
REPORT

Anatomy
of an
Incident
Google’s Approach to
Incident Management
for Production Services

Ayelet Sachto & Adrienne Walcer
with Jessie Yang

Compliments of

Want to
know more
about SRE?
To learn more, visit https://sre.google

https://sre.google

Ayelet Sachto and Adrienne Walcer,
with Jessie Yang

Anatomy of an Incident
Google’s Approach to Incident

Management for Production Services

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11372-8

[LSI]

Anatomy of an Incident
by Ayelet Sachto and Adrienne Walcer, with Jessie Yang

Copyright © 2022 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisition Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Beth Kelly
Copyeditor: Audrey Doyle

Proofreader: Piper Editorial Consulting, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2022: First Edition

Revision History for the First Edition
2022-01-24: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Anatomy of an
Incident, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Introduction. 1
What Is an Incident? 2
Not Everything Is an Incident 4
The Incident Management Lifecycle 8

2. Practicing Incident Response Readiness (Preparedness). 11
Disaster Role-Playing and Incident Response Exercises 11

3. Scaling Incident Management (Response). 15
Component Responders 16
System-of-System (SoS) Responders 17
Incident Response Organizational Structure 19
Managing Risk 21
The Function of Incident Management and Risk 22

4. Mitigation and Recovery. 25
Urgent Mitigations 25
Reducing the Impact of Incidents 26

5. Postmortems and Beyond . 39
Psychological Safety 40
Writing Postmortems 45

6. The Mayan Apocalypse: A Real-World Example. 55

iii

7. Conclusion and Moving Forward . 61
Additional Reading 62
Bibliography 63
Acknowledgments 63

iv | Table of Contents

CHAPTER 1

Introduction

Make no mistake—the coming N weeks are going to be personally
and professionally stressful, and at times we will race to keep ahead
of events as they unfold. But we have been preparing for crises for
over a decade, and we’re ready. At a time when people around the
world need information, communication, and computation more
than ever, we will ensure that Google is there to help them.

—Benjamin Treynor Sloss, Vice President, Engineering,
Google’s Site Reliability Engineering Team, March 3, 2020

Failure is an inevitability (kind of depressing, we know). As sci‐
entists and engineers, you look at problems on the long scale
and design systems to be optimally sustainable, scalable, reliable,
and secure. But you’re designing systems with only the knowledge
you currently have. And when implementing solutions, you do so
without having complete knowledge of the future. You can’t always
anticipate the next zero-day event, viral media trend, weather disas‐
ter, config management error, or shift in technology. Therefore, you
need to be prepared to respond when these things happen and affect
your systems.

One of Google’s biggest technical challenges of the decade was
brought on by the COVID-19 pandemic. The pandemic created a
series of rapidly emerging incidents that we needed to mitigate in
order to continue serving our users. We had to aggressively boost
service capacity, pivot our workforce to be productive at home, and
build new ways to efficiently repair servers despite supply chain
constraints. As the quotation from Ben Treynor Sloss details, Google
was able to continue bringing services to the world during this

1

paradigm-shifting sequence of incidents because we had prepared
for it. For more than a decade, Google has proactively invested
in incident management. This preparation is the most important
thing an organization can do to improve its incident response capa‐
bility. Preparation builds resilience. And resilience and the ability to
handle failure become a key discipline for measuring technological
success on the long scale (think decades). Beyond doing the best
engineering that you can, you also need to be continually prepared
to handle failure when it happens.

Resiliency is one of the critical pillars in company operations. In
that regard, incident management is a mandatory company process.
Incidents are expensive, not only in their impact on customers but
also in the burden they place on human operators. Incidents are
stressful, and they usually demand human intervention. Effective
incident management, therefore, prioritizes preventive and proac‐
tive work over reactive work.

We know that managing incidents comes with a lot of stress, and
finding and training responders is hard; we also know that some
accidents are unavoidable and failures happen. Instead of asking
“What do you do if an incident happens?” we want to address the
question “What do you do when the incident happens?” Reducing
the ambiguity in this way not only reduces human toil and respon‐
ders’ stress, it also improves resolution time and reduces the impact
on your users.

We wrote this report to be a guide on the practice of technical
incident response. We start by building some common language to
discuss incidents, and then get into how you encourage engineers,
engineering leaders, and executives to think about incident manage‐
ment within the organization. We aim to cover everything from
preparing for incidents, responding to incidents, and recovering
from incidents to some of that secret glue that maintains a healthy
organization which can scalably fight fires. Let’s get started.

What Is an Incident?
Incident is a loaded term. Its meaning can differ depending on
the group using it. In ITIL, for example, an incident is any unplan‐
ned interruption, such as a ticket, a bug, or an alert. No matter
how the word is used, it’s important that you align on a specific

2 | Chapter 1: Introduction

1 An incident is defined as an unplanned interruption or reduction in quality of an IT
service (a service interruption). ITIL_Glossary: Incident.

definition to reduce silos and ensure that everyone is speaking the
same language.1

At Google, incidents are issues that:

• Are escalated (because they’re too big to handle alone)•
• Require an immediate response•
• Require an organized response•

Sometimes an incident can be caused by an outage, which is a period
of service unavailability. Outages can be planned; for example, dur‐
ing a service maintenance window in which your system is inten‐
tionally unavailable in order to implement updates. If an outage is
planned and communicated to users, it’s not an incident—nothing
is going on that requires an immediate, organized response. But
usually, we’ll be referring to unexpected outages caused by unantici‐
pated failures. Most unexpected outages are incidents, or become
incidents.

Incidents could result in confused customers. They could also cause
losses in revenue, damaged data, breaches in security, and more,
and these things can also impact your customers. When customers
feel the impact of an incident, it might chip away at their trust in
you as a provider. Therefore, you want to avoid having “too many”
incidents or incidents that are “too severe” in order to keep your
customers happy; otherwise, they will leave.

Having many incidents can also impact your incident responders,
since handling incidents can be stressful. It can be challenging and
expensive to find site reliability engineers (SREs) with the right mix
of skills to respond to incidents, so you don’t want to burn them out
by designating them solely to incident response. Instead, you want
to provide them with opportunities to grow their skills through
proactive incident mitigation as well. We discuss this further later in
this report, along with ways to reduce stress and improve the health
of your on-call shifts.

What Is an Incident? | 3

https://oreil.ly/Vx4in

2 Rob Ewaschuk, “Monitoring Distributed Systems”, in Site Reliability Engineering, ed.
Betsy Beyer, Chris Jones, Niall Richard Murphy, and Jennifer Petoff (Sebastopol, CA:
O’Reilly Media, 2016).

Not Everything Is an Incident
Differentiating between incidents and outages is important. It’s also
important to differentiate between metrics, alerts, and incidents.
How do you categorize metrics versus alerts, and alerts versus inci‐
dents? Not every metric becomes an alert, and not every alert is
an incident. To help you understand the meaning of these terms,
we’ll start by discussing the role of monitoring and alerts to help
maintain system health.

Monitoring
The most common way you keep watch over the health of your
system is through monitoring. Monitoring,2 as defined by the Google
SRE Book, means collecting, processing, aggregating, and displaying
real-time quantitative data about a system, such as query counts and
types, error counts and types, processing times, and server lifetimes.
Monitoring is a type of measurement.

When it comes to measurement, we suggest taking a customer-
centric approach in regard to crafting both service-level objectives
(SLOs; discussed in more detail in “Reducing the Impact of Inci‐
dents” on page 26) and the customer experience. This means
collecting metrics that are good indications of the customer expe‐
rience, and collecting a variety of measures, such as black box,
infrastructure, client, and application metrics, wherever possible.
Measuring the same values using different methods ensures redun‐
dancy and accuracy, since different measurement methods have
different advantages. Customer-centric dashboards can also serve
as good indications of the customer experience and are vital for
troubleshooting and debugging incidents.

It’s also important that your focus is on measuring reliability and the
impact on your users, instead of on measuring the number of inci‐
dents that have been declared. If you focus on the latter, people will
hesitate to declare an incident for fear of being penalized. This can
lead to late incident declarations, which are problematic not only
in terms of loss of time and loss of captured data, but also because

4 | Chapter 1: Introduction

https://oreil.ly/jT7fH

an incident management protocol does not work well retroactively.
Therefore, it’s better to declare an incident and close it afterward
than to open an incident retroactivity.

In that regard, people sometimes use the terms reliability and avail‐
ability interchangeably, but reliability is more than just “service
availability,” especially in complex distributed systems. Reliability
is the ability to provide a consistent level of service at scale. It
includes different aspects, such as availability, latency, and accuracy.
This can (and should) translate differently in different services. For
example, does reliability mean the same for YouTube and Google
Search? Depending on your service, your users’ expectations will be
different, and reliability can mean different things.

As a rule of thumb, a system is more reliable if it has fewer, shorter,
and smaller outages. Therefore, what it all comes down to is the
amount of downtime your users are willing to tolerate. As you
take a customer-centric approach, the user defines your reliability.
Consequently, you need to measure the user experience as closely as
possible. (We discuss this in more detail in “Reducing the Impact of
Incidents” on page 26.)

Alerting
We’ve discussed monitoring for system health. Now let’s talk about
the key component of monitoring: alerting. When monitoring iden‐
tifies something that is not behaving as expected, it sends a signal
that something is not right. That signal is an alert. An alert can
mean one of two things: something is broken and somebody needs
to fix it; or something might break soon, so somebody should take
a look. The sense of urgency—that is, when an action needs to be
taken—should direct you to choose how to respond. If an immediate
(human) action is necessary, you should send a page. If a human
action is required in the next several hours, you should send an
alert. If no action is needed—that is, the information is needed in
pull mode, such as for analysis or troubleshooting—the information
remains in the form of metrics or logs.

Note that the alerting method can be different depending on the
organization’s preferences—for example, it can be visible in a dash‐
board or presented in the form of a ticket. At Google, it’s usually the
latter; a “bug” with different priorities is opened in the Google Issue
Tracker by the monitoring system, which is our form of ticketing.

Not Everything Is an Incident | 5

Now that you know the basics, let’s take a deeper dive into alerting
by discussing actionable alerts.

The Importance of Actionable Alerts
As we noted, an alert can trigger when a particular condition is
met. You must be careful, however, to only alert on things that you
care about and that are actionable. Consider the following scenario:
as the active on-caller, you are paged at 2 a.m. because QPS has
increased by 300% in the past 5 minutes. Perhaps this is a bursty
service—there are periods of steady traffic, but then a large client
comes and issues thousands of queries for an extended period of
time.

What was the value in getting you out of bed in the middle of the
night for this? There was no value, really. This alert was not actiona‐
ble. As long as the service was not at risk of falling over, there was
no reason to get anybody out of bed. Looking at historical data for
your service would show that the service needs to be able to handle
such traffic spikes, but the spikes themselves are not problematic
and should not have generated any alerts.

Now let’s consider a more nuanced (yet much more common) ver‐
sion of the actionable alerting problem. Your company requires
making nightly backups of your production database, so you set up
a cronjob that runs every four hours to make those backups. One
of those runs failed because of a transient error—the replica serving
the backup had a hardware failure, and was automatically taken out
of serving mode by the load balancer—and consequent runs of the
backup completed successfully. A ticket is subsequently created as a
result of the failed run.

