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ABSTRACT
Given a network, intuitively two nodes belong to the same
role if they have similar structural behavior. Roles should be
automatically determined from the data, and could be, for
example, “clique-members,” “periphery-nodes,” etc. Roles
enable numerous novel and useful network-mining tasks, such
as sense-making, searching for similar nodes, and node clas-
sification. This paper addresses the question: Given a graph,
how can we automatically discover roles for nodes? We
propose RolX (Role eXtraction), a scalable (linear in the
number of edges), unsupervised learning approach for auto-
matically extracting structural roles from general network
data. We demonstrate the e↵ectiveness of RolX on sev-
eral network-mining tasks: from exploratory data analy-
sis to network transfer learning. Moreover, we compare
network role discovery with network community discovery.
We highlight fundamental di↵erences between the two (e.g.,
roles generalize across disconnected networks, communities
do not); and show that the two approaches are complimen-
tary in nature.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.1 [Data

Structures]: Graphs and networks

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Graph mining, structural role discovery, network classifica-
tion, similarity search, sense-making

1. INTRODUCTION
Given a network, we want to automatically capture the

structural behavior (or function) of nodes via roles. Exam-
ples of possible roles include: centers of stars, members of
cliques, peripheral nodes, etc. To this end, we propose a
novel approach, called RolX (Role eXtraction), which auto-
matically and e↵ectively summarizes the behavior of nodes
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in large graphs. More precisely, RolX achieves the follow-
ing two objectives. First, with no prior knowledge of the
kinds of roles that may exist, it automatically determines
the underlying roles in a network. Second, it appropriately
assigns a mixed-membership of these roles to each node in
the network. RolX is important because its roles form a
basis for a number of novel and interesting network data
analysis tasks such as network transfer learning, measuring
structural similarity, sense-making (i.e., understanding the
underlying behavior in a network), and network visualiza-
tion. For instance, given two IP communication graphs from
enterprise networks, we can use the extracted roles in one
graph to build a relational classifier that can be used for a
classification task in the other graph, e↵ectively performing
across-network classification or transfer learning on graphs.

RolX is an unsupervised learning approach for automat-
ically extracting structural roles from general network data
sets. Through extensive experiments, we demonstrate that
the derived roles are e↵ective in exploratory data analysis
tasks (such as sense-making and node-similarity) and in pre-
diction tasks such as across-network transfer learning. In the
latter setting, we use the ability of roles to generalize behav-
ior across networks as a way to perform network learning
without relying on homophily, or on the availability of class
labels in the target graph.

In our framework, roles are derived from structural fea-
tures. In the absence of any other information, the prob-
lem of extracting roles from a network dataset is ill-defined,
since there can be an infinite number of structural features
that can be derived from the data. Once we choose a set
of such features, the problem of role extraction can be well-
formulated. Given a set of structural features that are ex-
tracted for a dataset, we define the role extraction problem
as (1) finding the basis vectors in this structural feature
space (where the number of basis vectors is determined by
model selection), and (2) determining how much each net-
work node belongs to each role. The structural features that
are used for role extraction are domain-dependent. For ex-
ample, for social networks, we propose a set of structural
features that agree with the domain knowledge of sociolo-
gists.

The contributions of our work are as follows:

• E↵ectiveness: RolX enables numerous graph mining
tasks, including:

– Role Generalization/Transfer Learning: The struc-
tural roles of RolX generalize across disjoint net-
works.

– Structural Similarity: RolX provides a natural



Figure 1: Role discovery and community discovery

are complementary approaches to network analy-

sis. Left: The 4 roles that RolX discovers on the

largest connected component of the Network Science

Co-authorship Graph: “bridge” nodes (as red dia-

monds), “main-stream” nodes (gray squares), etc -

see text. Right: The 22 communities that Fast Mod-

ularity [6] finds on the same co-authorship graph.

Roles capture node-level behaviors and generalize

across networks whilst communities cannot.

way to determine similarity between nodes by com-
paring their role distributions.1

– Sense-making: The structural roles of RolX can
be understood intuitively by summarizing their
characteristics (NodeSense) and their neighbors
(NeighborSense).

