Query-Free News Search

Monika Henzinger
Google Inc.
2400 Bayshore Parkway
Mountain View, CA 94043
USA

monika@google.com

Brian Milch
UC Berkeley
Computer Science Division
Berkeley, CA 94720-1776
USA

milch@cs.berkeley.edu

ABSTRACT

Many daily activities present information in the form of aestm of
text, and often people can benefit from additional infororatn
the topic discussed. TV broadcast news can be treated asione s
stream of text; in this paper we discuss finding news articiethe
web that are relevant to news currently being broadcast.

We evaluated a variety of algorithms for this problem, loakat
the impact of inverse document frequency, stemming, comgsu
history, and query length on the relevance and coverage w$ ne
articles returned in real time during a broadcast. We alstuexed
several postprocessing techniques for improving the pi@t| in-
cluding reranking using additional terms, reranking by uwtoent
similarity, and filtering on document similarity. For thedtealgo-
rithm, 84%-91% of the articles found were relevant, withesst
64% of the articles being on the exact topic of the broadchst.
addition, a relevant article was found for at least 70% ofttiggcs.

Categories and Subject Descriptors

H.3.3 [Information Systemq: Information Search and Retrieval;
H.3.5 Information Systemg: Online Information Services

General Terms
Algorithms, experimentation

Keywords
Web information retrieval, query-free search

1. INTRODUCTION

Many daily activities present information using a writtarspo-
ken stream of words: television, radio, telephone callsetings,
face-to-face conversations with others. Often people arefit
from additional information about the topics that are bedig-
cussed. Supplementing television broadcasts is partigudttrac-
tive because of the passive nature of TV watching. Intevads
severely constrained, usually limited to just changingdhannel;
Copyright is held by the author/owner(s).

WWW2003May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Bay-Wei Chang
Google Inc.
2400 Bayshore Parkway
Mountain View, CA 94043
USA

bay@google.com

Sergey Brin
Google Inc.
2400 Bayshore Parkway
Mountain View, CA 94043
USA

sergey@google.com

there is no way to more finely direct what kind of informatiofllw
be presented.

Indeed, several companies have explored suggesting wels pag
to viewers as they watch TV. For example, thiercast systende-
veloped by Intel, allows entire HTML pages to be broadcasinin
used portions of the TV signal. A user watching TV on a compute
with a compatible TV tuner card can then view these pages) eve
without an Internet connection. NBC transmitted pages ntart
cast during their coverage of the 1996 Summer Olympics. [the
teractive TV Links systerdeveloped by VITAC (a closed caption-
ing company) and WebTV (now a division of Microsoft), broad-
casts URLs in an alternative data channel interleaved witbed
caption data [17, 2]. When a WebTV box detects one of these
URLSs, it displays an icon on the screen; if the user choose®to
the page, the WebTV box fetches it over the Internet.

For both of these systems the producer of a program (or com-
mercial) chooses relevant documents by hand. In fact, the pr
ducer often creates new documents specifically to be aatésse
TV viewers. To our knowledge, there has been no previous work
on automaticallyselecting web pages that a user might want to see
while watching a TV program.

In this paper we study the problem of finding news articles on
the web relevant to the ongoing stream of Badcast newsWe
restrict our attention to broadcast news since it is veryutepand
information-oriented (as supposed to entertainmentateit).

Our approach is to extract queries from the ongoing stream of
closed captions, issue the queries in real time to a newslsear
gine on the web, and postprocess the top results to detetimine
news articles that we show to the user. We evaluated a vasfety
algorithms for this problem, looking at the impact of inveidoc-
ument frequency, stemming, compounds, history, and qesiyth
on the relevance and coverage of news articles returnediminee
during a broadcast. We also evaluated several postprogetesih-
niques for improving the precision, including rerankingngsad-
ditional terms, reranking by document similarity, and filbgy on
document similarity. The best algorithm achieves a prenisif
91% on one data set and 84% on a second data set and finds a rele-
vant article for at least 70% of the topics in the data sets.

In general, we find that it is more important to concentrate on
a good postprocessing step than on a good query generagipn st

The difference in precision between the best and the worstyqu
generation algorithm is at most 10 percentage points, vahitdest
postprocessing step improves precision by 20 percentaigéspay
more. To reduce the impact of postprocessing on the totabeum
of relevant articles retrieved, we simply increased the peinof
queries.

To be precise, the best algorithm uses a combination of tech-
nigues. Our evaluation indicates that the most importaatifes
for its success are a “history feature” and a postprocessmthat
filters out irrelevant articles. Many of the other featurbattwe
added to improve the query generation do not seem to havadycle
beneficial impact on precision. The “history feature” emabihe
algorithm to consider all terms since the start of the curtepic
when generating a query. It tries to detect when a topic absng
and maintains a data structure that represents all ternteiour-
rent topic, weighted by age. The filtering step discardsladgithat
seem too dissimilar to each other or too dissimilar to theentr
topic. We also experimented with other postprocessingrigcies
but they had only a slight impact on precision.

Our algorithms are basically trying to extract keywordsnfre
stream of text so that the keywords represent the “curreeteof
the text. Using existing terminology this can be caltede-based
keyword extractionThere is a large body of research on topic de-
tection and text summarization. Recently, time-based samzan
tion has also been studied [1], but to the best of our knovdedg
there is no prior work on time-based keyword extraction.

The remainder of this paper is organized as follows: Secion
describes the different query generation algorithms apditfier-
ent postprocessing steps. Section 3 presents the evalua&iec-
tion 4 discusses related work. We conclude in Section 5.

2. OUR APPROACH

Our approach to finding articles that are related to a strebm o
text is to create queries based on the text and to issue thieste
a search engine. Then we postprocess the answers returfied to
the most relevant ones. In our case the text consists ofdlcee-
tioning of TV news, and we are looking for relevant news &etc
on the web. Thus we issue the queries to a news search engine.

We first describe the algorithms we use to create querieshemd t
the techniques we use for postprocessing the answers.

2.1 Query Generation

We are interested in showing relevant articles at a reguaitg r
during the news broadcast. As a result the query generalim a
rithm needs to issue a query periodically, i.e., evelseconds. It
cannot wait for the end of a topic. We chase= 15 for two rea-
sons: (1) Empirically we determined that showing an arteslery
10-15 seconds allows the user to read the title and scan 8te fir
paragraph. The actual user interface may allow the userusepa
and read the current article more thoroughly. (2) A captiext t
of 15 seconds corresponds to roughly three sentences ohlyoug
50 words. This should be enough text to generate a well-Bpdci

query.

used because experiments on a test set (different from tiazev
tion set used in this paper) showed that 1-term queries arestgue
and return many irrelevant results. On the other hand, ryuugif
of the time 3-term queries are too specific and do not retuyn an
results (because we are requiring all terms to appear indarel
results). The last query generation algorithm uses a caatibim
of 3- and 2-term queries to explore whether the 2-term lirnit$
performance.