Creating a ticket because of one failed backup run is unnecessary.
This would only result in noise, since the system recovered itself
without human interaction.

These scenarios happen often. And although they end by simply
closing the ticket with a “This was fine by the time I got to it”
message, this behavior is problematic, for a few reasons:

6 | Chapter 1: Introduction

Toil
Someone had to spend time looking at the ticket, looking
at graphs/reports, and deciding that they didn’t need to do
anything.

Alert fatigue
If 95% of the “Database backups failed” alerts are simply closed,
there’s a much higher risk that an actual problem will go
unnoticed.

As discussed earlier, an incident is an issue with particular charac‐
teristics. An alert is merely an indicator that can be used to signal
that an incident is underway. You can have many alerts with no
incidents. While this is an unfortunate situation, it doesn’t mean you
need to invoke formal incident management techniques; perhaps
this is a planned maintenance event and you were expecting to
receive these alerts as part of the maintenance process.

You can also have an incident without any alerts—maybe you were
briefed by the security team that they suspect there’s been a breach
of your production systems; your team didn’t have any alerts of their
own that triggered for this particular condition.

More practically speaking, there are differences in how humans
perceive alerts versus incidents:

• It’s much more stressful to do formal incident management as•
opposed to simply fixing an alert.

• Less experienced responders are less likely to invoke an incident•
than more experienced responders.

• Incidents are much more likely to require additional team•
resources, so nonresponders can more easily gauge whether
they need to start looking at the active issue sooner rather than
later.

This applies not just within your team. In fact, it applies across the
entire organization.

You typically have many more alerts than incidents. It’s useful to
get basic metrics around alerts (e.g., how many alerts there are
per quarter), but incidents deserve taking a closer look (e.g., you
had five major incidents last quarter, and they were all because of
a new feature being rolled out which didn’t have enough testing
in pre-prod). You don’t want to pollute these reports with all the

Not Everything Is an Incident | 7

alerts that you received. Consider the audience—alert metrics are
primarily useful to the team, but incident reports will probably be
read by higher-ups and should be scoped accordingly.

Hopefully, this clarifies when you can more confidently say, “This
is not an incident.” However, this statement creates a dichotomy: if
some things aren’t incidents, that means some things are incidents.
How do you handle those? We’ll look at that in the next section.

The Incident Management Lifecycle
Optimal incident management doesn’t simply mean incidents are
managed as quickly as possible. Good incident management means
paying attention to the whole lifecycle of an incident. In this sec‐
tion, we discuss a programmatic approach to incident management.
Think about incidents as a continuous risk existing in your system.
The process of dealing with such risks is called the incident manage‐
ment lifecycle. The incident management lifecycle encompasses all of
the necessary activities to prepare for, respond to, recover from, and
mitigate incidents. This is an ongoing cost of an operational service.

By lifecycle, we mean every stage of an incident’s existence. These
stages are shown in Figure 1-1 and described as follows:

Preparedness
This encompasses all the actions a company or team takes to
prepare for the occurrence of an incident. This can include
safety measures on engineering (code reviews or rollout pro‐
cesses), incident management training, and experiments or test‐
ing exercises that are conducted to identify errors. This also
includes setting up any monitoring or alerting.

Response
This is what happens when the trigger causes the root cause
of the hazard to become an issue. It involves responding to an
alert, deciding whether the issue is an incident, and communi‐
cating about the incident to impacted individuals.

Mitigation and Recovery
This is the set of actions that allow a system to restore itself to
a functional state. These include the urgent mitigations needed
in order to avoid impact or prevent growth in impact severity.
Recovery includes the systems analysis and reflection involved
in conducting a postmortem. A postmortem is a written record

8 | Chapter 1: Introduction

of an incident, and it includes the actions taken, impact, root
causes, and follow-up actions needed to prevent recurrence
and/or reduce future impact.

Figure 1-1. The incident management lifecycle

Once the recovery phase closes, you’re thrust back into the prepar‐
edness phase. Depending on the size of your stack, it’s possible that
all of these phases occur simultaneously—but to be sure, you can
expect at least one phase to always occur.

The Incident Management Lifecycle | 9

1 See Chapter 28 of Site Reliability Engineering.

CHAPTER 2

Practicing Incident Response
Readiness (Preparedness)

We talked about the stages of managing an incident and the incident
management lifecycle. Now let’s discuss how to practice incident
management so that you can be ready when a real incident strikes.

Disaster Role-Playing and Incident
Response Exercises
There is value in testing and practicing incident response readiness
in order to increase resilience. We recommend implementing dis‐
aster role-playing in your team to train for incident response. At
Google, we often refer to this as Wheel of Misfortune.1 One way to
do this is to re-create scenarios from real production incidents you
encountered in the past.

There are tangible benefits to running regular incident response
exercises. In the earlier days of Google’s Disaster Resilience Testing
(DiRT) program, there were tests deemed too risky to be executed.
Over the years, by focusing on the areas exposed by those too-risky-
to-run tests, many of these risks have been addressed so thoroughly
that the tests are now automated and considered uninteresting.

11

https://oreil.ly/rM1GE

2 Marc Alvidrez, “The Global Chubby Planned Outage” in Site Reliability Engineering.

Getting to that point wasn’t immediate or painless—it took time
and a lot of effort from several teams to get there—but we’ve been
able to reduce significant risks in the global system to “just another
automated test that runs periodically.”2

Regular Testing
There are tangible benefits to regular testing. For years, Google has
been running DiRT tests to find and remediate problems with our
production systems. As teams have been testing their services, there
has been a decrease in the number of high-risk tests. This is actually
a good sign—teams have made their systems much more resilient, to
the point where finding weaknesses is becoming harder.

Tests-gone-wrong—situations in which tests have failed for some
reason—have also become much less frequent. Even when they hap‐
pen, these systems tend to fail in ways that were predicted, and
by extension, were remediated quickly. Responders are now much
more comfortable activating emergency procedures, keeping cool
under pressure, and as a result of these tests, writing fewer postmor‐
tems. Years of hard work have paid off—the mentality has evolved
from “disaster testing is something that happens to me” to “disaster
testing is something we all do together.”

Nuanced Testing and Automation
Testing is slowly shifting from fixing purely technical problems (e.g.,
“Do we know how to restore from a totally corrupt database?”) to a
much more nuanced “Let’s fix processes” set of challenges.

Technical tests are easier to discuss and automate: it all boils down
to writing some code to execute a series of commands and check
an expected response. It is more difficult to find problematic pro‐
cesses—such as “only one person is authorized to approve this, but
they’re not responding to their phone/email”—especially ones that
are not executed often.

12 | Chapter 2: Practicing Incident Response Readiness (Preparedness)

https://oreil.ly/IgSKU

Preparing Responders
Running incident response tests—even if only theoretical—can help
identify such processes, assign a probability and risk factor, and
instill confidence in responders. Even if a particular test did not go
as planned, you will gain better visibility into where the weaknesses
of your incident response processes are. Responders will also be bet‐
ter prepared—technically, mentally, and emotionally—for whenever
they have to deal with a real incident.

Emotional preparedness should not be underestimated. As noted
earlier, incident management can put responders under significant
amounts of stress. Stress can lead to poor responses, such as over‐
sights, slower responses, and clouded judgment. It also can cause
anxiety, exhaustion, high blood pressure, and poor sleep, among
other health issues.

Being able to run incident response tests can better prepare individ‐
uals to not just reduce these adverse effects, but more importantly,
identify them so that they can take corrective actions—such as ask‐
ing for additional help, taking a break, or even handing off an inci‐
dent completely. Managers and others in leadership positions should
also constantly be on the lookout for signs of stress/fatigue/burnout
in responders and assist them whenever possible.

Writing Incident Response Tests
A good starting point for writing incident response tests is to look
at recent incidents. At Google, we ask these standard questions on
every postmortem:

• What went wrong?•
• What went right?•
• Where did we get lucky?•

Start by looking at what went wrong, since that’s clearly an area
that needs improvement. These tend to be concrete problems that
are easy to fix—for example, your monitoring picked up an issue but
didn’t page anybody. Once you’ve identified and fixed the problem,
you need to test the fix. This point cannot be overemphasized:
merely fixing an issue is not enough; it’s possible that the fix may
be incomplete, or the fix has caused a regression somewhere else.
When testing for correctness, start with small, relatively simple tests.

Disaster Role-Playing and Incident Response Exercises | 13

As confidence in the process increases, you can start looking at
more complex issues, including those that aren’t entirely technical in
nature (i.e., human processes).

Once these smaller-scoped tests have been underway for some time,
start looking at the “where did we get lucky?” items. Oftentimes,
these problems are much more subtle, and addressing them might
not be trivial. Once again, start small. Break down these issues into
smaller, easier-to-address items.

These tests should have a slow but steady cadence—you don’t want
to drown teams in these tests, but you don’t want to lose momen‐
tum either. It is also easier to justify a one-hour test every four
weeks (as an example) rather than spending 10% of your operational
budget on these tests. As these procedures evolve and the value of
running these tests becomes clearer, you’ll find a natural pattern for
how often these tests should be conducted and how thorough they
should be.

14 | Chapter 2: Practicing Incident Response Readiness (Preparedness)

CHAPTER 3

Scaling Incident Management
(Response)

We’ve discussed practicing incident response readiness by conduct‐
ing incident response exercises, role-playing, and running regular
tests. These tactics help you get ready for when a real incident
occurs and you start managing the incident (see “Establish an
organized incident response procedure” on page 31). But how do
you manage incidents once your organization starts to grow? In this
section, we discuss how to scale incident management.

At Google, we’re set up to provide optimal incident management
coverage for all systems. Google’s gotten really big. To serve more
than 2 trillion queries per year, we leverage a lot of data centers,
at least a million computers, and more than 80,000 employees. All
this activity is routed through a massive and highly interconnected
system-of-systems (SoS), critically reliant on its technical stack to be
in active production. The support of this technical stack implies that
appropriate personnel are reliably available in order to troubleshoot
and correct issues as they arise. These are the responders in our Site
Reliability Engineering organization; they provide incident manage‐
ment coverage for systems and respond when an incident occurs.

15

Component Responders
Within the Site Reliability Engineering organization, we also have
component responders, who are incident responders on call for one
component or system within Google’s overall technical infrastruc‐
ture (Figure 3-1).

Figure 3-1. Component responders

Component responders are single-system experts who are well
versed in the problem space, are expert troubleshooters, and are
practiced in implementing mitigation strategies during a crisis. They
have continual access to the tools/systems required to perform
emergency response, to handle stress well, and to think clearly dur‐
ing a crisis.

Individual component responders have a limited area of responsibil‐
ity; this allows them to maintain in-depth knowledge of their area
and the systems that can affect it. These responders are the first line
of defense against failures cascading from one component through
the whole stack. These individual components are smaller than the
overall SoS stack, as we will discuss in “System-of-System (SoS)
Responders” on page 17, and usually have clear and distinct system
boundaries. As a result, appropriate monitoring and alerting can be
set up so that component responders remain knowledgeable about
their system’s failure modes.