• Automation: RolX is carefully designed to be fully au-
tomatic, without requiring user-specified parameters.

• Scalability: The runtime complexity of RolX is linear
on the number of edges.

We want to emphasize that RolX as a role discovery ap-
proach is fundamentally di↵erent from (and complementary
to) community detection: the former groups nodes of similar
behavior; the latter groups nodes that are well-connected to
each other.

Figure 1 depicts the di↵erence between role discovery and
community discovery for the largest connected component of
a weighted co-authorship network [25]. RolX automatically
discovers 4 roles vs. the 22 communities that the popular
Fast Modularity [6] community discovery algorithm finds.
RolX is a mixed-membership approach, which assigns each
node a distribution over the set of discovered, structural
roles. The node colors for RolX correspond to the node’s
primary role, and for Fast Modularity correspond to the
node’s community. Our four discovered roles represent these
behaviors: “bridge” nodes (red diamonds) representing cen-
tral and prolific authors, “main-stream”nodes (gray squares)
representing neighborhoods of bridge nodes, “pathy” nodes
(green triangles) representing peripheral authors with high
edge-weight, and “tight-knit” nodes (blue circles) represent-
ing authors with many coauthors and homophilic neighbor-
hoods.

The rest of the paper is organized as follows: proposed
method, experimental results for the mining tasks outlined
above, related work, and conclusions.
1
RolX is a mixed-membership approach, which assigns each

node a distribution over the set of discovered roles.

2. PROPOSED METHOD
Given a network, the goal of RolX is to automatically dis-

cover a set of underlying (latent) roles, which summarize the
structural behavior of nodes in the network. RolX consists
of three components: feature extraction, feature grouping,
and model selection.

2.1 Feature Extraction
In its first step, RolX describes each node as a feature vec-

tor. Examples of node features are the number of neighbors
a node has, the number of triangles a node participates in,
etc. RolX can use any set of features deemed important.
Among the numerous choices for feature extraction from
graphs, we choose the structural feature discovery algorithm
described in [15] since it is scalable and has shown good per-
formance for a number of tasks. For a given node v, it ex-
tracts local and egonet features based on counts (weighted
and unweighted) of links adjacent to v and within and ad-
jacent to the egonet of v. It also aggregates egonet-based
features in a recursive fashion until no informative feature
can be added. Examples of these recursive features include
degree and number of within-egonet edges, as well as ag-
gregates such as “average neighbor degree” and “maximum
neighbor degree.” Again, RolX is flexible in terms of a fea-
ture discovery algorithm, so RolX ’s main results would hold
for other structural feature extraction techniques as well.

2.2 Feature Grouping
After feature extraction, we have n vectors (one per node)

of f numerical entries each. How should we create groups of
nodes with similar structural behavior/features? How can
we make it fully automatic, requiring no input from the user?

We propose to use soft clustering in the structural feature
space (where each node has a mixed-membership across var-
ious discovered roles); and specifically, an automatic version
of matrix factorization.

Given a node-feature matrix V
n⇥f

, the next step of the
RolX algorithm is to generate a rank r approximation GF ⇡

V where each row of G
n⇥r

represents a node’s membership
in each role and each column of F

r⇥f

specifies how mem-
bership in a specific role contributes to estimated feature
values. There are many methods to generate such an ap-
proximation (e.g., SVD, spectral decomposition) and RolX

is not tied to any particular approach. For this study, we
chose Non-negative Matrix Factorization because it is com-
putationally e�cient and non-negative factors simplify the
interpretation of roles and memberships.