As is common in the IR literature [18] theverse document fre-
quencyidf of a term is a function of the frequengyof the term
in the collection and the numbéy of documents in the collec-
tion. Specifically, we use the functidng(N/(f + 1)). Since we
do not have a large amount of closed caption data availakge, w
used Google’s web collection to compute thg of the terms. This
meansN was over 2 billion, angf was the frequency of a term in
this collection. Unfortunately, there is a difference inrdause in
written web pages and spoken TV broadcasts. As a result iteabui
small set of words that are common in captions but rare in thie w
data. Examples of such words asporterandanalyst All of the
algorithms below ignore the terms on this stopword list.

2.1.1 The baseline algorithm A1-BASE

Our baseline algorithm is a simpt¢ - idf based algorithm. It
weights each term bf - idf, wheret f is the frequency of the term
in the text segmerif’. This results in larger weights for terms that
appear more frequently ift, and larger weights for more unusual
terms. This is useful since doing a search with the moreristie
terms of the news story is more likely to find articles relatethe
story. The baseline algorithm returns the two terms witlydat
weight as the query.

2.1.2 Thef -idf? algorithm A2-IDF2

This is the same algorithm as the baseline algorithm, buhaite
weighted byt f -idf 2. The motivation is that rare words, like named
entities, are particularly important for issuing focusgeeries. Thus,
theidf component is more important tha.

2.1.3 The simple stemming algorithm A3-STEM

In the previous two algorithms each term is assigned a weight
Algorithm A3-STEM assigns instead a weight to eatbm The
stemof a word is approximated by taking the first 5 letters of the
word. For examplegcongressand congressionalwvould share the
same stentongr. The intention is to aggregate the weight of terms
that describe the same entity. We use this simple methodtef-de
mining stems instead of a more precise method because aur alg
rithm must be real-time.

For each stem we store all the terms that generated the si&m an
their weight. The weight of a term is- ¢ f - idf?, wherec = 1 if
the term was a noun anrd= 0.5 otherwise. (Nouns are determined
using the publicly available Brill tagger [3].) We use thigight-
ing scheme since nouns are often more useful in queries than o
parts of speech. The weight of a stem is the sum of the weidhts o
its terms.

Because postprocessing may eliminate some of the candidate To issue a query the algorithm determines the two top-weiht

articles, we return two articles for each query. We alsoestt
s = 17, thus allowing up to half of the candidate articles to be dis-
carded while maintaining the same or better coverage-ads.

The query generation algorithm is given tiegt segmerit’ since
the last query generation. It also keeps information aboeifpre-
vious stream of text. We consider seven different query geioa
algorithms, described in the following sections. All buethast
query generation algorithm issue 2-term queriesednis either a
word or a 2-word compound likBlew York Two-term queries are

stems and finds the top-weighted term for each of these stems.
These two terms form the query.

2.1.4 The stemming algorithm with compounds, al-
gorithm A4-COMP
Algorithm A4-COMP consists of algorithm A3-STEM extended
by two-word compounds. Specifically, we build stems not daty
one-word terms, but also for two-word compounds. For this we
use a list of allowed compounds compiled from Google’s cerpu

of web data. Stems are computed by stemming both words in the plementationg; = 0.001 anda»> = 0.0003. WhenT is somewhat

compound, i.e., the stem for the compowmderans administration

is veter-admin Compounds are considered to be terms and are
weighted as before. Queries are issued as for algorithm B\

i.e., it finds the top-weighted term for the two top-weighstems.

similar, we use the weight multiplier = 0.927'°00¢i™ " which
was chosen so that < 0.9, i.e., the weights are more decreased
than in the case thdt is similar to the early text.

In the resulting stem vector the top two terms are found in the

Since a term can now consists of a two-word compound, a query same way as in algorithm A4-COMP.

can now in fact consist of two, three, or four words.

2.1.5 The history algorithm A5-HIST

Algorithm A5-HIST is algorithm A4-COMP with a “history fea-
ture”. All previous algorithms generated the query termglymn
the basis of the text segmentthat was read since the last query
generation. Algorithm A5-HIST uses terms from previoud t®g-
ments to aid in generating a query for the current text segnties
notion being that the context leading up to the current teay m
contain terms that are still valuable in generating the yjuer

It does this by keeping a data structure, called stem vec-
tor, which represents the previously seen text, i.e., the hyistid
combines this information with the information produceddabgo-
rithm A4-COMP for the current text segmeftand finds the top
weighted stems.

To be precise, for each stem the stem vector keeps a weight and

a list of terms that generated the stem, each with its indadid

weight. The stem vector keeps the stems of all words that were

seen between the last reset and the current text segmergsef\
simply sets the stem vector to be the empty vector; it occimsnv
the topic in a text segment changes substantially from theigus
text segment (see below).

When algorithm A5-HIST receives text segméhtit builds a
second stem vector for it using algorithm A4-COMP. Then éals
how similarT is to the text represented in the old stem vector by
computing a similarity scoreim. To do this we keep a stem vec-
tor for each of the last three text segments. (Each text segme
consists of the text between two query generations, i.eqrisists
of the text of the last seconds.) We add these vectors and compute
the dot-product of this sum with the vector f6t only considering
the weights of the terms and ignoring the weights of the stdins
the similarity score is above a threshald thenT is similar to the
earlier text. If the similarity score is above but belowa;, then
T is somewhat similato the earlier text. OtherwisE is dissimilar
from the earlier text.

If text segmenfl is similar to the earlier text, the old stem vector
is agedby multiplying every weight by 0.9 and then the two vectors

are added. To add the two vectors, both vectors are expawnded t
have the same stems by suitably adding stems of weight 0. Also

the set of terms stored for each stem is expanded to consiise of

same set by adding terms of weight 0. Then the two vectors are

added by adding the corresponding weights of the stems attne of
terms.

If text segmentl” is very dissimilar from the earlier text, then
the old stem vector is reset and is replaced by the new stetarvec
To put it another way, when the current text is very differtan
the previous text, it means that the topic has changed, stopee
history should be discarded in deciding what query to issue.

If text segmentl” is somewhat similar to the earlier text, then
the stem vector is not reset, but the weights in the old stestove
are decreased by multiplying them with a weight that de@gas
with the similarity scoresim. Afterwards the old stem vector and

the new stem vector are added. So even though the topic has no

completely changed, previous terms are given less weighide
for topic drift.

We used a test data set (different from the evaluation das se
to choose values far; andas in the sim calculation. In our im-

2.1.6 The query shortening algorithm A6-3W

To verify our choice of query length 2 we experimented with a
query shortening algorithm, which issues a multiple ternergu
and shortens the query until results are returned from thesne
search engine. Earlier experiments showed that reducenqukry
to one term hurt precision. Therefore we kept two terms as the
minimum query length. The query shortening algorithm A6-8V
identical to A5-HIST, but begins with three-term queriesssuing
the query with the two top-weighted terms if there are noltesu

2.1.7 Algorithm A7-IDF

Algorithm A7-IDF is identical to algorithm A5-HIST withidf>
replaced byidf.

