backward-incompatible change.

Thundering Herd Problems
During our team’s early days, someone from our London office
walked past a teammate’s desk while they had a monitoring console
open. The console included a stacked area plot with a strange
double-plateau, which somehow looked familiar. This plot was the
rate at which certain mobile apps were registering to receive mes‐
sages through Firebase Cloud Messaging (FCM). Such registrations
are usually done in the background, whenever tokens need refresh‐
ing or users install apps for the first time. This plot is normally a
gentle, diurnal curve that follows the world’s waking population.
Today, however, the baseline rate of registrations had jumped
upward in two plateaus, 36 hours apart—the first plateau was mod‐
est and decayed back toward the normal trend, the other plateau was
much larger and shaped like the teeth of a comb, as demonstrated in
Figure 1-6.

Figure 1-6. Affected application’s FCM registration rate over time

The plot looked familiar because the app was Google’s own, and,
except for the comb’s teeth, the offset to the registration rate was the
same as the app’s normal release-uptake curve. We were in the midst
of rolling out a new release, which had begun making FCM registra‐
tion calls. The “teeth” of the comb were from the app repeatedly
exhausting its quota and being repeatedly topped off. The service
was performing normally for other apps, and the service unavaila‐
bility was at “no risk” (which is why no one from our team had been

22 | Engineering Reliable Mobile Applications

alerted), but the amplitude shift alluded to the basic consequence of
scale in mobile. Although these devices have limited compute power
and bandwidth, there are billions of them. When they accidentally
do things in unison, they can make life exciting for your service—or
the internet.

This is an example of a thundering herd problem in the mobile app
world. This particular instance was an easy one to handle; each
device that upgraded the app would make a few RPC calls to register
for FCM notifications by its various submodules, and that was that.
We did a capacity check, adjusted throttling limits, cautioned the
release manager not to roll out faster than they were already doing,
and started on the postmortem.

Thundering herd problems usually occur for one primary reason:
apps that cause server traffic in response to inorganic phenomena,
like being upgraded to a new version. They are easy to overlook
because to a developer writing and testing their code, a one-time
RPC call feels like nothing. For most applications that make use of
cloud services like FCM, that is indeed true. However, two things
can change that: when the app has a very large installed base, or
when the service is your own and scaled for the steady-state demand
of your app.

Releases
The rate at which you release new versions of your apps into the
wild can be difficult to control. App store release mechanics that are
based on exposure percentages don’t offer many guarantees about
uptake rate within rollout slices, and effects like device wakeups or
commute movements (in which phones experience connectivity
changes en masse) can cause app upgrade rates to ebb and surge. In
some companies, there might also be simple organizational factors:
the people doing mobile app release management might not be the
ones responsible for server capacity, or they might not realize that
they need to be in touch with those who are responsible for it. There
might also be a product level mismatch of goals: app owners want to
roll out new versions as quickly as possible to keep their developers’
velocity up, whereas service capacity managers like smooth, steady,
and cost-effective load curves.

For our situation, the correct answer was to establish a new princi‐
ple: mobile apps must not make RPC calls during upgrade time, and

Case Studies | 23

releases must prove, via release regression metrics, that they haven’t
introduced new RPC calls purely as a result of the upgrade. If new
service calls are being deliberately introduced, they must be enabled
via an independent ramp-up of an experiment, not the binary
release. If an app wants to make RPC calls in the context of its cur‐
rent version (e.g., to obtain fresh version-contextual configuration),
it should defer those calls until the next time it can normally execute
one, or wait until the user deliberately interacts with the app. Data
or configuration obtained via an RPC from a prior version must
always be usable (or safely ignored) by the new version—this is
already required for the safety of local upgrades because it’s never
assured that an RPC will succeed.

This was the right answer for Google because our most popular apps
have extremely large installed bases. Those same apps are built by
many different teams and interact with many different services. The
large installed base demands a rapid upgrade rate (tens to hundreds
of thousands of devices per second, for instance) to deliver a reason‐
able product release cadence. However, we anticipate that similar
factors affect apps at smaller scale, as well. If a service exists primar‐
ily to support a specific app, over time its capacity management
optimizes for a footprint that is close to the app’s steady-state needs.
Therefore, avoiding upgrade-proportional load is valuable at any
scale.