Formally, we seek two non-negative low rank matrices G
and F to satisfy: argmin

G,F

kV �GFk
fro

, s.t. G � 0, F � 0,
where || · ||

fro

is the Frobenius norm. The non-negativity
constraint generally leads to a sparse, part-based represen-
tation of the original data set, which is often semantically
more meaningful than other factorization methods. While
it is di�cult to find the optimal factorization of a matrix be-
cause of the non-convexity of the objective function, several
e�cient approximation algorithms exist (e.g., multiplicative
update [18] and projective gradient decent [20]). RolX uses
multiplicative update because of its simplicity. It is worth
pointing out that RolX can naturally incorporate other vari-
ants of matrix factorization such as imposing sparseness con-
straint on F and/or G by incorporating some regularization
terms in the objective function [10]). RolX can also use a
general Bregman divergence [8] to measure approximation



Figure 2: Errors do not appear to be normally dis-

tributed when approximating V in the Network Sci-

ences Co-authorship graph. The spike at zero sug-

gests that the Frobenius norm is not a good mea-

sure of model likelihood. RolX uses KL divergence

to compute error description costs.

accuracy instead of using the Frobenius norm – this enables
RolX to use other divergence functions (e.g., KL divergence)
that can be more appropriate in some cases, as explained in
Section 2.3.

One practical issue with feature grouping algorithms is
that the model size (i.e., the number of roles) must be pre-
specified. In general, it is unrealistic to expect a practitioner
to manually select an appropriate value for this parame-
ter. Therefore, we explore several approaches for automatic
model selection.

2.3 Automating the Method: Model Selection
Since roles summarize behavior, they can be used to com-

press the feature matrix V . We propose to use the Minimum
Description Length criterion [27], to select the model size r
that results in best compression. For a given model, we can
compute the resulting description length in two parts: (1)
the number of bits required to describe the model itself, and
(2) the cost of describing the reconstruction errors in V �GF
(to achieve lossless compression). The selected model is the
one that minimizes the description length L, which is the
sum of model description cost M and the coding cost (or
equivalently, the cost of correcting the errors of our model)
E . That is, L = M+ E .

Assuming G and F are not sparse, the cost of describing
the model using b bits per value is M = br(n + f).

How should we determine the representation cost of cor-
recting errors in the reconstruction? That is, how do we
compute the log-likelihood of a given model? Figure 2 sug-
gests that the errors in V �GF are not distributed normally,
making the standard Frobenius norm a poor choice. Instead,
we use KL divergence to compute the error description cost:
E =

P
i,j

(V
i,j

log
Vi,j

(GF )i,j
� V

i,j

+ (GF )
i,j

).

Because the model can contain high-precision floating point
values, we combine Lloyd-Max quantization [22, 21] with
Hu↵man codes [17] to increase compression. Note that with
Hu↵man codes, the cost of encoding the model changes to
b̄r(n + f), where b̄ is the mean number of bits required per
value. As a default, we choose log2(n) quantization bins.
However, the number of bins can be selected through param-

1 2 3 4 5 6 7 8 9 10
1 37420 33855 31069 31347 31155 33015 34569 36579 39189 42098
2 35516 31433 27106 27572 27786 30492 33271 36562 40326 45127
3 32878 27769 23376 22149 24704 28723 32546 36486 41416 47242
4 37231 26295 23875 22198 25518 30485 34719 39282 44911 51674
5 46674 31456 25722 22245 25899 31398 35883 40947 46960 53941
6 46028 29327 27692 23849 29383 34753 39707 45016 51090 58691
7 40685 33922 29555 25561 30837 37667 42761 49399 56660 64456
8 42065 30322 28649 27526 34360 40804 47369 53842 61541 70812
9 39426 29422 29508 32557 38143 45765 52931 61155 69426 79495
10 45052 37736 31395 32844 41555 48523 56535 65402 74460 86220

Log2(# Quantization Bins) 

# 
R

ol
es

 

Figure 3: Description length (in bits) is minimized

when using 24
bins and 3 or 4 roles in the Net-

work Science Co-authorship graph. Too many bins

or roles increases the model description cost, while

too few increases the cost of describing errors.

eter selection by choosing the number of bins and roles that
minimizes description length. Figure 3 shows that for the
Network Science Co-authorship graph, description lengths
are minimized when we use 24 = 16 quantization bins and
3 or 4 roles.

2.4 Computational Complexity
Let n be the number of nodes, m be number of edges, f =

number of features, and r = number of roles.

