
Overcoming Stagefright
Integer Overflow Protections in Android

Dan Austin (oblivion@google.com)

May 2016

Proprietary + Confidential

Agenda

$ whoami

Stagefright

Sanitizers

Sanitizers in Practice

The Future

Proprietary + Confidential

$ whoami

Proprietary + Confidential

● Dan Austin

● Google since August 2015

● Android Platform Security

● I work on fuzzing and fuzzing accessories!

○ Scalable Fuzzing

○ Smart Fuzzing

○ Compiler-based Defenses

○ Vulnerability Mitigations

$ whoami

Proprietary + Confidential

Proprietary + Confidential

Stagefright

Proprietary + Confidential

Stagefright

Proprietary + Confidential

Stagefright

Proprietary + Confidential

Stagefright
MEDIA EXTRACTORS

AACExtractor AMRExtractor

AVIExtractor DRMExtractor

FLACExtractor MidiExtractor

MP3Extractor MPEG2PSExtractor

MPEG2TSExtractor MPEG4Extractor

NuMediaExtractor MatroskaExtractor

OggExtractor WAVExtractor

WVMExtractor

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

 And attacker provided

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

 And attacker provided

 That results in an integer overflow

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

 And attacker provided

 That results in an integer overflow

 And memory corruption

Proprietary + Confidential

Vulnerability in Stagefright!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

 And attacker provided

 That results in an integer overflow

 And memory corruption

 And ultimately execution...

Proprietary + Confidential

Vulnerability in Stagefright!!!

EVERYBODY FREAK OUT!!!

Vulnerability in MPEG4Extractor!

 Specifically in parseChunk which, well parses chunks

 Of type tx3g

 That contains a size field

 Which is not validated

 And attacker provided

 That results in an integer overflow

 And memory corruption

 And ultimately execution...

Proprietary + Confidential

It’s not all bad...

Vulnerability Researcher provided a patch!

Android was patched in August 2015

Raised visibility of Android's Monthly Security Update Program

Proprietary + Confidential

It’s not all bad...

Exploitation of the stagefright vulnerability on its own was in the
context of mediaserver

Privesc possible with an additional exploit

Led to a full re-architecture of mediaserver with security in mind

Original PoC required sending an MMS

Repeatedly

Which is a bit noticeable

Proprietary + Confidential

Integer Overflows

Proprietary + Confidential

Integer Overflows

Integers are kept in a container of finite space

If an arithmetic operation results in a value that can’t be fully kept in that finite
space, integer overflow occurs!

Example: 4294967295 + 1 = ?

Proprietary + Confidential

Integer Overflows

Example: 4294967295 + 1 = ?

Represented as 32 bit values:

So 4294967295 + 1 = 0?

+

32 bits ends here

Proprietary + Confidential

Integer Overflows

In C & C++:

For unsigned values: the result is taken modulo 2bits

For signed values: the result is undefined

Can lead to memory corruption! (CVE-2015-3864!!!)

Proprietary + Confidential

Exploitable Integer Overflows: How do they work?

Proprietary + Confidential

Exploitable Integer Overflows: How do they work?

in_buf_size is user
controlled, so it can be
anything...

Proprietary + Confidential

Exploitable Integer Overflows: How do they work?

If in_buf_size > 0xffffffef,
then buf_size < in_buf_size

in_buf_size is user
controlled, so it can be
anything...

Proprietary + Confidential

Exploitable Integer Overflows: How do they work?

If in_buf_size > 0xffffffef,
then buf_size < in_buf_size

in_buf_size is user
controlled, so it can be
anything...

If buf_size < in_buf_size, then the
memcpy will write past the allocated
amount, resulting in memory corruption
:(

Proprietary + Confidential

Coding is Hard

Unfortunately, the patch had a flaw…

… and exploitation was still possible.

Thanks Project Zero!