We considered and rejected two other approaches that we feel are
worth mentioning. The first was to accept upgrade load surges
within negotiated ranges and service them from the reserve capacity
we provision in case of datacenter-level failures. We rejected this
approach because the duration and frequency of app rollouts repre‐
sented too much time spent below redundancy targets—the proba‐
bility of a failure during a rollout was too high, relative to our SLO.
The second approach, complementary to the first, was to allow the
service to oversubscribe during rollouts but, if necessary, selectively
shed upgrade load in favor of user-interactive load. We rejected this
second option because the work involved to make apps fully tolerant
of this load shedding was similar to that of eliminating the upgrade-
time calls in the first place, and eliminating the upgrade-time calls
was more sustainable organizationally.

24 | Engineering Reliable Mobile Applications

Synchronization
Mobile devices are vulnerable to synchronization effects in which
large numbers of devices act in unintended unison, sometimes with
severe consequences. These events are usually the result of uninten‐
ded interactions between components of mobile devices, or interac‐
tions between devices and external stimuli.

Clock-induced synchronization is perhaps the most common mobile
thundering-herd problem we work with. If you’re an SRE team sup‐
porting a mobile-facing product, you’ve probably encountered
them, too. Many mobile-facing services experience spikes aligned on
the hour above the normal diurnal traffic curve, and might see lesser
spikes aligned at other common, human-significant times. The
causes are many. For example, users intentionally schedule events
(such as alarm clocks and calendar events) on hour boundaries,
while most mobile operating systems coalesce wakeups and run
scheduled tasks opportunistically during these wakeups. This can
result in brief spikes of RPCs from mobile apps, doing their sched‐
uled work close to these synchronized times.

The wakeups can also be more indirect: mobile app messaging cam‐
paigns and scheduled server-side content pushes are often done at
round time units. Therefore, the resulting message traffic causes
device wakeups and consequent RPC traffic from opportunistically
scheduled tasks. Many mobile devices attempt to coalesce tasks
requiring network availability. Some mobile apps defer RPCs until
the device’s radio was already powered on for other reasons, to
reduce total battery consumption from baseband power-ups and
extra radio transmits, but doing so can contribute to clock-based
synchronization. If one tightly scheduled task requires the radio, it
in effect enables others with looser scheduling to run, as well.

As an example, Figure 1-7 shows a traffic-rate curve of a mobile-
facing crash/error metric service. You can see spikes immediately
following the start of each hour.

Case Studies | 25

Figure 1-7. Incoming requests to a mobile-facing service exhibiting
time synchronization spikes

This service’s on-device design is deliberately asynchronous and fol‐
lows operating systems’ best practices around wakeups, allowing its
tasks to be coalesced with other wakeups and radio powerups. In
spite of this, we see that it spikes every hour, as the world’s devices
are woken up from sleep by alarms, calendar reminders, and so on,
and as their users pick up their phones and use them in response to
these events. They also wake up in response to incoming events from
messaging systems, such as new email (which itself has hourly spike
patterns) or background messaging sent hourly to apps by their
owners, to deliver fresh content. Another part of the load, and the
reason the spikes’ centers are slightly to the right of any given hour,
is that this is an error-and-crash reporting system. A portion of apps
that receive an incoming message will then crash attempting to pro‐
cess it.

Messaging systems exhibit hourly spike trends. Figure 1-8 presents
an interesting plot from a component of Firebase Cloud Messaging.
Again, the vertical scale is somewhat exaggerated. This plot includes
traffic from only our North American datacenters (and thus, pri‐
marily users in time zones GMT-4 through GMT-10).