Lemma 1. The running time complexity of RolX is linear

on the number of edges, and specifically is O(mf + nfr).

Proof. We give the complexity of each of the three steps
of RolX .

Feature Extraction. This is O(f(m + nf)) [15].
Model Selection. The error computation takes O(nrf) to

multiply an n⇥ r matrix by an r ⇥ f matrix. Quantization
has a complexity of O(nfilog(K)), where K is the number
of quantization bins and i is the number of iterations that we
run the quantizer. Default for K is log(n), so this becomes
O(nfilog(log(n))). Notice that the term of O(log(log(n)))
is a very small number. For example, for a graph with 1
billion nodes, this term is just about 3.1. So, the complexity
for the quantization is roughly O(nfi). There is also a term
for the Hu↵man coding which is O(nf + Klog(K)). The
O(Klog(K)) term is to build the tree that holds the codes.
But this number is very small and therefore can be neglected.

Feature Grouping. We use the multiplicative update method
for RolX , which has worst case complexity O(nfr + nr2 +
fr2) = O(nfr).

2.5 Remarks
We experimented with several other options for clustering,

model sizes criterion, and compression. For example, the
information criterion proposed by Akaike (AIC) [1] can be
used in place of compression. RolX can use as a drop-in
replacement any other matrix factorization method, either
in the usual form or the sparse counterpart (e.g., [10]).

Similarly, there are several representational choices for
compressing floating points. We experimented with numer-
ous of these choices, but we omit the details for brevity.
Thus, unless otherwise stated RolX employs the feature ex-
traction algorithm described in [15], non-negative matrix
factorization for clustering, MDL for model selection, and
KL divergence to measure likelihood.



IP-A1 IP-A2 IP-A3 IP-A4 IP-B
# Nodes 81,450 57,415 154,103 206,704 181,267

(# labeled) 29,868 16,112 30,955 67,944 27,649
# Links 968,138 432,797 1,266,341 1,756,082 1,945,215

(# unique) 206,112 137822 358,851 465,869 397,925
% Web 32% 38% 38% 18% 42%
% DNS 36% 49% 39% 20% 42%
% P2P 32% 12% 23% 62% 16%

Table 1: Extracted real-world network trace data

3. ROLE GENERALIZATION / TRANSFER
LEARNING

In this section, we present experiments on role e↵ective-
ness for the across-network classification task (i.e., network
transfer learning).

Data. We conduct experiments on two real-world data
sets: IP communication networks and bluetooth proximity
networks.

IP data: IP-A and IP-B are real network-trace data sets
collected roughly one year apart on separate enterprise net-
works. The nodes are IP addresses and the links are com-
munications between the IPs. The IP-A trace begins at
midnight on day 1 and continues up to 12pm on day 5. The
IP-B trace begins at midnight on day 1 and continues up to
⇡5pm on day 6. For days 1-4 of the IP-A dataset (IP-A1 to
IP-A4), we extract flows in the period from 12pm-1pm. We
exclude day 5 because the trace ended at 12pm. For IP-B, we
extract flows from 12pm-1pm for day 3 only. We then label
all flows using a payload signature-based classification tool.
Once network flows are labeled, we transfer labels to hosts
by selecting the most frequent class-labels from among the
host’s flows. The payload classifier can distinguish between
over 15 classes of tra�c (e.g., Web, DNS, SMTP, P2P). How-
ever, since we found that 3 classes (namely, Web, DNS, and
P2P) made up the dominant tra�c type for over 90% of the
labeled hosts, we remove all other labels and focus on the
3-class classification problem. Table 1 summarizes the data
that we extracted. Notice the di↵erences in the size and
class distribution across these networks.

Reality Mining Device data: This dataset is con-
structed based on the data provided by the Reality Mining
project [9]. That study was conducted in July 2004-June
2005 at the MIT Media Laboratory, with the participation
of 94 human subjects using mobile phones pre-installed with
several pieces of software, which recorded and sent to the re-
search center various data including information about Blue-
tooth devices in proximity of approximately 5 meters. Sub-
jects were tracked over 12 months and included students
and faculty from the MIT Media Lab and the Sloan Busi-
ness School. Within that period, about two million device
scans were reported.