When the scope of a technical stack grows beyond one person’s
capacity to understand and maintain state, we split up the tech‐
nical stack such that multiple responders can each provide cover‐
age on a single component of the whole stack. As time passes,
those components grow more complex and become further divided.
By maintaining a limited scope, primary responders can resolve
smaller-scoped issues at any given time. There is, however, the
risk of remaining ignorant of production issues spanning multiple
components, between system-to-system boundaries (see the next
section), or of not providing component responders with sufficient
support if an issue proves to be beyond their expertise.

16 | Chapter 3: Scaling Incident Management (Response)

For example, say an underlying fault is cascading through a notable
fraction of the technical stack. This cascade is happening faster than
humans can self-organize. During an incident with broad impact,
we quickly achieve a situation where every component team has
been paged, has assigned responders, and is managing their own
state. These component teams are working in parallel, but there’s a
possibility that none of those responders was aware of the others
(Figure 3-2). One of those responder’s incidents may be the root
cause, while the rest describe consequences. But which one?

Figure 3-2. From components to the bigger picture

With a sufficiently large and complex technical stack, it becomes
highly unlikely for a single primary responder to be able to drive
mitigation and maintain state on all their dependencies and their
dependents. To mitigate this risk, we built a structure of secondary
responders beyond our brilliant group of component responders.
We at Google call these secondary responders system-of-system
responders, which we discuss next.

System-of-System (SoS) Responders
System-of-system (SoS) responders are incident responders who are
on call to support incidents that span multiple component systems,
incidents that fall between system boundaries, or anything that gets
messy. SoS responders are appropriately trained, politically situated,
and empowered to lead an organized, coordinated response. These
responders are the second line of defense, which is more holistically
focused as well, and they provide key advantages when responding
to distributed computing failures (Figure 3-3).

Figure 3-3. SoS responders

System-of-System (SoS) Responders | 17

We regard SoS responders as multisystem incident managers, skilled
generalists, and holistically focused; they have expertise in handling
a subset of incidents where we need a wider perspective. Often,
these incidents require the involvement of multiple teams; an exam‐
ple would be a major SoS outage that brings down many services.
These incidents may cause or have caused downstream failures,
and have the potential to expand beyond service boundaries. In
addition, they may be customer-impacting incidents that have been
ongoing for 30 minutes or more with no sign of resolution.

SoS responders are well situated to respond to these types of far-
reaching incidents because they know how to organize others and
take command of complex situations. They also know how to diag‐
nose systemic behaviors and identify root causes, and are focused on
scaling the response and communicating widely about the incident.

At Google, we have two types of SoS responders. While each type
has a distinct function, they often interoperate:

Product-focused incident response teams (IRTs)
These are incident response teams that are in place to protect
the reliability of a specific product area. Examples include the
Ads IRT and the YouTube IRT. Not every product area is
required to have an incident response team, but it’s helpful as
products continually roll out new features, grow in complexity,
and have similarly scented technical debt. These teams are folks
who won’t know every detail of a product’s stack, but they are
aware of a product’s holistic operations and dependencies.

Technical incident response team (Tech IRT)
This is our broadest-focused incident response team. This team
focuses on incidents that span across products, have ambiguous
ownership, or have an unclear and pervasive root cause. Tech
IRT is our last line of defense. Members of Tech IRT are tenured
Googlers who have worked as component responders on at least
two different teams. They have a broad understanding of how
things work, and most importantly, they have excellent incident
management skills.

Members of Tech IRT continue to work for their home components,
but serve shifts on a global, 24-7 pager rotation. And they can still
work during these kinds of major emergencies because they practice
this niche skill set. A lot.

18 | Chapter 3: Scaling Incident Management (Response)

Tech IRT members undergo two weeks of production training twice
a year, which covers the deep details of how things work (and fail).
They also need to give quarterly demonstrations on their ability to
work productively using emergency tools.

Figure 3-4 depicts the incident response organizational architecture
at Google. With each additional level of this architecture, there is
an additional level of abstraction from the intricate details of a
product’s daily functioning. Each role is equally important—each
subsequent level of this pyramid experiences less pager load. If a
component responder cannot resolve an issue, and it threatens the
stability of the product, there’s someone they can escalate it to: a
product-focused IRT.

Figure 3-4. Incident response organizational architecture

If an issue is threatening multiple products, or if an issue can be
more quickly mitigated through a solution on shared infrastructure,
Tech IRT will be activated, operating on the broadest scope as a
point of escalation for everything below it.

Now, what enables this organizational architecture to function
seamlessly? The answer is a common protocol, trust, respect, and
transparency. Let’s look at these next.

Incident Response Organizational Structure
There are four characteristics of a successful incident response orga‐
nization: a common protocol, trust, respect, and transparency (see
Figure 3-5).

Incident Response Organizational Structure | 19

Figure 3-5. Characteristics of a successful incident response
organization

Common Protocol
At Google, we widely leverage an internal variant of the FEMA
Incident Command System (ICS) in which incident responders
have defined roles, such as incident command, scribe, or commu‐
nications. By using a shared, clearly defined process, we build pos‐
itive emergency response habits, including maintenance of active
state, a clear chain of command, and an overall reduction of stress.
Everyone understands the handoff process, including whom to hand
off to, to ensure effective transfer of knowledge. A chess player can’t
drop a bishop on a mah-jongg table and guarantee that everyone
knows what to do with it—in urgent situations, it’s important that all
players are playing the same game.

Trust
During an incident, incident commanders need to wield author‐
ity. They need to direct others, organize chaotic energy, and
make judgments about an appropriate course of action. For many
organizations, aligning authority with operational duty is a chal‐
lenging concept, but our standard operating procedure avoids the

20 | Chapter 3: Scaling Incident Management (Response)

convention that upper-level business directors are the only individu‐
als who should have the authority to make service-altering judgment
calls: we give this authority to the subject matter experts who have
context and state.

Respect
It’s important to make sure all responders feel comfortable escalating
the situation when they feel it is necessary. If responders were sub‐
ject to scrutiny, criticism, or perceptions of ineptitude for escalating
incidents, they might not escalate when it would be appropriate to
do so. Beyond common courtesy, we have to trust that individuals
make the best decisions possible, given the information they have
in front of them. If something goes awry, the critical issue isn’t to
make someone feel bad for it—it’s more important to figure out how
to create more accurate and actionable information to make sure
things don’t go wrong in the future. Part of this comes during the
postmortem process in which Google maintains a strict policy of
blamelessness (more on this shortly).

Transparency
We don’t silo. When an incident occurs, the details are made avail‐
able to everyone. Escalation and interoperability can’t happen if
we’re prohibited from accessing information about incidents—and
the postmortems we write after incidents have been resolved are
shared company-wide in our weekly newsletter. We encourage the
type of cross-learning that results from reading about incidents
occurring on other teams and in other product areas.

Managing Risk
In addition to the characteristics of the incident response organiza‐
tional structure, you should also think about how to manage risk.
The time from identifying to resolving an incident should be no
more than three days. As we said earlier, incident management is
expensive in time and personnel. Keeping yourself in a state of
active incident management for a long period of time will cause
fatigue and burnout, which may convince you to start refreshing
your resume. Incidents are issues that have been escalated and that
require an immediate, organized response. This state of immediacy
isn’t a natural state—humans aren’t supposed to have their medulla

Managing Risk | 21

oblongata stimulated for that long, nor are they supposed to have
that much cortisol pumping through their bodies for that long.
If prehistoric people were constantly hunting or being hunted by
saber-toothed tigers and never felt safe or had time to rest, we would
have evolved much differently. If you expect to spend that much
time in fight-or-flight mode, it’s natural to expect that this situation
will eventually lead to continuous turnover on your team.

The Function of Incident Management
and Risk
To minimize time spent in incident management mode, it’s impor‐
tant to recognize the function of incident management and risk.
Incident management is a short-term exercise intended to rapidly
correct a risky situation. The severity of an incident breaks down
into a few simple categories. At Google, we have quantified these
appropriately for our organization’s products (see Table 3-1).

Table 3-1. Severity definitions

Severity Definition Litmus Test
Huge A major user-facing outage that generates bad

press OR that results in a massive impact
on revenue for Google or identified Google
customers. An internal productivity outage
would only be considered huge if there were
visible external consequences that caused, for
example, a negative press cycle.

Could or did damage the
Alphabet/Google brand and
business.

Major An outage that is visible to users but does
not cause lasting damage to Google services
or identified customers, OR a sizable loss in
revenue for Google or its customers, OR 50% or
more of Googlers significantly impacted

Recurring, unmitigated future
incidents of this nature could or
will damage the Alphabet/Google
brand and business.

Medium Anywhere from a near miss to a huge/major
outage. A significant number of internal users
are significantly impacted. Workarounds existed
and were known to users (mitigating the
impact).

Recurring, unmitigated future
incidents of this nature will
likely lead to increasing instability
over time and greater costs in
production maintenance.

Minor External users may not have even noticed the
outage. Internal users were inconvenienced.
The result was unexpected sloshing of
traffic between entities (network, data center,
instances).

Recurring, unmitigated future
incidents of this nature are
unlikely to lead to increasing
instability over time but represent
normal operating conditions.

22 | Chapter 3: Scaling Incident Management (Response)

Severity Definition Litmus Test
Negligible,
Trivial

The incident was not visible to users in any way
and had little to no real impact on production,
but valuable lessons were learned and some
follow-up action items may need to be tracked
at a low priority.

Recurring, unmitigated future
incidents of this nature would
not be considered a process
breakdown.

Test,
Ignored

This wasn’t even an incident. Go do a new thing. False alarm.

The size of an incident maps roughly to the “riskiness” of the sit‐
uation (root cause/trigger/impact). Incident management mitigates
the short-term effects of the impact to buy some time for the folks
in power at the organization to determine what should happen
next. Since the incident has determined that “X is a problem!” and
“someone should do something!” the incident response is intended
to ensure that any potential short-term impact is mitigated in order
to make some long-term decisions. This doesn’t mean incident man‐
agement should continue until both the short-term and long-term
impacts are avoided. With a sizable tech stack, or depending on
the volume of tech debt that you might have, it could take months
or even years to fully rectify the root cause/trigger conditions that
erupted. The incident should only remain “open,” with active inci‐
dent management taking place, until the short-term impact is miti‐
gated. In a hospital setting, the equivalent would be to evaluate a
bleeding patient for imminent risk and then to stop the bleeding.

But what comes next? In a hospital, the next step is to deter‐
mine what caused the bleeding and how to prevent it from recur‐
ring. Maybe this involves helping the patient develop a long-term
saber-toothed tiger avoidance plan, or maybe it involves treating
the skin disease that caused the open wound. Either way, once the
immediate danger has been averted, longer-term plans, including
a short period of round-the-clock support, if necessary, are put in
place to keep the patient safe and prevent the bleeding from happen‐
ing again. Similarly, in your tech stack, once the immediate danger
has been averted it’s time to pivot and work out longer-term actions.