(Note that each increasing algorithm A1-A6 adds one adutiio
feature to the previous. A7-IDF does not fit this pattern; veated
it in order to test the specific contribution édf? to A5-HIST’s
performance.)

2.2 Postprocessing

After generating the search queries we issue them to a news
search engine and retrieve the top at most 15 results. Nate th
each result contains exactly one news article. Because wetwa
retrieve articles that are about the current news item, \wiioted
the search to articles published on the day of the broadeabto
day before.

We applied several ways of improving upon these searchtegsul
described in the sections below, and then selected the topaw
sults to show to the user as news articles related to the basad
news story.

Since several queries will be issued on the same topic, thegy m
yield similar result sets and many identical or near ideatticticles
may end up being shown to the user. In fact, in the data setk use
for the evaluation (see 3.1), queried at beth 7 ands = 15, an
average of 40% of articles returned would be near-duplicadeich
a large number of duplicates would lead to a poor user expegie
so we employed a near-duplicate backoff strategy acroskealll-
gorithms. If an article is deemed a near-duplicate of one ltha
already been presented, the next article in the rankingléstsal.

If all articles in the result set are exhausted in this manterfirst
article in the result set is returned (even though it was dmbm
near-duplicate). This reduces the number of repeatedyhijii-

lar articles to an average of 14% in the evaluation data sets.

To detect duplicates without spending time fetching eatibley
we looked at the titles and summaries of the articles retlibyehe
search engine. We compared these titles and summaries the ca
of article titles and summaries that have already been alisgl
during the broadcast. A similarity metric of more than 20%rdvo
overlap in the title, or more than 30% word overlap in the stanyn
was successful in identifying exact matches (e.g., the satiwe
returned in the results for a different query) and slightamats of
the same article, as is common for news wires to issue asahge st

plevelops over time.

The postprocessing steps we used were boosting, simitarapk-
ing, and filtering.

2.2.1 Boosting

we provide periodically during the broadcast. For each thged

The news search engine gets atwo-term query and does not knov\ﬁ.rticle consider whether the article is relevant to at leasie of

anything else about the stream of text. The idea behind imgpst
is to use additional high-weighted terms to select from #msreh
results the most relevant articles. To implement this itheacuery
generation algorithm returns along with the query assedibbost
termsandboost values The boost terms are simply the top five

terms found in the same way as the query terms. The boostsvalue

are the IDF values of these terms.

The boosting algorithm then reranks the results returnzu the
search by computing a weight for each result using the beosist.
For a boost term which has IDFf and occurg f times in the
text summary returned with the result, the weight is increted
by the valueidf - 4tf/(tf + 3), which is atf - idf-like formula
that limits the influence of thef part to 4. For boost terms in the
title, the weight is increased by twice that value. Finaityfavor
more recent articles, the weight is divided dy 1, whered is the
number of days since the article was published. Since weaest
articles to the current date and the day before, the weigthivided
by either 1 or 2. The results are then reordered accordinbeiv t
weight; non-boosted results or ties are kept in their oagorder.

2.2.2 Similarity reranking

A second way of reranking is to compute for each of the results
returned by the search engine its similarity to the text sagri’
and to rerank the search results according to the similagtyre.
To implement this idea we built &f - idf-weighted term vector
for both the text segmefif and the text of the article and compute
the normalized cosine similarity score. (The first 500 chts of
the article are used.) This filtering step requires firstHatg the
articles, which can be time-expensive.

2.2.3 Filtering

The idea behind filtering is to discard articles that are \disy
similar to the caption. Additionally, when the issued quiryoo
vague, then the top two search results often are very diksingin-
deed, all the results returned by vague queries are oftgnditéer-
ent from one another.) So whenever we find two candidatelestic
and they are dissimilar, we suspect a vague query and ieetev
results. So we discard each of the articles unless it i< itsghly
similar to the caption.

We again used thef - idf-weighted term vector for the text seg-
mentT and the text of the article and computed the normalized
cosine similarity score as in the similarity reranking, adoWhen-
ever the pagé&- similarity score is below a thresholdthe article
is discardedRule FJ. If there are two search results we compute
their similarity score and discard the articles if the sdereelow a
thresholdp (Rule F2- but allowing each article to be retained if its
paged’ similarity score is above a threshgjdRule F3.

We analyzed a test data set (different from the evaluatida da
sets) to determine appropriate thresholds. In our impleatiem,
b=0.1,¢ = 0.3, andp = 0.35.

3. EVALUATION

To evaluate different algorithms on the same data set tHe-eva
ators worked off-line. They were supplied with two browsenw
dows. One browser window contained the article to be evatuat
The article was annotated with an input box so that the saare f
the article could simply be input into the box. The other ksew
window contained the part of the closed caption text for \Whiwe
article was generated. The evaluators were instructedllasvi

You will be reading a transcript of a television news broagtca
What you will be evaluating will be the relevance of articthat

the topics being discussed in the newscast for this artidke the
following scoring system to decide when a article is relévara
topic:

e 0 -if the article is not on the topic

e 1-ifthe article is about the topic in general, but not the exa
story

e 2 - if the article is about the exact news story that is being
discussed

For example, if the news story is about the results of theigeasial
election, then a article about a tax bill in congress wouldreca
0; a article about the candidates’ stands on the environrmemnild
score a 1; a article about the winner’s victory speech wowldrs
az2.

Don't worry if two articles seem very similar, or if you'veese
the article previously. Just score them normally. The “emtr
topic” of the newscast can be any topic discussed since tsie
article was seen. So if the article is relevant to any of thogécs,
score it as relevant. If the article is not relevant to thoseent
topics, but is relevant to a previous segment of the trapsciti is
considered not relevant; give it a 0.

We count an article as “relevant” (R) if it was given a scorel. of
or 2 by the human evaluator. We count it as “very relevant”) R+
it was given a score of 2.

To compare the algorithms we ugeecision i.e., the percent-
age of relevant articles out of all returned articld®ecallis usu-
ally defined as the percentage of returned relevant artmleof
all relevant articles that exist. However, this is very hewdnea-
sure on the web, since it is very difficult to determine alices on
a given topic. In addition, our algorithms are not desigredet
turn all relevant documents, but instead a steady streael@fant
documents. Thus, we define thelative recallto be the percent-
age of returned relevant articles out of all relevant agtgbooled
from all of the query generation algorithms with all postprodegs
variants. We use relative recall instead of the number of relevant
documents to enable comparison over different data setditidn-
ally, we measur¢opic coveragewhich is the percentage of topics
(defined below) that have at least one relevant article.

To understand the relationship of the different algorithwes
compute their overlap, both in terms of issued queries anerins
of articles returned. Since filtering is such a powerful t@qhe we
study its effectiveness in more detail.

3.1 Data sets

We evaluated all these approaches using the following twa da
sets:

(1) HN: three 30-minute sessions of CNN Headline News, each
taken from a different day , and

(2) CNN: one hour of Wolf Blitzer Reports on CNN from one
day and 30 mins from another day.