Classifiers. To test the predictive ability of the roles dis-
covered by RolX , we use logistic regression with the RolX

role memberships as features. In order to compare the pre-
dictive power of the RolX roles to the raw features that RolX

uses as input, we also compare to a classifier that uses these
raw features as input. The classifiers we compare are:

• RolX : a logistic regression model, which uses RolX role
memberships as features

• Feat : a logForest model, which uses the same raw
structural features as RolX , but does not decompose

Test Graph
IP-A2 IP-A3 IP-A4 IP-B

IP-A1 X X X X
IP-A2 X X X
IP-A3 X X
IP-A4 X

T
ra

in
G

ra
p
h

IP-A1 to IP-A4 X

Table 2: Across-network experiments performed on

the network trace data

them into roles. The logForest is a bagged model, com-
posed of a set of logistic regression classifiers, where
each is given a subset of log(f) + 1 of the f total fea-
tures [13]. Note that for these raw features, logForest
achieves vastly superior classification accuracy than lo-
gistic regression. Therefore, we omit logistic regression
results for this classifier. See [15] for details.

The standard relational classifiers are not applicable for
these transfer learning tasks since these methods rely on the
availability of some known class labels in the test graph to
seed the inference process. The test graphs here are com-
pletely unlabeled.

Methodology. For each experiment, the training graph
has all known labels available. The test graph is completely

unlabeled. Each classifier is evaluated on all known ground
truth labels in the test graph. We use an identical set of
roles for all data sets, which comes from running RolX on
the IP-A1 data set. Table 2 summarizes the across-network
experiments.

Results. We discuss predictive performance of roles next.
IP data: We ran RolX on a series of across-network

transfer learning tasks (see Table 2). We train on one net-
work where all known labels are available, and test on a sep-
arate network that is completely unlabeled. These tasks are
di�cult, given the (sometime extreme) di↵erences in class
distributions between data sets (see Table 1). The perfor-
mance of the Default classifier is a good indicator of the di�-
culty of each task, since this model makes predictions based
solely on the most frequent class from the training set. Feat

uses the full set of 373 structural features extracted from
IP-A1. RolX summarizes these features into 9 roles.

We see from Figure 4 that the roles produced by RolX

e↵ectively summarize the behavior of hosts in an IP network.
In particular, RolX is able to generalize more e↵ectively than
Feat from network A to network B (RolX =85%, Feat=71%
accuracy, p-value=0.012). The results for transfer learning
tasks across di↵erent days of network A are omitted since
we cannot di↵erentiate the performance of RolX and Feat

(p-value=0.25).
Figures 5 and 6 demonstrate that the model selection cri-

terion used by RolX is quite e↵ective for our IP network clas-
sification task. RolX chooses a model size of 9 roles, which
is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
2The p-values are obtained from a one-tailed paired t-test.
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Figure 4: RolX provides better generalization per-

formance between enterprise IP networks A and

B (mean accuracy of RolX =85%, Feat=71%, p-

value=0.01).
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Figure 5: RolX chooses a high accuracy model size

of 9 roles, in the middle of the peak accuracy range

of 7-11 roles. The Y-axis depicts the mean classifi-

cation accuracy using RolX (over all 4 test sets) by

model size.

representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the“sense-making”table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: We conducted two sets
of transfer learning experiments on this data. The first set
of experiments involves a binary classification task where we
try to predict whether a given subject is a business school
student or not. The second set is similar, where we try
to predict whether a subject is a graduate student in the
Media Lab or not. As train and test sets, we used each
pair of consecutive months in our dataset. In Figure 8, we
show the accuracy of RolX . The Baseline is a classifier that
learns to always predict the majority class of the training set
on the test set. The time labels denote the month for the
train data, and the month following that is used as the test
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

data. We also use all the data in 2004 and 2005 as train and
test data, respectively. Notice that RolX outperforms the
baseline classifier most of the time with an average of 83%
and 76% accuracy for the two experiment sets, respectively.
We notice that RolX ’s accuracy drops when September and
May data is used as training, possibly because these months
correspond to the start and end of the school semesters; the
behavior of the subjects would be generally di↵erent than
usual in these months, thus providing not as much predictive
information as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