In incident management, you can often re-create the timeline of
an incident in minutes. If you’re dealing with an active, urgent
issue, every minute might reflect time in which users are being
harmed or revenue is being lost. Because every minute matters, inci‐
dent management creates a lot of pressure on incident managers—
and, as noted earlier in this section, that’s not a long-term positive

The Function of Incident Management and Risk | 23

experience. When you’re working on the longer-term aftereffects of
an incident (resolving the root cause or the trigger), you’re ideally
out of the way of immediate user harm or significant profit loss.
Cool. This leaves you with some high-priority work that still needs
to be executed immediately, but it doesn’t need to be executed in the
same way that incidents are managed. The timeline might be better
measured in days or weeks, and not in the recommended incident
timeline of no more than three days that we mentioned earlier. Don’t
stay in fight-or-flight mode after you need to. Close your incident;
move on to recovery.

24 | Chapter 3: Scaling Incident Management (Response)

1 Recommended reading: “Generic mitigations” by Jennifer Mace.

CHAPTER 4

Mitigation and Recovery

We’ve talked about scaling incident management, and using compo‐
nent responders and SoS responders to help manage incidents as
your company scales. We’ve also covered the characteristics of a
successful incident response organization, and discussed managing
risk and preventing on-call burnout. Here, we talk about recovery
after an incident has occurred. We’ll start by focusing on urgent
mitigations.

Urgent Mitigations
Previously, we encouraged you to “stop the bleeding” during a ser‐
vice incident. We also established that recovery includes the urgent
mitigations1 needed in order to avoid impact or prevent growth in
impact severity. Let’s touch on what that means and some ways to
make mitigation easier during urgent circumstances.

Imagine that your service is having a bad time. The outage has
begun, it’s been detected, it’s causing user impact, and you’re at the
helm. Your first priority should always be to stop or lessen the user
impact, not to figure out what’s causing the issue. Imagine you’re in a
house and the roof begins to leak. The first thing you’re likely to do
is place a bucket under the dripping water to prevent further water
damage, before you grab your roofing supplies and head upstairs
to figure out what’s causing the leak. (As we’ll find out later, if the

25

https://oreil.ly/DIhlV

roofing failures are the root cause, the rain is the trigger.) The bucket
reduces the impact until the roof is fixed and the sky clears. To stop
or lessen user impact during a service breakage, you’ll want to have
some buckets ready to go. We refer to these metaphorical buckets as
generic mitigations.

A generic mitigation is an action that you can take to reduce the
impact of a wide variety of outages while you’re figuring out what
needs to be fixed.

The mitigations that are most applicable to your service vary,
depending on the pathways by which your users can be impacted.
Some of the basic building blocks are the ability to roll back a
binary, drain or relocate traffic, and add capacity. These Band-Aids
are intended to buy you and your service time so that you can figure
out a meaningful fix which can fully resolve the underlying issues.
In other words, they fix the symptoms of the outage rather than the
causes. You shouldn’t have to fully understand your outage to use a
generic mitigation.

Consider doing the research and investing in the development of
some quick-fix buttons (the metaphorical buckets). Remember that
a bucket might be a simple tool, but it can still be used improperly.
Therefore, to use generic mitigations correctly, it’s important to
practice them during regular resilience testing.

Reducing the Impact of Incidents
Besides generic mitigations, which you first use to mitigate an
urgent situation or an incident, you’ll need to think about how
to reduce the impact of incidents in the long run. Incidents is an
internal term. In reality, your customers don’t really care about inci‐
dents or the number of incidents—what they do really care about is
reliability. To meet your users’ expectations and achieve the desired
level of reliability, you need to design and run reliable systems.
To do that you need to align your actions for each stage in the
incident management lifecycle mentioned previously: preparedness,
response, and recovery. Think about the things you can do before,
during, and after the incident to improve your systems.

26 | Chapter 4: Mitigation and Recovery

2 See Chapter 4, “Service Level Objectives,” in Site Reliability Engineering (O’Reilly).
3 See Adrian Hilton’s post “SRE Fundamentals 2021: SLIs vs SLAs vs SLOs”, May 7, 2021.
4 See Chapter 2, “Implementing SLOs,” in The Site Reliability Workbook (O’Reilly).

While it’s very difficult to measure customer trust, there are some
proxies you can use to measure how well you’re providing a reli‐
able customer experience. We call the measurement of customer
experience a service-level indicator (SLI). An SLI tells you how
well your service is doing at any moment in time. Is it performing
acceptably, or not?

For this scope, the customer can be an end user, a human or system
(such as an API), or another internal service. The internal service
is like a core service serving another internal service, which serves
the end user. In that regard, you can be as reliable as your critical
dependencies (i.e., a hard dependency or a dependency that cannot
be mitigated—if it fails, you fail). This means that if your customer-
facing services depend on internal services, those services need to
provide a higher level of reliability to provide the needed reliability
level to the customer.

The reliability target for an SLI is called a service-level objective
(SLO). An SLO aggregates the target over time: it says that during
a certain period, this is your target and this is how well you are
performing against it (often measured as a percentage).2

Most of you are probably familiar with service-level agreements
(SLAs). An SLA defines what you’ve promised to provide your
customers; that is, what you’re willing to do (e.g., refund money)
if you fail to meet your objectives. To achieve this, you need your
SLOs—your targets—to be more restrictive than your SLAs.3

The tool we use to examine and measure our users’ happiness is
called the user journey. User journeys are textual statements written
to represent the user perspective. User journeys explore how your
users are interacting with your service to achieve a set of goals. The
most important user journey is the critical user journey (CUJ).4

Once you’ve defined the targets that are important to you and your
users or customers, you can start to think about what happens when
you fail to meet those targets.

Reducing the Impact of Incidents | 27

https://oreil.ly/hsdXJ
https://oreil.ly/W8Osa
https://oreil.ly/Zp3Ww

Calculating the Impact of Incidents
Incidents impact the reliability target. They are affected by the num‐
ber of failures you have, the length and the blast radius, and the
“size” of these failures. So, to reduce the impact of an incident, you
first need to understand what you can do to reduce the impact. Let’s
look at how to quantify and measure the impact of an incident.

Figure 4-1 demonstrates that to measure the impact, you calculate
the time that you are not reliable. This is the time it takes for you
to detect that there is an impact, plus the time it takes to repair
(mitigate) it. You then multiply this by the number of incidents,
which is determined by the frequency of incidents.

Figure 4-1. Outage lifecycle

The key metrics are time to detect, time to repair, and time between
failures:

• Time to detect (TTD) is the amount of time from when an•
outage occurs to some human being notified or alerted that an
issue is occurring.

• Time to repair (TTR) begins when someone is alerted to the•
problem and ends when the problem has been mitigated. The
key word here is mitigated! This doesn’t mean the time it took
you to submit code to fix the problem. It’s the time it took
the responder to mitigate the customer impact; for example, by
shifting traffic to another region.

• Time between failures (TBF) is the time from the beginning of•
one incident to the beginning of the next incident of the same
type.

28 | Chapter 4: Mitigation and Recovery

Reducing customer impact means reducing the four axes in the
following equation—time to detect, time to repair, time between
failures, and impact.

To reduce the impact of incidents and enable systems to recover to
a known state, you need a combination of technology and “human”
aspects, such as processes and enablement. At Google, we found
that once a human is involved, the outage will last at least 20 to 30
minutes. In general, automation and self-healing systems are a great
strategy, since both help reduce the time to detect and time to repair.

It’s important to note that you should also be mindful of the method
you use. Simply decreasing your alerting threshold can lead to false
positives and noise, and relying too heavily on implementing quick
fixes using automation might reduce the time to repair but lead to
ignoring the underlying issue. In the next section, we share several
strategies that can help reduce the time to detect, time to repair, and
frequency of your incidents in a more strategic way.

Reducing the Time to Detect
One way to reduce the impact of incidents is to reduce the time
to detect the incident (Figure 4-2). As part of drafting your SLO
(your reliability target), you perform a risk analysis and figure out
what you need to prioritize, and then you identify what can prevent
you from achieving your SLO; this can also help you reduce the
time to detect an incident. In addition, you can do the following to
minimize the time to detect:

• Align your SLIs, your indicators for customer happiness, as close•
as you can to the expectations of your users, which can be real
people or other services. Furthermore, align your alerts with
your SLOs (i.e., your targets), and review them periodically to
make sure they still represent your users’ happiness.

• Use fresh signal data. By this, we mean that you should measure•
your quality alerts using different measurement strategies, as we
discussed earlier. It’s important to choose what works best to
get the data: streams, logs, or batch processing. In that regard,

Reducing the Impact of Incidents | 29

it’s also important to find the right balance between alerting too
quickly, which can cause noise, and alerting too slowly, which
may impact your users. (Note that noisy alerts are one of the
most common complaints you hear from Ops teams, be they
traditional DevOps teams or SREs.)

• Use effective alerts to avoid alert fatigue. Use pages when you•
need immediate action. Only the right responders—the specific
team and owners—should get the alerts. (Note that another
common complaint is having alerts that are not actionable.)
However, a follow-up question to this is: “If you page only on
things that require immediate action, what do you do with the
rest of the issues?” One solution is to have different tools and
platforms for different reasons. Maybe the “right platform” is a
ticketing system or a dashboard, or maybe you only need the
metric for troubleshooting and debugging in a “pull” mode.

Figure 4-2. Outage lifecycle: time to detect

Reducing the Time to Repair
We discussed reducing the time to detect as one way to reduce
the impact of incidents. Another way to reduce the impact is by
reducing the time to repair (Figure 4-3). Reducing the time to
repair is mostly about the “human side.” Using incident manage‐
ment protocols and organizing an incident management response
reduces the ambiguity of incident management and the time to
mitigate the impact on your users. Beyond that, you want to train
the responders, have clear procedures and playbooks, and reduce
the stress around on-call. Let’s look at these strategies in detail.

30 | Chapter 4: Mitigation and Recovery

5 See Jesus Climent’s post “Shrinking the Time to Mitigate Production Incidents—CRE
Life Lessons”, December 5, 2019.

Figure 4-3. Outage lifecycle: time to repair

Train the responders
Unprepared on-callers lead to longer repair times. Consider con‐
ducting on-call training sessions on topics such as disaster recovery
testing, or running the Wheel of Misfortune exercise we mentioned
earlier. Another technique is a mentored ramp-up to on-call. Having
on-callers work in pairs (“pair on call”), or having an apprenticeship
where the mentee joins an experienced on-caller during their shifts
(“shadowing”), can be helpful in growing confidence in new team‐
mates. Remember that on-call can be stressful. Having clear incident
management processes can reduce that stress as it eliminates any
ambiguity and clarifies the actions that are needed.5

Establish an organized incident response procedure
There are some common problems regarding incident management.
For example, lack of accountability, poor communications, missing
hierarchy, and freelancing/heroes can result in longer resolution
times, add additional stress for the on-callers and responders, and
impact your customers. To address this, we recommend organizing
a response by establishing a hierarchical structure with clear roles,
tasks, and communication channels. This helps maintain a clear line
of command and designates clearly defined roles.