The Headline News sessions (“HN") consists of many, retfyiv
short, news stories. The Wolf Blitzer Reports (“CNN”) castsiof
fewer news stories discussed for longer and in greater depth

Both data sets contairews storieandmeta-textMeta-text con-
sists of the text between news stories, like “and now to yom'To
or “thank you very much for this report”. For evaluating therfor-
mance of our algorithms we manually decomposed the newigstor
into topics ignoring all the meta-text. (This manual segmentation
is not an input to the algorithms; it was used strictly forleagion
purposes.) Each topic consists of at least 3 sentences @arhe

a

Table 1: HN data set: Precisionp and relative recall r.

Technique s Postprocessing
None Boost+

Filter
p [r [» [r |
A1-BASE 7 || 58% | 37% || 86% | 31%
A2-IDF2 7 || 58% | 37% || 87% | 31%
A3-STEM 7 || 64% | 32% || 88% | 29%
A4-COMP 7 || 64% | 32% || 88% | 28%
A5-HIST 7 || 64% | 36% || 91% | 30%
A6-THREE || 7 || 72% | 33% || 89% | 28%
A7-IDF 7 || 61% | 38% || 89% | 31%
Al1-BASE 15 || 63% | 20% || 91% | 17%
A2-IDF2 15 || 62% | 20% || 91% | 18%
A3-STEM 15 || 69% | 25% || 88% | 24%
A4-COMP || 15| 70% | 26% || 90% | 25%
A5-HIST 15 || 67% | 26% || 89% | 24%
A6-THREE || 15 || 75% | 24% || 91% | 22%
A7-IDF 15 || 59% | 26% || 91% | 24%

Table 2: CNN data set: Precisionp and relative recall r.

Technique s Postprocessing
None Boost+

Filter
p | r [p [r]
Al1-BASE 7 || 43% | 27% || 77% | 21%
A2-IDF2 7 || 46% | 27% || 75% | 18%
A3-STEM 7 || 43% | 23% || 76% | 18%
A4-COMP 7 || 44% | 23% || 76% | 17%
A5-HIST 7 55% | 32% || 84% | 23%
A6-THREE || 7 60% | 30% || 86% | 23%
AT7-IDF 7 52% | 25% || 82% | 23%
Al1l-BASE 15| 48% | 17% || 83% | 14%
A2-IDF2 15 || 60% | 16% || 85% | 13%
A3-STEM 15| 54% | 17% || 76% | 14%
A4-COMP 15 || 59% | 18% || 82% | 15%
A5-HIST 15 || 61% | 25% || 88% | 20%
A6-THREE || 15 || 71% | 23% || 83% | 21%
A7-IDF 15 || 56% | 25% || 82% | 21%

theme; we do not count 1-2 sentence long “teasers” for upagmi
stories as topics. The shortest topic in our data sets is ddnse
long, the longest is 426 seconds long. The average lengttopi@a

in the HN data set is 51 seconds and the median is 27 seconels. Th
topics comprise a total of 4181 seconds (70 mins) out of the 90
mins long caption. In the CNN data set the average topic teisgt
107 seconds and the median is 49 seconds. The topics coraprise
total of 3854 seconds (64 mins).

3.2 Evaluation of the Query Generation Algo-
rithms

We first evaluated all the baseline algorithms with two diffe
ent ways of postprocessing, namely no postprocessing astgrpe
cessing by both boosting and filtering. The CNN data set stasi
of 3854 seconds, and thus an algorithm that issues a query eve
15 seconds issues 257 queries. We return the top two arfales
each query so that a maximum of 514 relevant articles could be
returned for this data set when= 15. For the HN data set the

corresponding number is 557.

The pool of all relevant documents found by any of the algo-
rithms for the HN data set is 846, and for the CNN data set is 816
Thus the relative recall for each algorithm is calculateddiyd-
ing the number of relevant documents it found by these nusaber
Note that fors = 15 no algorithm can return more than 557 (for
HN) or 514 (for CNN) relevant articles, so in those cases tha&-m
imum possible relative recall would b7/846 = 66% (HN) or
514/816 = 63% (CNN).

The pooled relative recall numbers are appropriate for amng
performance among the different algorithms, but not usafubn
absolute measure of an algorithm’s recall performance;esimo
algorithm would be able to achieve 100% relative recall. sTiki
because when a query is issued at a text segment, an algdasithm
limited to returning a maximum of two articles. However, fing
usually identifies more than two articles as relevant fonagitext
segment.

Table 1 presents the precision and relative recall for aldiffer-
ent query generation algorithms for the HN data set. Tableofvs
the corresponding numbers for the CNN data set. It leads éwa f
observations:

e All algorithms perform statistically significanthbetter with
a p-value of< 0.003 when postprocessed with boosting and
filtering than without postprocessing. Depending on the al-
gorithm the postprocessing seems to increase the precision
by 20-35 percentage points.

For both data sets the highest precision numbers are achieve
with postprocessing and = 15. However, the largest rela-
tive recall is achieved without postprocessing and= 7.

This is no surprise: Filtering reduces not only the number of
non-relevant articles that are returned, but also the nuwibe
relevant ones. The impact of postprocessing on the number
of relevant articles that are returned varies greatly betwe
algorithms. The maximum change is 71 articles (A1-BASE
with s = 7 on HN), and the minimum change is 10 articles
(A3-STEM with s = 7 on HN). Also, reducings increases

the number of queries issued and thus one expects the num-
ber of returned articles to increase, both the relevant ases
well as the non-relevant ones. Thus relative recall in@gsas
as well.

Precision on the CNN data set is lower than precision on the

HN data set. This is somewhat surprising as longer topics

might be expected to lead to higher precision. The reason is

that since we issue more queries on the same topic, we reach
further down in the result sets to avoid duplicates and end up

returning less appropriate articles.

e Algorithm A5-HIST with s = 7 and with postprocessing
performs well in both precision and relative recall. For the
HN data set, it achieves a precision of 91% with 257 relevant
articles returned, for the CNN data set it achieves a precisi

of 84% with 190 relevant articles returned. This means it
returns a relevant article every 16 seconds and every 20 sec-
onds, respectively, on the average. The performance of algo
rithm A6-3W is very similar to algorithm A5-HIST. None of
the other algorithms achieves precision of at least 90% and
relative recall of at least 30%. For example, algorithms Al-
BASE and A2-IDF2 withs = 15 have precision 91% on

To determine statistical significance we used the rank-sstraind
the t-test. If a p-value is given, it is the p-value of the rakn test,
as it is more conservative. If no p-value is given, the p-galtithe
rank-sum test is less than 0.05.