Network Science Coauthorship Data. Our first data
set is a weighted co-authorship graph with 1589 authors
(from the network science community) and 2743 weighted
edges [25]. Figure 9 shows (a) the role-colored graph (where
each node is colored by the primary role that RolX finds)
and (b) the role a�nity heat map. RolX finds four roles.
Based on further analysis of the network and its roles, we
discovered that the roles correspond to the following: (Dis-
claimer: The relative position in the graph does not reflect
the total magnitude of contributions of the individual re-
searchers. It is just a snapshot of networks-science-related
data, and specifically in 2006.)

• blue circle: tightly knit, nodes that participate in tightly-



(a) (b)

Figure 7: IP tra�c classes are well-separated in

the RolX “role space” with as few as 3 roles. (a)

Ternary plot showing the degree of membership of

each DNS, P2P, and Web host in each of three roles.

(b) Pseudo-density plot obtained by adding uniform

noise to (a) to reveal overlapping points.
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Figure 8: RolX (in blue) e↵ectively generalizes be-

havior across time (higher is better). Figure shows

results of across-network transfer learning on the

Reality Mining Device dataset with RolX . Notice

that RolX almost always performs well on the two

di↵erent learning tasks with an average accuracy of

83% and 76%, respectively.

coupled groups. Examples are Andrei Broder and Chris-
tos Faloutsos.

• red diamond : bridge nodes, that connect groups of
(typically, ’main-stream’) nodes. Examples of bridges
are Albert-Laszlo Barabasi and Mark Newman.

(a) Role-colored Visualization of the Network

(b) Role A�nity Heat Map

Figure 9: RolX e↵ectively discovers roles in the

Network Science Co-authorship Graph. (a) Author

network RolX discovered four roles, like the het-

erophilous bridges (red diamond), as well as the ho-

mophilous “pathy” nodes (green triangle) (b) A�n-

ity matrix (red is high score, blue is low) - strong

homophily for roles #1 and #4.

• gray rectangle: main-stream, the vast majority of nodes
- neither on a clique, nor a chain. Examples are John
Hopcroft and Jon Kleinberg.

• green triangle: pathy, nodes that belong to elongated
clusters. For example, Lada Adamic and Bernardo
Huberman.

RolX ’s roles allow us to find similar nodes by compar-
ing their role distributions. Figure 10 depicts node sim-
ilarity for three (target) authors for the Network Science
Co-authorship Graph: Mark Newman, F. Robert, and J.
Rinzel. The primary roles for these three authors are dif-
ferent. Mark Newman’s primary role is a broker (a prolific
author); F. Robert’s primary role places him in a tight-knit
group (an author with homophilous neighborhood), and J.
Rinzel’s primary role places him in the periphery (an au-
thor with homophilous but “pathy” neighborhood). In each
node-similarity picture, the target author is colored in yel-



low. The more similar nodes are red and less similar nodes
are blue. Due to the generality of roles, RolX is able to
find similar nodes across the entire graph even though it has
many disconnected components.

Political Books Co-purchase Data. We gave the 2000
Amazon Political Books Co-purchasing Network3 to RolX .
This graph has 105 nodes (representing books) and 441 edges
(representing frequent co-purchasing of the books by the
same buyers). RolX is able to e↵ectively capture the pur-
chasing behavior of customers by separating the“locally cen-
tral” books from the “peripheral” books. Figure 11 depicts
the “local central-ness” and “peripheral-ness” of the books.4

For the readers’ convenience, we also present the human-
provided labels for the nodes: conservative books (in cir-
cles), liberal books (in squares), and neutral books (in di-
amonds). Examples of highly central books are “O↵ With
Their Heads” (conservative) and “Bushwhacked” (liberal).
Highly peripheral books include “The Right Man” (conser-
vative) and “Shrub” (liberal).