At Google, we use IMAG (Incident Management at Google), a flexi‐
ble framework based on the Incident Command System (ICS) used
by firefighters and medics. IMAG teaches you how to organize an

Reducing the Impact of Incidents | 31

https://oreil.ly/aBp2v
https://oreil.ly/aBp2v

6 See Chapter 9, “Incident Response,” in The Site Reliability Workbook.
7 See Chapter 14, “Managing Incidents,” in Site Reliability Engineering.

emergency response by establishing a hierarchical structure with
clear roles, tasks, and communication channels (Figure 4-4). It
establishes a standard, consistent way to handle emergencies and
organize an effective response.6

Figure 4-4. An example ICS hierarchy

The IMAG protocol provides a framework for those working to
resolve an incident, enabling the emergency response team to be
self-organized and efficient by ensuring communication between res‐
ponders and relevant stakeholders, keeping control over the incident
response, and helping coordinate the response effort. It asserts that
the incident commander (IC) is responsible for coordinating the
response and delegating responsibilities, while everyone else reports
to the IC. Each person has a specific, defined role—for example, the
operations lead is responsible for fixing the issue, and the communi‐
cations lead is responsible for handling communication.

By using such a protocol, you can reduce ambiguity, make it clear
that it’s a team effort, and reduce the time to repair.7

Establish clear on-call policies and processes
We recommend documenting your incident response and on-call
policies, as well as your emergency response processes, both during
and after an outage. This includes a clear escalation path and the
assignment of responsibilities during an outage. This reduces the
ambiguity and stress associated with handling outages.

32 | Chapter 4: Mitigation and Recovery

https://oreil.ly/Reex2
https://oreil.ly/ZavUL
https://oreil.ly/gRRc7

8 See Eric Harvieux’s post“Identifying and Tracking Toil Using SRE Principles”, January
31, 2020.

Write useful runbooks/playbooks
Documentation is important, since it helps turn on-the-job experi‐
ence into knowledge available to all teammates regardless of tenure.
By prioritizing and setting time aside for documentation, as well
as creating playbooks and policies that capture procedures, you
can have teammates who readily recognize how an incident might
present itself—a valuable advantage. Playbooks don’t have to be
robust at first; start simple to provide a clear starting point, and
then iterate. A good rule of thumb is Google’s see it, fix it approach
(i.e., solve problems as you uncover them), and letting new team
members update those playbooks as part of their onboarding.

Make playbook development a key postmortem action item, and
recognize it as a positive team contribution from a performance
management perspective. This usually requires leadership prioriti‐
zation and allocating the necessary resources as part of the develop‐
ment sprint.

Reduce responder fatigue
As mentioned in Chapter 2, the mental cost of responder fatigue is
well documented. Furthermore, if your responders are exhausted,
this will affect their ability to resolve issues. You need to make
sure shifts are balanced, and if they aren’t, to use data to help you
understand why and reduce the toil.8

Invest in data collection and observability
You want to be able to make decisions based on data, so a lack of
monitoring or observability is an antipattern. If you cannot see, you
won’t know where you are going. Therefore, encourage a culture of
measurement in the organization, collecting metrics that are close
to the customer experience, and measure how well you are doing
against your targets and your error budget burn rate so that you can
react and adjust priorities. Also, measure the team’s toil and review
your SLIs and SLOs periodically.

You want to have as much quality data as you can. It’s especially
important to measure things as close to the customer experience as
possible; this helps you troubleshoot and debug the problem. Collect

Reducing the Impact of Incidents | 33

https://oreil.ly/ZQt6G

application and business metrics, in order to have dashboards and
visualization focused on the customer experience and critical user
journeys. This means having dashboards that aim for a specific
audience with specific goals in mind. A manager’s view of SLOs is
very different from a dashboard that needs to be used for trouble‐
shooting an incident.

As you can see, there are several things you can do to reduce the
time to repair and minimize the impact of incidents. Now let’s look
at increasing the time between failures as another way to reduce the
impact of incidents.

Increasing the Time Between Failures
To increase the time between failures and reduce the number of
failures, you can refactor the architecture and address the points
of failure that were identified during risk analysis and process
improvement (Figure 4-5). You can also do several additional things
to increase the TBF.

Figure 4-5. Outage lifecycle: time between failures

Avoid antipatterns
We mentioned several antipatterns throughout this report, including
a lack of observability and having positive feedback loops, which can
overload the system and can cause cascading issues like crashing.
You want to avoid these antipatterns.

Spread risks
You should spread the risks by having redundancies, decoupling
responsibilities, avoiding single points of failure and global changes,

34 | Chapter 4: Mitigation and Recovery

and adopting advanced deployment strategies. Consider progressive
and canary rollouts over the course of hours, days, or weeks, which
allow you to reduce risk and identify an issue before all your users
are affected. Similarly, it’s good to have automated testing, gradual
rollouts, and automatic rollbacks to catch any issues early on. Find
the issues before they find you; achieve this by practicing chaos
engineering and introducing fault injection and automated disaster
recovery testing such as DiRT (see Chapter 2).

Adopt dev practices
You can also adopt dev practices that foster a culture of quality, and
create an integrated process of code review and robust testing which
can be integrated into Continuous Integration/Continuous Delivery
(CI/CD) pipelines. CI/CD saves engineering time and reduces cus‐
tomer impact, allowing you to deploy with confidence.

Design with reliability in mind
In SRE, we have a saying: “Hope is not a strategy.” When it comes
to failures, it’s not a question of if, but when. Therefore, you
design with reliability in mind from the very beginning, and have
robust architectures that can accommodate failures. It’s important
to understand how you deal with failure by asking yourself the
following questions:

• What type of failure is my system resilient to?•
• Can it tolerate unexpected, single-instance failure or a reboot?•
• How will it deal with zonal or regional failures?•

After you are aware of the risks and their potential blast radius,
you can move to risk mitigation (as you do during risk analysis).
For example, to mitigate single-instance issues, you should use per‐
sistent disks and provision automation, and, of course, you should
back up your data. To mitigate zonal and regional failures, you can
have a variety of resources across regions and zones and implement
load balancing. Another thing you can do is scale horizontally. For
example, if you decouple your monolith to microservices, it’s easier
to scale them independently (“Do one thing and do it well”). Scaling
horizontally can also mean scaling geographically, such as having
multiple data centers to take advantage of elasticity. We recommend

Reducing the Impact of Incidents | 35

https://oreil.ly/l8Ttq
https://oreil.ly/l8Ttq
https://oreil.ly/9ylJA
https://oreil.ly/U3a1J
https://oreil.ly/KE82H

9 For more on load shedding and graceful degradation, see Chapter 22, “Addressing
Cascading Failures,” in Site Reliability Engineering.

10 See the Google Blog post by Ines Envid and Emil Kiner: “Google Cloud Networking in
Depth: Three Defense-in-Depth Principles for Securing Your Environment”, June 20,
2019.

avoiding manual configuration and special hardware whenever pos‐
sible.

Graceful degradation
It’s important to implement graceful degradation methods in your
architecture. Consider degradation as a strategy, like throttling and
load shedding. Ask yourself, if I can’t serve all users with all features,
can I serve all users with minimal functionality? Can I throttle user
traffic and drop expensive requests? Of course, what is considered
an acceptable degradation is highly dependent on the service and
user journey. There is a difference between returning x products and
returning a checking account balance that is not updated. As a rule
of thumb, however, degraded service is better than no service.9

Defense-in-depth
Defense-in-depth is another variation of how you build your system
to deal with failures, or more correctly, to tolerate failures. If you
rely on a system for configuration or other runtime information,
ensure that you have a fallback, or a cached version that will con‐
tinue to work when the dependency becomes unavailable.10

N+2 resources
Having N+2 resources is a minimum principle for achieving reliabil‐
ity in a distributed system. N+2 means you have N capacity to serve
the requests at peak, and +2 instances to allow for one instance (of
the complete system) to be unavailable due to unexpected failure
and another instance to be unavailable due to planned upgrades. As
we mentioned, you can only be as reliable as your critical dependen‐
cies are, so choose the right building blocks in your architecture.
When building in the cloud, ensure the reliability levels of the serv‐
ices that you use and correlate them with your application targets.
Be mindful of their scope (e.g., in Google Cloud Platform’s build‐
ing blocks [zonal, regional, global]). Remember, when it comes to
design and architecture, addressing reliability issues during design

36 | Chapter 4: Mitigation and Recovery

https://oreil.ly/feusI
https://oreil.ly/feusI
https://oreil.ly/KpFnw
https://oreil.ly/KpFnw

11 See Chapter 12, “Introducing Non-Abstract Large System Design,” in The Site Reliability
Workbook.

12 See the article for Google Research by Betsy Beyer, John Lunney, and Sue Lueder:
“Postmortem Action Items: Plan the Work and Work the Plan”.

reduces the cost later.11 There is no one-size-fits-all solution; you
should let your requirements guide you.

NALSD: Non-Abstract Large System Design
We can’t talk about designing for reliability and SRE without touch‐
ing on non-abstract, large system design. At Google, we found
that addressing reliability issues during the design phase reduces
future costs, and if we adapt an iterative style of system design and
implementation, we can develop robust and scalable systems at a
lower cost. We call this approach non-abstract large system design,
or NALSD, and it describes the iterative process of system design
that Google uses for production systems. You can learn more about
it in Google’s SRE Classroom.

Learn from failures
Finally, you can learn from failures in order to make tomorrow
better (more on that in “Psychological Safety” on page 40). As
we mentioned before, the tool for this is postmortems. Ensure that
you have a consistent postmortem process that produces action
items for bug fixes, mitigations, and documentation updates. Track
postmortem action items the same as you would any other bug (if
you are not doing so already), and prioritize postmortem work over
“regular” work.12 We discuss postmortems in more detail in the next
section.

Reducing the Impact of Incidents | 37

https://oreil.ly/Q9RCq
https://oreil.ly/0dI0i
https://oreil.ly/hwqC9

CHAPTER 5

Postmortems and Beyond

In the previous chapter, we covered several things you can do to
reduce customer impact, in terms of both technology and people,
since both affect the time to detect, the time to mitigate/recover,
and the time between failures. In this section, we talk about what
happens after an incident has concluded: writing postmortems and
using them as a powerful tool to analyze what went wrong and learn
from mistakes.

After an incident has concluded, how do you know where to
focus your efforts to minimize future incidents? To know what
you should focus on, we recommend taking a data-driven approach
(Figure 5-1). The data can be a result of a risk analysis process,
or the measurements we mentioned earlier. It’s important to rely
on data collected from postmortems and learnings from previous
incidents that impacted customers.

39

Figure 5-1. Where do you focus your efforts?

Once you have a critical mass of postmortems, you can identify
patterns. It’s important to let the postmortems be your guide; the
investments in analyzing failure can lead you to success. For that
purpose, we recommend creating a shared repository and sharing
the postmortems broadly across internal teams.

Psychological Safety
It’s hard to talk about postmortems without discussing psychological
safety. Therefore, before diving into the details of writing postmor‐
tems, let’s first talk about the psychological safety inherent in inci‐
dent management culture, and discuss the value of early escalation.

If your customers are impacted, you should address the situation
ASAP. This won’t happen if the people in your organization do not
feel safe to escalate or to scale up the size of an incident to include
more people. If a company environment is such that people are
discouraged from asking questions, or if there are repercussions for
escalating incidents, responders may feel unsure about asking any
questions at all. If that’s the case, incidents are going to get a lot
worse before they can get better.