1

Table 3: HN data set: Precision and relative recall in parenhe-

sis.
Tech- s Postprocessing
nigue None | Boost| Fil- Boost | Sim. Sim.
ter- + Re- | Rerank
Filter | rank | +Filter
A2- 7 | 58% | 58% | 88% | 87% | 60% 84%
IDF2 (37%) | (37%) | (32%) | (31%) | (38%) | (34%)
A4- 7 | 64% | 66% | 86% | 88% | 68% 86%
COMP (32%) | (33%) | (27%) | (28%) | (34%) | (32%)
A5- 7] 64% | 64% | 91% | 91% | 64% 88%
HIST (36%) | (36%) | (29%) | (30%) | (36%) | (31%)
A2- 15| 62% | 64% | 89% | 91% | 66% 92%
IDF2 (20%) | (20%) | (17%) | (18%) | (21%) | (20%)
A4- 15| 70% | 72% | 93% | 90% | 74% 91%
COMP (26%) | (27%) | (23%) | (25%) | (27%) | (25%)
A5- 15| 67% | 69% | 92% | 89% | 71% 92%
HIST (26%) | (26%) | (22%) | (24%) | (26%) | (25%)

the HN data set but they return roughly 100 articles fewer
that A5-HIST withs = 7, which corresponds to a drop of
relative recall by 13 percentage points (A1-BASE) and 12
percentage points (A2-IDF2).

Without postprocessing the difference in precision betwee
A5-HIST and algorithms A1-BASE, A2-IDF2, A3-STEM,
and A4-COMP is statistically significant on the CNN data
set fors = 7. Fors = 15 the difference between A5-HIST
and A1-BASE is significant with a p-value ef 0.004.

e Without postprocessing the precision of the baseline algo-
rithm A1-BASE is statistically significantly worse than ntos
of the other algorithms on the CNN data set. Also algo-
rithm A6-3W is statistically significantly better than mast
the other algorithms. However, these differences disappea
or are no longer statistically significant when filtering and
boosting is applied.

We also discuss the contribution of different techniques.

e idf versusidf?: The baseline algorithm A1-BASE and al-
gorithm A2-IDF2 differ only in the use ofdf> versusidyf.
For s = 15 and no postprocessing, A2-IDF2 gives a statis-
tically significant improvement over A1-BASE on the CNN
data set. In all the other cases their performance is very sim
ilar.

Algorithms A5-HIST and A7-IDF also differ only in the use
of idf? versusidf. Without postprocessing A5-HIST out-
performs A7-IDF in precision on both data sets. The differ-
ences are statistically significant fer= 7 on the CNN data
set and fors = 15 on the HN data set. With postprocessing
their performance is either very similar or the differense i
not statistically significant. Altogetheidf? seems to work
slightly better tharidyf.

e StemmingAdding stemming to algorithm A2-IDF2 gives al-
gorithm A3-STEM. On the HN data set stemming gives an
improvement without postprocessing but with postprocess-
ing ands = 15 stemming gives slightly worse performance.
On the CNN data set stemming hurts precision. Stemming
is often used to improve recall. It does increase relative re
call over A3-STEM fors = 15, but it has no positive impact
on relative recall fors = 7. Overall, our experiments are
inconclusive with regard to the benefits of stemming.

e CompoundsAlgorithm A4-COMP consists of algorithm A3-

STEM with 2-word compounding added, i.e., we only eval-
uated compounding for algorithms that use stemming. Their
performance is very similar. The precision of A4-COMP is
larger than the precision of A3-STEM for = 15 on the
CNN data set but it is not statistically significant. However
for s = 15 and no postprocessing, A4-COMP gives a sta-
tistically significant improvement (p-value 0.02) over Al-
BASE on the CNN data set. Overall, adding compounds does
not seem to significantly improve precision.

History: Adding a “history feature” to algorithm A4-COMP
gives algorithm A5-HIST. The history gives a small improve-
ment in precision fors = 7 on the HN data set, while it
seems to slightly hurt fos = 15. On the CNN data set,
A5-HIST clearly outperforms A4-COMP, both in precision
and in relative recall; the difference is statisticallyrsfgcant
with p-value< 0.004 for s = 7 and no postprocessing.

This is not surprising. For longer topics (as the CNN data set
has) it becomes valuable to have a history feature, especial

if queries are issued every 7 seconds. Each text segment may
not on its own contain highly relevant text that can be used
as a query in finding similar stories. Shorter text segments
suffer even more from this problem. The history rectifies
this by effectively extending the length of the text segmient

a time-aged manner.

For example, for one of the data sets three shootings were
in the news: one in Arizona, one in Oklahoma, and one
in Jordan. The algorithms without history sometimes re-
turned non-relevant articles about shootings differeiainth

the one being discussed in the broadcast because the current
text segment did not mention the location. Algorithm A5-
HIST never made this mistake. Altogether, we recommend
adding a history feature to a query generation algorithm.

Query shortening: Algorithm A6-3W first issues a three-
word query and “backs off” to a two-word query if no re-
sults were found. This happens for about 60% of the queries.
Without postprocessing, its precision is statisticallynii-
cantly better than all of the other algorithms with= 15

on the CNN data set and for most of the other algorithms
for s = 7 and also for the HN data set. With boosting and
filtering A6-3W is very similar to algorithm A5-HIST. Rel-
ative recall decreases slightly when compared to A5-HIST.
The reason is that three-word queries might return only one
result where two-word query would return at least two re-
sults. Thus, trying out three-word queries is helpful witho
postprocessing, but with postprocessing it does not lead to
improvement.

Table 9 and Table 10 in the appendix give the percentage of ar-
ticles exactly on topic (R+: given a score of 2 by the evalato

together with the actual number of such articles found byhede
gorithm. They confirm the above observations.

In conclusion, postprocessing and the “history featurg&dhe
largest improvement in search precision, namely 20-35qmeag)e
points for postprocessing and about 5 percentage pointgdtary.
Postprocessing reduces relative recall by about 6 pergem@ints,
while the history feature has negligible effect on relatigeall. A
query generation algorithm should have both, a way to irelind
history and a postprocessing step that filters out irreledacu-
ments. None of the other features seem clearly beneficial.

Table 4: HN data set withs = 7: Percentage of queries that are
identical when sorted lexicographically.

Al- A2- A3- A4- A5- | A6- | A7-
BASE | IDF2 | STEM | COMP | HIST | 3W | IDF
Al- 94% | 27% 25% | 10% | 6% | 10%
BASE
A2- 94% 30% 27% | 12% | 7% | 10%
IDF2
A3- 27% | 30% 87% | 31% | 19% | 28%
STEM
A4- 25% | 27% | 87% 38% | 19% | 34%
COMP
A5- 10% | 12% | 31% 38% 40% | 63%
HIST
A6- 6% 7% 19% 19% | 40% 30%
3wW
AT7- 10% | 10% | 28% 34% | 63% | 30%
IDF

Table 5: HN data set with s = 7: Percentage of URLs of al-
gorithm A that are also returned by algorithm B, where the
choice of A determines the row and the choice oB determines
the column. Since different algorithms return a different num-

ber of URLSs the table is not symmetric.