26 | Engineering Reliable Mobile Applications

Figure 1-8. Firebase Cloud Messaging cloud-to-device message traffic

We see a strong hourly uptick in message traffic, with a long tail-off,
driven by a combination of cloud-to-device messaging, which itself
runs in hourly cycles, but with a tail-off driven by user responses to
those messages. During the 12:00 to 14:00 period, however, things
are different. That’s a period of intense device usage in this region.
Users of messaging apps are talking to one another, leaving their
offices (and network contexts) for lunch, getting directions, and so
on. It’s also a period of intense notification activity as apps receive
updates about changes in the world around them (e.g., road conges‐
tion), and app owners try to take advantage of this period of high
user activity to drive engagement in their apps with promotions or
other activity.

We’ve experienced several variations of spike trends as different
time-based wakeup and work scheduling features were introduced
and architectures were evolved. For example, an Android update
once accidentally converted certain types of scheduled, legacy
wakeup events from being approximately scheduled to precisely
scheduled, without fuzzing their offsets. This caused devices receiv‐
ing that update to wake up at the same instant, which required inci‐
dent response from SRE to interpret and then provide capacity for
the unintentional Denial of Service (DoS) attack on an Android sync
system. Engineers ultimately made a fix to the alarm code before any
further devices picked up the update and had their wakeup events
changed.

Clock-induced synchronization is a global behavior, of which we
control only a portion. We approach it primarily during the design
phase, prohibiting precisely scheduled wakeups in the apps we sup‐
port, unless the users themselves supplied the timing (and deferring

Case Studies | 27

network activity even then, if possible, because users have legiti‐
mately clock-synchronized behaviors of their own). We ensure peri‐
odic operations have smear factors appropriate to the size of the
installed population (the upgrade-induced traffic we discussed ear‐
lier can create echoes of itself if deferred and post-upgrade RPCs
lack a smear factor). We also mandate that the teams we work with
avoid the use of device messaging to trigger timed app wakeups,
except when the user has specifically requested it. In general, we try
to be good citizens in this universe of shared time.

Traffic
There’s an interesting artifact in the geographical relationship
between the world’s cloud computing capacity and its mobile users.
The largest clouds are where capacity is cheapest and most plentiful.
Today, this tends to be in North America and Western Europe.
Mobile users are more dispersed, and a large portion of that popula‐
tion is in regions with comparatively small cloud footprints. As a
result, for user-asynchronous traffic, we find that although traffic
might originate in North America, the traffic itself can cross the
Pacific Ocean to user devices in Asia and around the Pacific. How‐
ever, when that traffic triggers RPC traffic or response messages,
those responses tend to arrive in datacenters closest to them; for
example, those in Asia or the west coast of the United States.

In one example, we worked with the Google Now team to deliver
detailed updates of in-progress sporting events to users’ devices.
Events like the FIFA World Cup and championships for sports like
cricket, baseball, and football (soccer, to Americans) are highly pop‐
ular, but exhibit strong regionality in that popularity, according to
the sport or the teams playing the game. We observed that even
though we’d carefully planned for our capacity needs and done end-
to-end load tests to prove we were ready, there were small local traf‐
fic spikes moving around between our datacenters as devices
acknowledged delivery of the update messages. We’d planned for the
spikes of sender traffic for each goal scored in the game and alloca‐
ted capacity near where the traffic would originate. We were
reminded, however, through practical experience that device
response messages arrive close to where the receivers are.

The example we’ve just discussed has become something we work
on with product teams that deliver geo-targeted features or have a
strong geo-affinity in its appeal. You might have to carefully spread

28 | Engineering Reliable Mobile Applications

out the load that generated the traffic among many cloud regions,
only to have the traffic over-concentrate in the region nearest to
where your feature is popular.

Key takeaways

• Use the operating system’s task management system to schedule
background work. Don’t schedule for specific times unless your
user-facing behavior specifically requires it.

• When letting users pick scheduling for tasks that require a
server interaction but don’t require precise timing, favor with
UIs only as much specificity as the use case requires. For exam‐
ple, offering refresh options such as “hourly” or “every 15
minutes” allows for broadly diffused scheduling without imply‐
ing precise timing that can lead to thundering herds. If you do
need to offer your users precise timing, defaulting to an impre‐
cise one first can shield you from the worst of the problem.