Failures will happen, and you need to accept failure as normal.
That’s why implementing SRE principles requires a supportive and
empowering culture. A key aspect of this is understanding that
incidents and outages are inevitable, given the velocity of change
as you constantly enhance your services with new features and add
new systems. Therefore, if you don’t learn from your incidents, you
are missing an opportunity to improve. Consider the quote “Failure

40 | Chapter 5: Postmortems and Beyond

1 See DevOps Culture: Westrum Organizational Culture.
2 Google’s Project Aristotle.

is the key to success; each mistake teaches us something” by Morihei
Ueshiba, founder of Aikidoe.

As you treat operations as a software engineering problem, when
things go wrong (and they will), look for the flaws in the system that
allowed those things to go wrong. You want to improve things to
help avoid human errors.

Humans are never the cause of incidents, but the systems and
processes that “allowed” the incidents to happen.

If an outage occurs, that’s the fault of the system, not a human,
because human error is a given. The goal is not to eliminate human
error.

Psychological Safety When Implementing Incident
Management Practices
Implementing incident management practices is an organizational
change that requires some cultural prerequisites for you to innovate
and learn from your mistakes. It’s critical to have psychological
safety and blamelessness processes in place.

Psychological safety is a belief that one will not be punished or
humiliated for speaking up with ideas, questions, concerns, or
mistakes.

—Dr. Amy Edmondson, Novartis Professor, Leadership and
Management, Harvard Business School

Psychological safety fosters some of the main attributes of
performance-oriented organizations; in particular, the treatment of
failure as a learning opportunity and the acceptance of new ideas.
For example, Westrum’s Organizational Culture model predicts soft‐
ware delivery performance based on psychological safety: generative
organizations are much more likely to be top performers than the
other two types.1

Teams with higher psychological safety are more likely to harness
the power of diverse ideas from teammates, beat their sales targets
by 17% (compared to a 19% miss for unsafe teams), and are rated
effective twice as often by executives.2

Psychological Safety | 41

https://oreil.ly/xieob
https://oreil.ly/fwhlA

3 See more at Coursera’s “Developing a Google SRE Culture” course.

Psychological Safety When Handling Incidents
In risk management, it’s crucial for people to know they can voice
their opinions and identify problems without being penalized or
ridiculed. When an incident occurs, it must be reported and it
must be declared an incident. During the incident, you might have
to share information about previous incidents if doing so might
shed light on past mistakes (this relates to blamelessness). You also
may have to hand off the incident to the next on-call engineer and
suggest improvements to internal processes, tools, and features.

Without psychological safety and blamelessness, people avoid asking
the right questions that may lead to identifying the root cause of an
incident. As a result, teams can’t learn or innovate, because they are
consumed by managing impressions and fearing the consequences.

To foster psychological safety and blamelessness in your team, focus
on the learning opportunity: frame each incident as something
everyone can learn from, and encourage diverse ideas by inviting
everyone (especially the ones who do not agree) to voice their opin‐
ions and ideas. As a leader, you should also acknowledge your own
fallibility and model curiosity by asking questions.

Not casting blame
Blamelessness and psychological safety go hand in hand, and one
may be a natural result of the other. Let’s say there is an outage. If
the first question the manager asks is “Who caused it?” it can create
a culture of finger-pointing and make the team fearful of taking
risks; this will prevent innovation and improvements. Instead, you
should promote blamelessness:

Blamelessness is the notion of switching responsibility from people
to systems and processes.3

A culture of blame hinders people’s ability to quickly resolve inci‐
dents and learn from mistakes, because they may want to hide infor‐
mation and avoid declaring incidents for fear of being punished.
A blameless culture, on the other hand, allows you to focus on
improvement. You want to assume that individuals act in good faith
and make decisions based on the best information available. Investi‐
gating the source of misleading information is much more beneficial

42 | Chapter 5: Postmortems and Beyond

https://oreil.ly/9Cx9r

4 To learn more about learning from mistakes, see Chapter 15, “Postmortem Culture:
Learning from Failure,” in Site Reliability Engineering.

to the organization than assigning blame. Therefore, support the
team’s design and maintenance decisions to encourage innovation
and learning, and when things go wrong, focus on the systems and
processes, not the people.

Learning from mistakes
Mistakes are valuable opportunities to learn and improve, but only
if the correct procedural, systematic causes of the mistake are prop‐
erly identified. At Google, for example, Ben Treynor Sloss sends out
quarterly engineering reports of “Google’s Greatest Hits and Misses”
to foster an empowering culture in which we can learn from our
mistakes.4

Additional Tips for Fostering a Psychologically Safe
Environment
Incident responders need to have a certain amount of confidence
to be effective responders. Even though they may be in stressful
situations, it’s imperative that responders feel psychologically safe
while handling incidents.

This psychological safety extends to many levels:

From teammates
• Responders should not feel like they are being judged by their•

peers for their actions, especially when they make a mistake.
• Saying “I need help” should be rewarded, not questioned or•

reprimanded.

From partner teams
• Some teams may feel that members of team X have a bad•

reputation for being condescending, so let’s not talk to them.
Even worse, some teams embrace that culture, or they use it
to avoid interacting with other teams. This attitude should not
be tolerated—it creates additional tension and only slows down
incident response.

Psychological Safety | 43

https://oreil.ly/ob1td
https://oreil.ly/ob1td

5 See Chapter 15, “Postmortem Culture: Learning from Failure,” in Site Reliability Engi‐
neering.

From management
• Managers are responsible for the team’s psychological safety.•

During an incident, a manager is often not doing technical
work. Instead, they are focusing on ensuring the well-being
of the team—looking out for signs of stress/burnout, maybe
ordering pizza while the rest of the team works on an incident.
It might be as simple as a manager telling an incident responder,
“Take a five-minute break to clear your head.”

• Managers can also be instrumental in getting additional help•
from other parts of the organization.

• Managers provide the team the buffer they need from the rest•
of the organization, and they step in to resolve conflicts should
they arise.

From the organization
• Psychological safety can thrive only if the organization embra‐•

ces it in its culture. There should be a blame-free culture5 in
which the focus is on fixing the processes that led to an incident.

• The industry is filled with policies such as the three strikes•
policy, which calls for termination or a severe reprimand of
individuals involved in three mistakes that affect production.
Although the intent of such a policy is to encourage responders
to be extra careful during an incident, it results in degraded
responses (“I don’t want to be the one who makes a bad call”),
blame-shifting (“We didn’t break it, another team broke it”), or
hiding valuable information (“Let’s not divulge the fact that we
already knew about this issue”).

• If leaders want their teams—and, by extension, their organiza‐•
tions—to thrive, they must foster a culture of respect, trust,
and collaboration. This has to come from the top of the
organization.

As noted earlier, one clear benefit of a psychologically safe environ‐
ment is a reduction in escalation times. If an organization embraces
a culture of collaboration, incident responders will be more likely
to solicit additional help—whether from their own team or from
another team in the company.

44 | Chapter 5: Postmortems and Beyond

https://oreil.ly/XvwLg

One recurring theme while reviewing incidents has always been “If
only we had escalated earlier, we could have saved $XXX in lost
revenue,” even in teams/organizations with healthy, psychologically
safe environments. It’s difficult for an incident responder to ask for
help—lest it be seen as a sign of weakness or unpreparedness. We’ve
been trained to hide insecurities (even perceived ones), and taught
generally to be a hero and give 110% to the team. These behaviors are
actually liabilities, particularly during incident response—an over‐
whelmed or tired responder is more likely to make mistakes. Escala‐
tions should therefore be cheap and quick, and should come with
no strings attached. Always assume the best of intentions. If it turns
out that the escalation was unnecessary, find out why the escalation
happened—maybe there was poor/missing documentation—and fix
the faulty process.

Incident responders should be hyperaware of the tendency to try
to do everything themselves, and instead should escalate early and
often. Within one Google incident response team there is an adage:
“We tell other teams that we don’t mind getting paged too often—
and we still don’t get paged enough.”

Writing Postmortems
Now that we’ve covered psychological safety in depth, let’s move on
to writing postmortems. When things break, it’s your opportunity
to learn from them and improve for the future. While a “terrible
engineer” might think “Let’s hope no one saw that,” a better engineer
notices that something broke and thinks “Cool! Let’s tell everyone!”
This is where writing postmortems comes in.

Writing a postmortem is a form of systems analysis: it’s the process
of diving into one of those faults that caused the incident and
identifying areas to improve engineering and engineering processes.
Postmortem writing isn’t just an extraneous practice, but rather a
core way to practice systems engineering on services, in order to
drive improvements.

When writing postmortems, it’s important to create a blame-free
culture and processes that assume incidents will occur. As men‐
tioned before, it’s important to prevent failure, but realize that day-
to-day failures are inevitable, especially when talking about scale.
Incidents provide you and your team the opportunity to learn from
them, together. Postmortems are your systematic solution to make

Writing Postmortems | 45

6 For more information, see Appendix D, “Example Postmortem,” in Site Reliability
Engineering, and public communication on a Google Compute Engine incident.

sure you collectively learn from your mistakes, and help share that
knowledge and learn from the mistakes of others as well—for exam‐
ple, by reading the postmortems of others.

Postmortems provide a formalized process of learning from inci‐
dents, as well as a mechanism to prevent and reduce incidents, their
impact, and their complexity. For example, you may learn to avoid
patches as a permanent solution. Postmortems highlight trends and
prioritize your efforts. They should be blameless—this prevents side
conversations ruminating about the issue, who did what, and who
might be at fault. Instead of assigning blame, postmortems focus
on what was learned from the incident and improvements for the
future.

There is some information that every postmortem should include.
For example, good postmortems include clear actions items (AIs),
and the owners of and deadlines for those AIs. Remember, this is
not to place blame, but to increase ownership, remove ambiguity,
and make sure actions are followed up on. In addition, it’s important
to have a clear timeline that includes the start time of an outage,
when the issue was detected, the escalation time (if applicable), the
mitigation time (if applicable), the impact, and the end time of the
outage. If escalation occurred, specify why and how it occurred. To
avoid confusion, clarify the terminology for incident and outage, and
for incident started and incident detected. We recommend keeping
a “live document” during the incident as a working record of debug‐
ging and mitigation which can be used later for the postmortem.
The document assists with capturing the timeline correctly and
verifies that you don’t miss vital AIs.

Avoid blameful language in postmortems, and practice psychologi‐
cal safety. Lead by example and ask lots of questions, but never
seek to blame. It’s about understanding the reality of the event, the
actions taken, and what can be done to prevent recurrence in the
future.

A Google best practice is to share the postmortem with the largest
possible audience that would benefit from the lessons imparted.
Transparent sharing allows others to find the postmortem and learn
from it.6

46 | Chapter 5: Postmortems and Beyond

https://oreil.ly/VKG7d
https://oreil.ly/hRAzc

We’ve found that establishing a culture of blameless postmortems
results in more reliable systems and is critical to creating and main‐
taining a successful SRE organization.

Systems Analysis for Organizational Improvement
We’ve talked about blameless postmortems and touched on post‐
mortems being a form of systems analysis. However, are you really
digging into your system to fully understand what happened and
why? Events should be analyzed in order to draw conclusions, not
simply recounted. The depth of analysis after an incident, or within
a postmortem, asks whether events and system facets are analyzed in
order to expose and explain conclusions. This is important because
it increases the probability that your team will work on the right
fixes after an incident.