Al- A2- A3- A4- A5- | A6- | A7-
BASE | IDF2 | STEM | COMP | HIST | 3W | IDF
Al- 93% | 36% 33% | 15% | 11% | 13%
BASE
A2- 96% 37% 36% | 17% | 13% | 15%
IDF2
A3- 41% | 41% 83% | 36% | 23% | 21%
STEM
A4- 36% | 38% | 80% 42% | 24% | 28%
COMP
A5- 16% | 18% | 35% 42% 39% | 40%
HIST
A6- 13% | 15% | 23% 26% | 43% 38%
3wW
AT7- 15% | 17% | 22% 30% | 43% | 38%
IDF

3.3 Postprocessing

As we saw in the previous section postprocessing using imgpst
and filtering gives a big improvement in precision withoutidas-
ing relative recall much. The obvious question is what dboted
most to the improvement, boosting or filtering. A second tjoas
is whether postprocessing by similarity reranking perferbetter
than postprocessing by boosting.

differences between boosting alone and similarity renagkilone
and between boosting with filtering and similarity rerarginith
filtering are statistically significant.

Note, however, that similarity reranking and filtering ttlyer
always has better relative recall than boosting and filggrimhich
in turn has better relative recall than filtering alone.

The results when analyzing the articles with score R+ and the
data for the CNN data sets (both omitted in this paper) corifiren
above findings.

To summarize, filtering gives a large precision improvement
about 20-30 percentage points with a decrease of 6 peraeptagts
in relative recall. Filtering and similarity reranking tethher achieve
the same precision but return roughly 10% more relevantlasti
than filtering alone.

3.4 Query Overlap and URL Overlap

Given a postprocessing step the performance of the diffexgary
selection algorithms is very similar. An obvious questiorask is
whether the reason for this similarity is that the algorithissue
very similar queries. To answer this question we computesiime
ilarity between the queries issued by the different quetgcdion
algorithms, i.e., we compare tlith query issued by one algorithm
with the ith query issued by another algorithm. Table 4 gives the
percentage of queries that have identical terms (thougmects-
sarily ordered identically) fosg = 7 and the HN data set. Note that
we are looking at all generated queries, i.e., the qudriderethe
postprocessing step.

The table shows that nearly all queries are identical faatesl
algorithms like A1-BASE and A2-IDF2. However, for algoritis
A1-BASE and A5-HIST for example, only 10% of the queries are
identical. Table 12 give the corresponding datadee 15. It can
be found in the appendix.

Even if the queries are quite different, there could stilebarge
overlap in the URLSs returned at a given point in the streanexf. t
However, that is also not the case as Table 5 shows for the kN da
set ands = 7. The results fos = 15 are similar. Thus it might be
possible to improve precision by combining the algorithmghie
right way.

To summarize, the overlap both in queries and in articlesgk h
between A1-BASE and A2-IDF2 and is high between A3-STEM
and A4-COMP but is low otherwise. Thus, even though the algo-
rithms have similar performance when used with postprongsg
is in general not due to the same queries being issued or the sa
URLSs being returned.

3.5 Topic Coverage

Another question to ask is how many of the topics receive at
least one relevant article. In the HN data set there werezh obt
82 topics. In Table 6 we show the percentage of topics withastl
one relevant article for the HN data set and also the pergenth
topics with at least one article rated R+ for the HN data sett N

Since the improvement was unanimous among algorithms and surprisingly, these percentages are strongly correlatddrelative

data sets, we evaluated only the HN data set for 3 algoritfiras.
ble 3 shows the details. In all six cases the improvementeiarigl
achieved by the filtering step, the boosting step only giéragmnall
improvement. All of the differences between boosting aland
filtering and boosting are statistically significant. Alsdl, of the
differences between boosting alone and filtering alone tatéss-
cally significant. In some cases filtering alone gives eveyndii
precision than filtering and boosting together.

Similarity reranking seems to give a slightly higher gaimpie-
cision than boosting. However, combined with filtering iedmot
perform better than boosting and filtering combined. Nonéhef

recall. They are the highest fer= 7 with no postprocessing and
the lowest fors = 15 with postprocessing. It is interesting to note
that the numbers are not much lower for the percentage o€dopi
with score R+ than for score R. Said differently, if a topicsta
relevant article it most likely also has a topic rated R+.

Table 11 in the appendix gives the corresponding percestage
the CNN data set. The values are higher as we would exped: sinc
the topics are longer. However, there is also more variatidhese
numbers as there are only 36 topics in the CNN data set.

We also analyzed longer and shorter topics. Both are equally
well covered, i.e., the length is not the distinguishingtdacof

Table 6: HN data set: Percentage of topics with at least one
relevant article and percentage of topics with at least oneréicle
rated R+.

Technique | s Score R Score R+
None | Boost | None | Boost
Filter Filter
Al-BASE | 7 | 78% | 73% | 76% | 70%
A2-IDF2 7 | 79% | 76% | 76% | 72%
A3-STEM | 7 | 74% | 70% | 70% | 67%
A4-COMP | 7 | 76% | 72% | 70% | 68%
A5-HIST 7| 77% | 70% | 73% | 67%
A6-3W 7 | 73% | 70% | 70% | 68%
A7-IDF 7 | 73% | 73% | 72% | 70%
A1-BASE [15] 63% | 59% | 60% | 56%
A2-IDF2 | 15| 63% | 61% | 60% | 60%
A3-STEM | 15| 72% | 67/% | 70% | 67%
A4-COMP | 15| 76% | 72% | 73% | 71%
A5-HIST 15| 72% | 65% | 68% | 65%
A6-3W 15| 71% | 66% | 66% | 63%
A7-IDF 15| 71% | 69% | 70% | 63%

Table 7: HN data set: For each filtering rule the percentage of
filtered articles that are filtered by the technique. The perent-
ages for a given algorithm can add up to over 100% since both
filtering rules can apply.

Technique | s | #filtered | % filtered | % filtered
articles by F1 by F2
Al-BASE | 7 218 39% 97%
A2-IDF2 7 202 38% 96%
A3-STEM | 7 139 27% 98%
A4-COMP | 7 127 30% 98%
AB5-HIST 7 175 54% 86%
AB6-3W 7 209 48% 86%
A7-IDF 7 130 54% 78%
Al-BASE | 15 126 24% 98%
A2-IDF2 15 85 29% 96%
A3-STEM | 15 76 24% 93%
A4-COMP | 15 76 22% 93%
A5-HIST | 15 95 32% 92%
AB-3W 15 130 26% 97%
A7-IDF 15 36 33% 81%

whether a topic is covered or not. Instead there seem to bestop Table 8: HN data set ands = 7: The error rate for each filter-

for which it is “hard” to find relevant articles and others fehich
it easy. For example, it is easy to find articles for Winona &gl
shoplifting trial: Her name is rare and thus had high and she

is not mentioned in other news for that day. For other topics i

is hard to find related news stories, mostly because theyrfall

the category of “unusual” news. Examples include a storyuabo

a beauty pageant for women in Lithuania’s prisons, a stoguab

a new invention that uses recycled water from showers arfisbat

to flush toilets, and a story about garbage trucks giving EBhgl
lessons over loudspeakers in Singapore.