• If using refresh triggers or other mechanisms that cause server-
originated device wakeups that will then put load on your ser‐
vice (Content Delivery Network, etc.), rate-limit your sends
with the load you can comfortably sustain, and smear your load
over the broadest tolerable period.

• Think about asymmetric topology effects in feedback between
servers and devices; for example, can part of a feedback loop in
one region can create a load concentration in another?

SRE: Hope Is Not a Mobile Strategy
A modern product stack is only reliable and supportable if it’s engi‐
neered for reliable operation all the way from the server backends to
the app’s user interface. Mobile environments are very different from
server environments and the browser-based clients of the last dec‐
ade, presenting a unique set of behaviors, failure modes, and man‐
agement challenges. Engineering reliability into our mobile
applications is as crucial as building reliable servers. Users ulti‐
mately perceive the reliability of our products based on the totality
of the system, of which the app in their hands has perhaps the great‐
est impact and will be how your product is judged.

SRE: Hope Is Not a Mobile Strategy | 29

In this report, we have shared a few SRE best practices from our
experience:

• Design mobile applications to be resilient to unexpected inputs,
to recover from management errors (however rare), and to roll
out changes in a controlled, metric-driven way.

• Monitor the app in production by measuring critical user inter‐
actions and other key health metrics (e.g., responsiveness, data
freshness, and crashes). Design your success criteria to relate
directly to the expectations of your users as they move through
your apps’ critical journeys.

• Release changes carefully via feature flags so that they can be
evaluated using experiments and rolled back independently of
binary releases.

• Understand and prepare for the app’s impact on servers, includ‐
ing preventing known bad behaviors, e.g., the “thundering
herd” problem. Establish development and release practices that
avoid problematic feedback patterns between apps and services.

We encourage SRE teams at organizations outside Google that
haven’t already made mobile a part of their mission to regard sup‐
porting mobile applications as part of their core function, and part
of the same engagement as the servers enabling them. We believe
incorporating techniques like the ones we’ve learned from our expe‐
rience into management of native mobile applications gives us a
strategy, not hope, for building reliable products and services.

30 | Engineering Reliable Mobile Applications

About the Authors
Kristine Chen is a staff site reliability engineer at Google, bringing
SRE principles and best practices to mobile applications. A graduate
of U.C. Berkeley, she is best known for revolutionizing Google’s
internal monitoring strategy and pioneering methods of supporting
mobile device reliability remotely.

Venkat Patnala is a senior site reliability engineer at Google,
focused on measurable, “end-to-end reliability”—from user interac‐
tions on mobile clients that reside in our pockets, to RPCs between
servers in datacenters. He is best known for embarking on cross‐
functional product infrastructure projects.

Devin Carraway is a staff site reliability engineer at Google, bring‐
ing a holistic understanding of integrated systems and their ecosys‐
tem behaviors to the SRE practice. He has spent his entire career in
pursuit of reliable, failure-conscious engineering.

Pranjal Deo is a site reliability engineering program manager at
Google who works on adding reliability dimensions to the mobile
landscape. She also works with the company-wide counter-abuse
and spam infrastructure reliability teams.

Jessie Yang is a technical writer for Google’s site reliability engineer‐
ing (SRE). She works on documentation and information manage‐
ment for SRE, Cloud, and Google engineers. Prior to Google, she
worked as a technical writer at Marvell Semiconductor. She holds a
Master of Science from Columbia University.

	Copyright
	Table of Contents
	Chapter 1. Engineering Reliable Mobile Applications
	How to SRE a Mobile Application
	Is My App Available?
	Real-Time Monitoring
	Performance and Efficiency
	Change Management
	Support Horizons
	Server-Side Impact

	Case Studies
	SLIs and SLOs: Learning to Monitor the (Very, Very) Long Tail
	Doodle Causes Mobile Search App Errors
	Always Have Multiple Ways out of Trouble
	Thundering Herd Problems

	SRE: Hope Is Not a Mobile Strategy

	About the Authors