When writing a postmortem, you should aim for the most complete
and accurate picture of your system, such that fixes made are the
right ones. In Figure 5-2, the circle labeled “What you THINK the
problem is” reflects your understanding of your system during the
incident—this is the part that is in your control. The circle labeled
“What the problem actually is” reflects the actual state of your
system during the incident. With a complex, technical ecosystem
of many moving parts, interacting with all of the human processes
of managing an incident, it’s extremely difficult to truly understand
all of that nuance (in fact, we once had a senior engineer try to do
this, and they spent a full month trying to understand what was a
20-minute incident!). However, the deeper the analysis you conduct
after an incident, the bigger the overlap in circles, and the closer you
get to understanding the underlying issues (Figure 5-3).

Writing Postmortems | 47

Figure 5-2. Venn diagram visualizing the gap between understanding
and truth

Figure 5-3. Venn diagram visualizing the benefit of systems analysis

If the incident has been mitigated and the system is stable again,
does it matter that you understand the real problems? Yes. It mat‐
ters because of actionability—or what you have the power to fix or
change after an incident. These post-incident incremental system
improvements help to build resilience over time. This is the third,
important circle, representing the things in a system over which you
have control and for which you can implement fixes (Figure 5-4).

48 | Chapter 5: Postmortems and Beyond

This circle can’t move either, because there will always be something
out of your control which can affect the health of your systems (the
weather, the size of the Earth, the speed of light).

That small intersection in the center (in set theory, notated as 1 ∩
2 ∩ 3) is the best work that your team can do after an incident.
The overlap of “What you THINK the problem is” and “What you
can fix” [(1 ∩ 3) – 2] is dangerous: these are solutions that you
think will help in the long term but actually won’t address the real
issues. You might be addressing something adjacent to the major
problems, or you might be addressing a manifested symptom of
another hidden issue. Assuming that you’ve solved an issue that
hasn’t really been solved is a hazardous position—made even worse
by a lack of awareness of that mounting risk. If a particular incident
happens again, you’re left with diminished customer trust and time
lost that could have been used more effectively.

Figure 5-4. Venn diagram visualizing how engineering work interacts
with systems analysis

Writing Postmortems | 49

As a result of a deeper systems analysis, that small piece in the
center (1 ∩ 2 ∩ 3) is maximized in size, given the other two
unmoving circles (Figure 5-5). In other words, you’re maximizing
the likelihood that the fixes you will prioritize will be effective. If
you want to make sure you’re targeting the right work, moving the
circle is worthwhile. The key is to invest enough in systems analysis
that you and your team can achieve a high probability of selecting
the best possible engineering projects to improve system resilience.
But there is a point of diminishing returns—for example, spending a
month investigating every outage isn’t a prudent use of resources. In
the following section, we suggest a couple of key things that might
be helpful to think about to help move the circle.

Figure 5-5. Venn diagram highlighting the interaction between engi‐
neering work and systems analysis

Root Cause Versus Trigger
Let’s start with two key terms, root cause and trigger:

50 | Chapter 5: Postmortems and Beyond

Root cause(s)
The system hazards, or how the system was vulnerable. A haz‐
ard can exist in a system for an indefinite period of time—the
system environment needs to shift somehow to turn that haz‐
ard into an outage. Let’s be clear: there is rarely just one root
cause for an incident in a complex system. Skilled practitioners
consider the underlying cause of an incident to be a web of
interacting causal factors that result in a hazard state.

Trigger(s)
The circumstances that allowed the root cause(s) to turn into an
incident. It’s a related, but separate, thing! In order to prevent
recurrences of that outage, sometimes it’s important to address
the root cause. Sometimes it’s more reasonable to build preven‐
tion around those triggers.

The root cause and the trigger work together to create an incident.
Of course, this is a bit of a simplification. Borrowing a term from
medicine, the root cause contraindicates with the trigger condition
to generate the resultant scenario (the incident). There isn’t a one-
to-one mapping of which root causes and triggers cause which types
of incidents—complexity makes a whole range of outcomes possible.
Let’s check out some examples:

House fire
• Root cause: A gas leak•
• Trigger: A sparking electrical plug near the leaky stove which•

ignited the leaking gas and caused the house to ignite
• Incident: A house fire (but the root cause here could have•

caused other incidents)

Ant infestation
• Root cause: A warm season that was comfortable for bugs and•

pests to thrive in the natural environment
• Trigger: Sloppy eating habits that leave lots of crumbs around•
• Incident: An ant infestation•

Out of Memory (OOM)
• Root cause: A config file change that introduces a memory leak•
• Trigger: A surprisingly high volume of requests•
• Incident: OOM•

Writing Postmortems | 51

In the third (OOM) scenario, the root cause might have been put
in place years before the trigger conditions existed—which is one of
the fun ways in which technical debt ends up being more expensive
than expected. And this root cause might not even be a bug—it can
be anything that imposes a constraint on the behavior of your sys‐
tem. Constraints aren’t inherently hazardous until the system faces
an environmental condition that turns them into hazards. Let’s also
clarify that the trigger might not exist in a binary condition. It’s not
that the trigger is or isn’t—the trigger condition might exist within a
dynamic range, only becoming an incident when the environmental
conditions of a system and the root cause interact. These two things
can be seen as critical components that create the incident lifecycle.

The root cause section of the postmortem should detail some of
the root causes at play and the trigger for the incident at hand.
To prevent recurrences of an outage, sometimes it’s important to
address the root causes. Sometimes it’s more reasonable to build
prevention around the triggers.

However, just separating the discussion of root causes and triggers
won’t inherently boost the quality of your team’s postmortems. All
sections having an appropriate amount of content is a minimum
need, but it’s also important that the postmortem includes in-depth
analysis, is understandable by engineers outside your team, and is
actionable. Is this a recurring issue? Are mitigation steps noted,
or do you need to play bug sleuth? Does the postmortem suitably
explain or quantify the system’s regular functioning to show the
scaled comparison and impact of the failure? Seriously, if you say
89% of the product’s user base was affected… what does that mean?

Isolated System Versus Holistic Stack
It’s unlikely that the system affected by an incident exists in a vac‐
uum (unless you’re joining us from Hoover, Dyson, or Roomba).
Unfortunately, it’s a common antipattern to limit the scope of sys‐
tems analysis to what appears to be broken—without considering
the system context (the parts of the system’s environment that are
relevant to the system’s functioning). Here are some things to think
about that will broaden the depth of your systems analysis:

• (If applicable) is this incident reviewed as a single event, or are•
affiliated/correlated/child events discussed?

52 | Chapter 5: Postmortems and Beyond

https://oreil.ly/NeF8S

• Did you or any major internal customers learn about previously•
unknown dependencies?

• How well did end-to-end communication happen?•

While the incident might just have occurred within one subsection
of your overall stack, it doesn’t mean your incident happened in
isolation. Looking at if and how the incident affected the overall
stack and members of the company may uncover insights into how
things break. This can include whether your incident caused other
incidents or cascading failures, or whether your company as a whole
was able to communicate effectively during the incident.

Point-in-Time Versus Trajectory
In research, the technique of meta-analysis is the concatenation
of multiple studies into bigger-picture conclusions. If you consider
each postmortem to be a research study that conveys a point-in-time
view of your system, then considering these works as a whole can
help identify emerging patterns and insights. We recommend taking
each postmortem as an opportunity to check in on the behavior of
your system over time. Consider the following:

• Is this incident reviewed in terms of the system’s trajectory over•
time?

• Is the same failure type recurring?•
• Are there any reinforcing or balancing loops happening long•

term?

Part of holistic systems thinking is considering your system over
time. In general, it’s a good thing to never have the same incident
happen twice.

We’ve looked at systems analysis for organizational improvement,
and how it can benefit you and your team. Now let’s look at a
real-world example of this.

Writing Postmortems | 53

CHAPTER 6

The Mayan Apocalypse:
A Real-World Example

To see some of the principles we talked about in action, we’re going
to dig into a real-world example of a major Google outage. We’ll go
through what happened, see the scaled organizational structure in
action, and show how it was resolved and how we’ve worked to learn
from this incident.

For Google, the Mayan Apocalypse was not some New Age phe‐
nomenon that led to failure during the year 2012. Rather, the Mayan
Apocalypse happened June 2, 2019, with a network automation tool
named Maya. Maya does flag management and organizes traffic
direction over one of our networking backbones, and a tiny, tiny
code shift led to an entity type being consistently mis-flagged.

Around noon, we were proceeding with planned maintenance. We
finalized a list of operations and configuration changes (including
on Maya) to be run over a set number of servers. When this mis-flag
came into conflict with our job scheduling logic, we “discovered”
a new failure mode in which jobs associated with traffic direction
were de-scheduled en masse. The network traffic to/from those
regions then tried to fit the de-scheduled jobs into the remaining
network capacity where traffic direction was still functional, but
it did not succeed. The network became congested, and our sys‐
tems correctly triaged the traffic overload and auto-drained larger,
less latency-sensitive traffic in order to preserve smaller, latency-
sensitive traffic flows.

55

The traffic jam had begun. As a result, monitoring kicked off the
first step in our incident management process: alerting. When a
component responder receives an alert from their monitoring sys‐
tem, it’s reflective of a change that has happened within the system
they are covering. Our monitoring systems noted that our error
thresholds were crossed, and they sent an automated notification to
the person on call for that networking component, who began to
assess what was going on.

Meanwhile, the reduced network capacity in affected regions caused
spillover, and that network congestion led to cascading failures
throughout our network and computing infrastructure. In general,
our network prioritizes our users above our internal traffic, includ‐
ing employees. This is actually fine because we’d rather redirect
capacity from the 99.9% of the workforce who can’t help solve the
problem, and use it to do the best we can for our users. The 0.1%
of employees who participate in incident response usually know
how to proceed and sidestep this throttle. But one of the effects of
this cascading failure was significant outages of our internal tooling,
which disrupted a lot of alerting and led to a huge number of
pagers going off. As every on-caller switched into incident response
mode, they noticed service unavailability due to networking issues.
The network component on call quickly identified the cause of the
network congestion, but the same network congestion which was
creating service degradation also slowed their ability to restore the
correct configurations.

Everyone wanted to best support their users and understand the
anticipated trajectory of service restoration, so the original network
component on-caller suddenly had a lot of company.

We have three classifications of components at Google:

• Infrastructure components such as a networking pipeline, or•
storage service.

• Product-service components such as YouTube streaming, or the•
frontend of Google Search.

• Internal service components like monitoring, zero trust remote•
access, and Maya and fleet management. And everything in this
bucket was having a bad time.

56 | Chapter 6: The Mayan Apocalypse: A Real-World Example

The widespread dependency meant that no one could move forward
until the network component on call resolved the issue. Other on-
callers began chiming in, offering assistance, and asking questions
about when their service would be alive again. The intended paral‐
lelism from having so many distinct responders was not providing
accelerated mitigation. Root causes and second-order effects began
to blur; one team’s cause was another team’s effect, and everyone was
trying to contribute their knowledge. While everyone is expert in
their system’s stack, most didn’t have a full-system overview of which
tooling paths were rendered unusable.