In summary, roughly 70% of the topics have at least one articl

rated relevant, and almost as many have at least one aited r

very relevant (R+). The length of the topic does not seem ta be

factor in determining whether a relevant article can be tbfonr it.

3.6 Filtering Effectiveness

The filtering technique is very powerful in improving precis.
Recall that there can be two reasons why an article is filteted
F1: Its similarity with text segmenf’ is below threshold. F2:
Its similarity with text segment’ is below threshold; and there
are two search results and their similarity score is beloviadlt
threshold. (Recall thai < g.) Note that it is possible that both

rules apply. We analyzed which of the two rules filters out enor

articles. Table 7 shows the percentage of articles that &éefing

rule filtered on the HN data set. The percentage can add upeto ov

100% since both rules can apply. It clearly shows that F2$ilbet
most of the articles.
Finally, we wanted to evaluate for each filtering rule howeaft

ing rule.
Technique | F1 F2 F3
A1-BASE | 12% | 6% | 7%
A2-IDF2 15% | 9% | 6%
A3-STEM | 22% | 9% | 3%
A4-COMP | 22% | 6% | 3%
A5-HIST | 32% | 33% | 11%
AB-3W 29% | 28% | 2%
A7-IDF 23% | 25% | 3%

escape filtering through this technique. The higher errtasréor
F1 and F2 indicate that relevant pages are being suppressede
can tolerate this since we are aggressively querying forregalts
every 7 or 15 seconds.

4. RELATED WORK

4.1 Query-free search

To our knowledge, there has been no previous work on auto-

matically selecting documents that a user might want to daew
watching a TV program. However, there is a significant litera
on the broader problem of query-free information retrieviahd-
ing documents that are relevant to a user’s current actiwitjrout
requiring an explicit query. The different systems diffarwhat
stream of text they consider as input and what genre of ikdve-
uments they return. We will use the “Input—Output” notatios

it makes the wrong decision. For F1 and F2 this means that they ow.

discard a relevant article. Rule F3 requires that an artckept

if its similarity to the caption text is above a threshgldlt makes
the wrong decision if it keeps an irrelevant article. Tablgigs
the error rate for each filtering rule. For F1 and F2, éneor rate
is the percentage of relevant articles out of all articleerdd by
the technique. For F3, it is the percentage of irrelevantlag out
of all articles whose similarity with text” is above the threshold
g. The error rates range from very low to, in one instance, lpear
third. For F3, which excludes highly similar articles froraibg fil-
tered, the mostly low error rate indicates that few irrefearticles

e Web pages—web pageBhe Letizia system [10] observes a
user browsing the web, and suggests other web pages the user
may find interesting. Rather than searching an index of web
pages, it “surfs ahead” of the user, following hyperlinkanfr
the page the user is currently viewing. Similarly, commarci
browser assistants such as Autonomy Kenijin and PurpleYogi
(both no longer available) suggested related web pages base
on the content of web pages the user has been viewing.

e Problem report—repair manuaAnother early query-free IR

system is FIXIT [8], which helps technicians as they use an The main difference to our work is that we study the time-base
expert system to diagnose and repair copiers. FIXIT identi- variant of the problem, which also includes topic changedéin.

fies the currently reported symptoms and the faults it censid

ers likely, then maps these symptoms and faults to keywords, 5 CONCLUSION

and retrieves sections of the copier documentation thatimat
these words.

This paper evaluated seven algorithms and three postmioges

techniques for finding news articles on the web relevant tasne

e User behavior—personal fileFhe just-in-time IR project at

broadcasts. For this genre of television show, the bestitgo

MIT [15, 14] has focused on retrieving personal files — such finds a relevant page every 16-20 seconds on average, asfieve
as notes and archived email messages — that a user Wou|dpreCiSi0n of 84-91%, and finds a relevant article for abo@t %
currently find useful. This project first produced the Remem- the topics. Our experiments clearly show that filteringcaes by
brance Agent, which looks at a document the user is editing Similarity to the caption text and similarity with each otiggves a
in Emacs and matches fragments of this document (such aslarge improvement in precision. It would be interestingifetwork
the last 50 words) against a corpus of personal files. The to refine and improve upon the filtering technique presemetlis

followup Margin Notes system performs a similar task, but

paper. It would also be interesting to experiment with défe

observes the web pages that a user views in a web browser.ways of using the history for query generation.

Finally, the Jimminy system runs on a wearable computer.

The news search engine we used restricted us to using Boolean

Jimminy bases its suggestions on what the user is reading orretrieval. It is an interesting open question whether a iweid
writing on the heads-up display, as well as on Global Posi- term-vector retrieval would have improved the search dqyaliffi-
tioning System data and active badge data indicating what ciently to make postfiltering redundant.

other people are nearby. All these systems use a common
information retrieval backend based on the Okapi simyarit
metric [16].

The XLibris pen-based document reader [13] allowed users
to mark up documents as they are reading. The system would
derive queries from the passages of text that were marked,
and search over a local corpus for relevant documents to
present to the user.

e User behavior—News and stock quotd@$fie SUITOR sys-

The framework of the system is not limited to news, howeves; w

have considered simple methods of detecting other gerueb s
sports, weather, and “general” topics) and sending sucheg®
appropriate web information sources. The genres could &etiid
fied by using machine learning on a labelled corpus of telewis
captions; an even simpler way would be to use televisiondudke
and their associated metadata to categorize the currewtistma
genre.

Finally, as voice recognition systems improve, the samd kin

topic finding and query generation algorithms describedhis pa-

tem [11] tracks user behavior like what applications are run P€r could be applied to conversations, providing relevafarma-

ning and what text the user currently writes to build a model
of the user’s current interest. It uses this model to findrinfo

tion immediately upon demand.

mation that is interesting to the user like news headlines an 6. ACKNOWLEDGEMENTS

stock quotes.

e Open documents in editor or browser—web pagé® sys-
tem most similar in purpose to our own is Watson [5], which

We would like to thank Shahid Choudhry for providing us with

closed caption transcripts for our experiments.

suggests web pages to a computer user based on the docu7- REFERENCES

ments currently open in a word processor or web browser.
Watson uses a variety of heuristics to construct querias fro
the text of the documents, then sends these queries to the Al-
taVista search engine.

e Email—web pagesOur work is also related to a small pro-
totype system that constructed queries from email messages
and sent them to an early version of the Google search engine

[4].

4.2 Text Summarization and Keyword Extrac-
tion

In the Information Retrieval literature there has been aéhole
of work on topic detection and text summarization. Recentig
problem of time-based summarization has been studied. Bee [
for an excellent overview of the area. Our work is differamtwo
ways:

(1) It doesn't need to identify topics; it only needs to deétec
whether the current topic is different from the previousitoplf
a later topic is very similar to a topic discussed much eartte
system does not need to recognize this.

(2) The system does not need to construct a summary; it éxtrac
keyphrases that can be used to formulate a search query.

The research on keyphrase extraction, see, e.g., [9, 12],hd
specifically the algorithm by [20], is the most related to wark.