This is the check that was added in
the patch. Unfortunately, SIZE_MAX
and size are 32 bits, while
chunk_size is 64 bits, which means
overflow can still happen

Proprietary + Confidential

UndefinedBehaviorSanitizer

C & C++ have the concept of undefined behavior

Often the cause of subtle bugs...

...such as signed integer overflow…

LLVM has an UndefinedBehaviorSanitizer!

Which adds checks at the code generation level to detect and prevent undefined behavior

Authors also included unsigned integer overflow, which is nice

Proprietary + Confidential

UBSan: Integer Overflow Sanitization: How does it work?

Implemented in clang as of the CodeGen module (CGExpr & CGExprScalar)

Arithmetic operation (+, -, *) detected and passed to EmitOverflowCheckedBinOp

LLVM Intrinsic corresponding with the operation checks for overflow

Generate code to branch to abort or handler function if an overflow is detected

Overflow cannot occur!

Proprietary + Confidential

What if this were applied to libstagefright?

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Sanitizers In Practice

Proprietary + Confidential

Stagefright before patch

Proprietary + Confidential

Stagefright after patch v1

Proprietary + Confidential

Stagefright after patch v1, sanitized

Proprietary + Confidential

Stagefright before patch v1, sanitized

Proprietary + Confidential

UBSan applied to libstagefright

In Summary:

● UBSan with original patch: no integer overflow, stops exploit!

● UBSan with no patch: no integer overflow, stops exploit!

SEEMS LEGIT.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Proprietary + Confidential

UBSan: The Good

Proprietary + Confidential

UBSan: The Good

It would have prevented the integer overflow based stagefright

vulnerabilities!

It’s easy! Just add LOCAL_SANITIZE:=unsigned-integer-overflow to

the Android.mk

It’s applied everywhere! Catch ALL THE OVERFLOWS!

It’s fun! Play whack a mole fixing all that unexploitable undefined

behavior in your legacy code base, er, wait...

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Proprietary + Confidential

UBSan: The Bad

Proprietary + Confidential

UBSan: The Bad

Again, it’s applied EVERYWHERE

Even code designed to work with unsigned overflow!

It’s not free: some size/execution overhead

Optimized code generation for abort function placement makes

debugging hard :(

See ElementaryStreamQueue::dequeueAccessUnitMPEGVideo

Proprietary + Confidential

UBSan: The Bad

“False Positives”

UBSan is a code health tool being used as a hardening tool

From a security perspective, if an overflow does not influence a
memory operation in some way, it’s likely not exploitable

There are lots of overflows in the Android code base that do not
influence memory operations at all:

Crypto operations often work modulo 2wordsize

Codec operations as well

while (n--)

Proprietary + Confidential

UBSan: The Ugly

AMR-WB encoder

Legacy code

Lots of arithmetic integer overflows

And stability issues…

Example: “OK, Google” voice recognition

Specifically, this for loop in the coder function

Proprietary + Confidential

UBSan: The Ugly

When no integer sanitization, clang generates NEON instructions

That do not partition the data correctly

With integer sanitization, clang generates normal ARM

instructions

Parallelization is broken by the sanitization checks

Data is processed correctly

¯_(ツ)_/¯

Proprietary + Confidential

The Future

Proprietary + Confidential

UBSan Runtime

In Android, UBSan overflow detection results in program abort

Great for security, not so good for testing

LLVM upstream UBSan has a runtime library that outputs
diagnostic messages instead of aborts

Currently testing the UBSan runtime in Android for platform-wide
detection of integer overflows! (AOSP)

Proprietary + Confidential

Global Integer Domination Sanitization !!!

Proprietary + Confidential

Integer Overflow Specific Fuzzing

libFuzzer makes fuzzing easy!

1. Write a libFuzzer fuzzer
2. Write a mutator specific to Integer Overflow bugs
3. Include additional logic to better choose paths for further

analysis
4. ???
5. Profit!

Proprietary + Confidential

Questions?

Dan Austin

oblivion@google.com

mailto:oblivion@google.com
mailto:oblivion@google.com