Why? Paths which never touched the congested network were fine.
Paths which did touch the congested network were OK if, at that
point, the path looked like an external user, because we’d assigned
them priority. So, services we offer to external users were available—
things like video calls or editing documents. However, if the path
was something fundamentally internal, such as job or flag control or
Maya configurations, it was deprioritized and stuck.

We were watching a volcano erupt and then, 20 minutes later, com‐
ing to the conclusion that our issue “might be lava related.”

One hour into the outage, one component responder noted that the
system-of-systems issues impacting our infrastructure were too per‐
vasive, and coordinated communications surrounding the incident
were turning into chaos and discord. At this point, more than 40
teammates had joined the incident response communication chan‐
nel, chiming in to try to help. Measuring the impact showed us half
the globe. Google Cloud, Gmail, Google Calendar, Google Play, and
other services were affected—preventing businesses from operating,
preventing employees from being productive, and preventing peo‐
ple from communicating with one another. Some employees were
trying to use the fragmented services that didn’t need the damaged
network, while others had given up.

With nearly 40 people involved, there wasn’t enough mental space
for our networking hero to work out the appropriate mitigations,
coordinate implementing those mitigations, communicate widely to
all stakeholders, and manage expectations. So, they escalated. Our
network component on-caller paged Tech IRT; their page reached
a number of Tech IRT members within an appropriate time zone,
and those available to work on the incident signaled their availabil‐
ity. Because the incident was so far reaching, many were already

The Mayan Apocalypse: A Real-World Example | 57

involved in the incident. Several of our Tech IRT responders didn’t
take the role of incident commander, because they were members
or managers of teams that worked on networking and could help
address the primary root cause, so they chose to assist with opera‐
tions instead.

The member of Tech IRT who accepted the role of incident
commander hadn’t previously worked on the networking compo‐
nents that were affected by the failure, but they were able to assess
the state of our SoS and assess the state of the people responding to
the outage. Using their training, this person accessed our production
systems using a mechanism that immediately identifies their actions
as “incident response,” and was able to subvert the “degraded inter‐
nal traffic” flagging. Once there was a little headroom for internal
traffic, they directed the networking on-caller to jump in and make
things happen.

While that was ongoing, they quickly imposed structure and organi‐
zation on the communications that were occurring and on everyone
who was trying to “pitch in.” Once this frenzy of chaotic engineering
energy was organized, everyone started making progress—together.
They could more clearly track the ongoing status of different sys‐
tems, and see the pace with which mitigative actions were being
rolled out. With this administrivia no longer burdening our network
component responder, they—and their team, who had shown up
to help—had the space to implement an appropriate mitigation
plan. This included shedding a lot of load in order to buy system
headroom for a healthy reboot and some emergency-forced config
changes.

Once the path forward to mitigate the incident was in motion, the
Tech IRT member focused on driving the incident toward closure.
They set some exit criteria for when we could close the incident,
made sure that other systems were supported in any recovery
actions they needed to perform, and then made sure the involved
response team could hand off and detach.

After the incident concluded and normal service was restored,
an in-depth postmortem took place to analyze the incident and
understand the nuances of its root causes and the emergent prop‐
erties that were brought to light through these failure modes.
The networking teams involved have since worked on some really
cool initiatives to restructure Maya and prevent this failure mode,

58 | Chapter 6: The Mayan Apocalypse: A Real-World Example

and similarly-possible-but-previously-not-considered failure modes
from ever plaguing our systems again.

Finally, we rewarded the folks involved with internal profile badges,
honorific memes, and bonuses. A really severe incident is, for most,
the worst day of their career. Offering something small provides a
subtle incentive for everyone to contribute to the postmortem, help
us learn, and continually grow more resilient.

The Mayan Apocalypse: A Real-World Example | 59

CHAPTER 7

Conclusion and Moving Forward

We looked at the basics of incidents, and took a look at the incident
management lifecycle: preparedness, response, and recovery. It’s a
lot to process, but you might now be wondering, “What’s next?”

Your first call to action is this: learn to use incident management
only when it’s appropriate. Incident response is a human-expensive
activity. A person, often several people, needs to be involved
throughout the drive from initial alerting to resolution. The act of
incident response is intended to put in place mitigations that correct
problems while they are happening, in order to buy time to make
decisions about priorities. This means that regular product fixes
might not be rolled out and long-term plans and improvements
might not be prioritized. Incident response might mean that SLOs
are violated or customer commitments can’t be met. It also means
that the employees working on incident response are going to feel it.

It’s well documented that first responders to physical incidents are
at heightened risk of burnout and responder fatigue; this same
trend also applies to individuals who work on nonphysical inci‐
dents—namely, anyone whose job can involve work–life imbalance,
extremes of activity, or a possible lack of control. These are common
factors in technical incident management jobs, which means that
employees can feel the effects and career consequences of burnout.
The risks here involve, at best, low performance, and at worst,
employee attrition. Because of this possibility of burnout-related
employee effects, it becomes imperative for a company to do inci‐
dent management as well as possible, and as little as possible.

61

https://oreil.ly/iwkqv
https://oreil.ly/9EL1W
https://oreil.ly/9EL1W
https://oreil.ly/eW5Rg
https://oreil.ly/lyDgn

Your next action item is to treat incident management as a critical
operational discipline at which you want to be good. So, what does
it mean to “be good” at incident management? It means your team
(not just any one individual) actively works to improve all parts
of this cycle. Although this is dull in comparison to the dramatic
mental picture of a few superhero firefighters swooping in to save
the day, a heroism mindset is harmful. The less-exciting work of
slowly and carefully improving incident preparedness; developing
the tools, techniques, and communication pipelines to respond to
incidents well; and then prioritizing sustainable and scalable engi‐
neering are what comprise a strong incident management practice.
By seeing everything in a continuous and interconnected loop,
everyone is important and you avoid placing the blame on any one
person or system component. The practice of blamelessness fosters
the kind of psychologically safe workplace where your people can
thrive and build great products. These are the types of things that
helped Google get through a period of tremendous uncertainty in
recent global history, and these are the types of things that can help
improve resilience at your company too.

In general, don’t throw incident management at every potential
problem or type of problem. Use incident management sparingly
and appropriately in order to avoid burning out your team mem‐
bers. Stop managing the incident when you’re done managing the
incident, and start doing the engineering work needed to fix your
longer-running issues or risks. Identify and use some other tools
that might be at your disposal.

Additional Reading
• Monitoring from The Site Reliability Workbook•
• Incident Response from The Site Reliability Workbook•
• Postmortem Culture: Learning from Failure from The Site Relia‐•

bility Workbook
• Postmortem Action Items: Plan the Work and Work the Plan•
• “Shrinking the Impact of Production Incidents Using SRE Prin‐•

ciples—CRE Life Lessons”
• “"Shrinking the Time to Mitigate Production Incidents—CRE•

Life Lessons”

62 | Chapter 7: Conclusion and Moving Forward

https://oreil.ly/AmHEG
https://oreil.ly/ZxUBT
https://oreil.ly/KzQfW
https://oreil.ly/1lbAE
https://oreil.ly/NHDPX
https://oreil.ly/NHDPX
https://oreil.ly/iJfv9
https://oreil.ly/iJfv9

Bibliography
“Google Data Center FAQ”. Data Center Knowledge, 19 March
2017.

Aleksandra. “63 Fascinating Google Search Statistics”. SEOtribunal,
26 September 2018.

“Incident Command System Resources”. FEMA, The US Depart‐
ment of Homeland Security, 26 June 2018.

Beyer, Betsy, Chris Jones, Niall Richard Murphy, and Jennifer Pet‐
off, eds. Site Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, 2016.

“Data Access and Restrictions”. Google Workspace Security White‐
paper, October 2021.

Treynor Sloss, Benjamin. “An Update on Sunday’s Service Disrup‐
tion”. Inside Google Cloud (blog), Google Cloud, 3 June 2019.

Acknowledgments
The authors thank Jennifer Mace, Hazael Sanchez, Alexander Perry,
Cindy Quach, and Myk Taylor for their contributions to this report.

Bibliography | 63

https://oreil.ly/vy6ru
https://oreil.ly/NEC29
https://oreil.ly/4RsSe
https://oreil.ly/9EomJ
https://oreil.ly/LiWX6
https://oreil.ly/LiWX6

About the Authors
Ayelet Sachto is a site reliability engineer in GKE SRE, formerly
strategic cloud engineer and leading PSO-SRE efforts in EMEA
@Google UK. Throughout her 17-year career, she developed and
designed large-scale applications and data flows while implementing
DevOps and SRE’s methodologies. She is the author of numerous
technical articles, talks, and trainings, including “SRE Fundamentals
in 3 Weeks” (an O’Reilly course), and has spoken at dozens of
conferences and led hundreds of workshops. Ayelet is also an active
member in the tech community and a mentor. In her spare time,
Ayelet loves creating things, whether it’s a dish in the kitchen, a
piece of code, or impactful content.

Adrienne Walcer is a technical program manager in SRE at Goo‐
gle. She is focused on resilience: reducing the impact of large
scale incidents on Google services, infrastructure, and operations.
A previous contributor to Google’s O’Reilly publications (A Practical
Guide to Cloud Migration), Adrienne was also a featured speaker on
scaled incident management at the final USENIX LISA conference
(LISA21). Before Google, Adrienne was a data scientist at IBM Wat‐
son Health (formerly, Explorys Inc.), and worked in biostatistics
at Strong Memorial Hospital and the Cleveland Clinic. She holds
a masters degree in systems engineering from George Washington
University and a bachelor’s degree from the University of Rochester.
In her free time, Adrienne enjoys Dungeons & Dragons and volun‐
teers with Second Harvest Food Bank.

	Cover
	Google
	Copyright
	Table of Contents
	Chapter 1. Introduction
	What Is an Incident?
	Not Everything Is an Incident
	Monitoring
	Alerting
	The Importance of Actionable Alerts

	The Incident Management Lifecycle

	Chapter 2. Practicing Incident Response Readiness (Preparedness)
	Disaster Role-Playing and Incident Response Exercises
	Regular Testing
	Nuanced Testing and Automation
	Preparing Responders
	Writing Incident Response Tests

	Chapter 3. Scaling Incident Management (Response)
	Component Responders
	System-of-System (SoS) Responders
	Incident Response Organizational Structure
	Common Protocol
	Trust
	Respect
	Transparency

	Managing Risk
	The Function of Incident Management and Risk

	Chapter 4. Mitigation and Recovery
	Urgent Mitigations
	Reducing the Impact of Incidents
	Calculating the Impact of Incidents
	Reducing the Time to Detect
	Reducing the Time to Repair
	Increasing the Time Between Failures

	Chapter 5.
 Postmortems and Beyond
	Psychological Safety
	Psychological Safety When Implementing Incident Management Practices
	Psychological Safety When Handling Incidents
	Additional Tips for Fostering a Psychologically Safe Environment

	Writing Postmortems
	Systems Analysis for Organizational Improvement
	Root Cause Versus Trigger
	Isolated System Versus Holistic Stack
	Point-in-Time Versus Trajectory

	Chapter 6. The Mayan Apocalypse: A Real-World Example
	Chapter 7. Conclusion and Moving Forward
	Additional Reading
	Bibliography
	Acknowledgments

	About the Authors