[1] J. Allan, R. Gupta, and V. Khandelwal. Temporal summngrie
of news topics. IrResearch and Development in Information
Retrieval pages 10-18, 2001.

Electronic Industries Alliance. EIA-746-A: Transpart

internet uniform resource locator (url) information using

text-2 (t-2) service. Technical report, 1998.

E. Brill. Transformation-based error-driven learniagd

natural language processing: A case study in part-of-speec

tagging.Computation Linguistic21(4):543-565, 1995.

S. Brin, R. Motwani, L. Page, and T. Winograd. What can

you do with a web in your pocketRata Engineering

Bulletin, 21(2):37-47, 1998.

[5] J. Budzik, K. Hammond, and L. Birnbaum. Information
access in contexKknowledge based systemg(1-2):37-53,
2001.

[6] J. Davis. Intercast dying of neglect. CNET News, January

29, 1997.

E. Frank, G. W. Paynter, |. H. Witten, C. Gutwin, and C. G.

Nevill-Manning. Domain-specific keyphrase extraction. In

IJCAI, pages 668-673, 1999.

P. Hart and J. Graham. Query-free information retrieval

IEEE Expert 12(5):32-37, 1997.

B. Krulwich and C. Burkey. Learning user information

interests through the extraction of semantically significa

(2]

(3]

(4]

(7]

(8]
(9]

Table 9: HN data set: Percentage of articles with score R+ out
of all returned articles and percentager of articles with score

?) Table 10: CNN data set: Percentagep of articles with score
R+ out of all articles with score R+.

[10] H. Lieberman. Letizia: An agent that assists web brogsi
In C. S. Mellish, editorProceedings of the 14th Table 11: CNN data set: Percentage of topics with at least one
International Joint Conference on Artificial Intelligence relevant article and percentage of topics with at least onerticle
(IJCAI-95), pages 924-929, 1995. rated R+.

[11] P. Maglio, R. Barrett, C. Campbell, and T. Selker. Suitn Technique | s Score R Score R+
attentive information system. limternational Conference on None | Boost | None | Boost
Intelligent User Interfaces2000. Filter Filter

[12] A. Munoz. Compound key word generation from document A1-BASE | 7 | 86% | 81% | 83% | 81%
databases using a hierarchical clustering art model. A2-IDF2 7 1 83% | 81% | 81% | 75%
Intelligent Data Analysis1(1), 1997. A3-STEM | 7 | 83% | 72% | 72% | 69%

[13] M. N. Price, G. Golovchinsky, and B. N. Schilit. Linkirizy AA-COMP| 7 | 83% | 75% | 78% | 69%
inking: Trailblazing in a paper-like hypertext. Hypertext A5-HIST 7 1 89% | 72% | 81% | 72%

'98, pages 30-39, 1998. AT7-IDF 7 | 92% | 69% | 78% | 67%

[14] B. Rhodes and P. Maes. Just-in-time information resdie AL-BASE | 15| 81% | 78% | 72% | 72%
agentsIBM Systems JournaB9(3-4), 2000. Ao-IDE2 1151 75% | 72% | 67% | 61%

[15] B.J. Rhodeslust-In-Time Information RetrievaPhD A3-STEM | 15| 69% | 64% | 64% | 61%
thesis, MIT Media Laboratory, Cambridge, MA, May 2000. AA-COMP | 151 72% | 67% | 64% | 64%

[16] S. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC- AG-HIST 1151 78% | 75% | 69% | 67%
automatic ad hoc, filtering, VLC and interactive track. In A7-IDE 15 78% | 75% | 64% | 69%
Proceedings of the 7th International Text Retrieval
Conference (TRECpages 253-264, 1999.

[17] G. D. Robson. Closed captions, V-chip, and other VBhdat
Nuts and Volts2000.

[18] G. Salton.The SMART System — Experiments in Automatic rapje 12: HN data set withs = 15: Percentage of queries that
Document Processin@rentice Hall, 1971. are identical when sorted lexicographically.

[19] A. M. Steier and R. K. Belew. Exporting phrases: A Al- | Ao- A3- Ad- AS- | A6- | A7-
statistical analysis of topical language.Sacond Symposium BASE | IDF2 | STEM | coMP | HIST | 3W | IDF
on Document Analysis and Information Retrieyzdges Al 75% | 34% 27% | 11% | 6% | 14%
179-190, 1993. _ A2 | 75% 40% | 32% | 13% | 9% | 11%

[20] P. D. Turney. Learning algorithms for keyphrase exiat A3 | 34% | 40% 82% | 33% | 21% | 25%
Information Retrieval2(4):303-336, 2000. A 27% 1 32% | 82% 45% | 21% | 32%

A5 | 11% | 13% | 33% 45% 38% | 57%

APPENDIX A6 | 6% | 9% | 21% | 21% | 38% 25%

A. MORE EVALUATION DATA AT | 14% | 1% | 25% | 32% | 57% | 25%

phrases. IPAAAI 1996 Spring Symposium on Machine
Learning in Information Acces4996.

Technique . PosStrocessing R+ out of all returned _articles_ and percentager of articles with
score R+ out of all articles with score R+.
None Boost+ Technique || s Postprocessing
Filter None Boost+
p [r [»p | r | Filter
A1-BASE 7 || 44% | 28% || 69% | 25% p [v | p | r]
A2-IDF2 7 || 45% | 29% || 70% | 25% A1-BASE 7 1T 30%] 19% || 61% | 16%
A3-STEM 7 || 49% | 25% || 73% | 24 % A2-IDE2 7 1 31% | 18% |l 59% | 14%
A4-COMP 7 || 50% | 25% || 72% | 23 % A3-STEM 7 1 31% | 16% |l 59% | 14%
A5-HIST 7 || 47% | 26% || 76% | 25 % A4-COMP 7 1731% | 16% || 59% | 13%
A6-THREE || 7 || 56% | 26% || 75% | 23 % A5-HIST 7 17 36% | 21% || 64% | 18%
AT-IDF 7 || 46% | 29% || 74% | 26 % AG-THREE || 7 |[40% | 20% || 61% | 17%
A1-BASE 15 || 53% | 16% || 81% | 15% A7-IDF 7 || 37% | 18% || 65% | 18%
A2-IDF2 15 || 51% | 16% || 78% | 15% A1-BASE 15 1] 35% | 12% || 66% | 11%
A3-STEM 15 || 54% | 20% || 75% | 20% A2-IDE2 151 43% | 12% || 67% | 10%
A4-COMP || 15| 51% | 19% || 72% | 20% A3-STEM 15 1 37% | 12% |l 51% | 9%
AS-HIST || 15 || 52% | 20% || 71% | 19% A4-COMP || 15 || 39% | 12% || 58% | 10%
AG6-THREE || 15 || 59% | 19% || 75% | 18% AS-HIST 15 || 40% | 16% || 60% | 14%
A7-IDF 15 || 46% | 20% || 75% | 20% AG-THREE I 15 | 49% | 16% || 59% | 15%
A7-IDF 15 || 36% | 16% || 56% | 14%