Node positions in Figure 11 are determined by a stan-
dard force-directed layout. Communities (conservative vs.
liberal) are separated while nodes within a community are
organized by role (central vs. peripheral) RolX can be used
in conjunction with community discovery algorithms to find
similar nodes in disparate communities or networks.

5. SENSE-MAKING
To make “sense” of roles, we introduce two methods. One

based on node measurements (NodeSense) and another based
on neighbor measurements (NeighborSense).

NodeSense takes as input RolX ’s node-by-role matrix, G,
and a matrix of node measurements, M . For our experi-
ments, we use the following node measurements: a node’s
degree, weighted degree, clustering coe�cient, eccentricity
(i.e., the longest geodesic from a node), PageRank, gate-
keeper (i.e., whether a node is an articulation point for some
pairs of nodes), local gatekeeper, pivot (i.e., a node with high
betweenness), and structural hole (i.e., to what extent are a
node’s links redundant). NodeSense then computes a non-
negative matrix E such that G·E ⇡ M . The matrix E repre-
sents the role contribution to node measurements. A default
matrix E0 is also computed by using G0 = ones(n, 1), where
the n nodes belong to one role. Then, for each role r and
for each measurement s, NodeSense computes E(r,s)

E

0(r,s) . This
ratio provides the role-contribution to node-measurements
compared to the default contribution.

NeighborSense is similar to NodeSense–except instead of
the matrix M , we use a neighbor matrix N , where the rows
represent nodes and columns represent roles. N(i, j) is the
fraction of node i’s neighborhood that is in role j. Then
NeighborSense computes a nonnegative matrix Q such that
G · Q ⇡ N . The matrix Q represents the role a�nities. A
default matrix Q0 is also computed using G0 = ones(n, 1),
where the n nodes belong to one role. Then, for each pair
of roles r1 and r2, NeighborSense computes Q(r1,r2)

Q

0(r1,r2) . This
ratio is the role-a�nities compared to the default a�nities.

Figure 12 depicts the results of NodeSense and NeighborS-

ense on the Network Science Co-Authorship Graph. Recall
that RolX found four roles on this graph. Role 1 nodes

3Valdis Krebs, http://www.orgnet.com/.
4A third “super-peripheral” role is omitted for brevity.
These nodes are gray in both (a) and (b).

(a) Bright red nodes are locally central nodes.

(b) Bright blue nodes are peripheral nodes.

Figure 11: RolX e↵ectively discovers roles in the

2000 Amazon Political Books Co-purchasing Net-

work – illustrating how RolX ’s roles can be used to

find similar nodes in disparate communities. RolX

finds two roles: locally central nodes and periph-

eral nodes. The redness of a node corresponds to its

percentage membership in Role 1 (its “local central-

ness”). Similarly, the blueness of a node corre-

sponds to its percentage membership in Role 2 (its

“peripheral-ness”). The node shapes corresponds to

the human-provided labels of conservative (circle),

liberal (square), and neutral (diamond).

(blue circles in Figure 9a) are authors with many coauthors
and homophilic neighborhoods. They have high degree, high
clustering coe�cient, and high homophily. They are never
gatekeepers (i.e. articulation points for some pairs of nodes)
or pivotal nodes (i.e., with high betweenness). Role 2 nodes
(red diamonds in Figure 9a) represent authors who are cen-
tral and prolific with high total weight. They have low clus-
tering coe�cient but high degree, high PageRank, and high
a�nity for Role 3 nodes (i.e., gray rectangles). Removal of
Role 2 nodes severely interrupts graph connectivity because
they are often gatekeepers and pivotal nodes. Role 3 nodes
(gray squares in Figure 9a) are peripheral authors. They
have low degree and high eccentricity (i.e., nodes in the net-
work periphery). They are almost never gatekeepers, but
can be pivotal (i.e. they do not disconnect the graph, but
they often increase geodesic lengths when removed). Role 4

nodes (green triangles in Figure 9a) are isolated authors with
high average edge weight and homophilic neighborhoods.
Their links are not redundant (w.r.t. structural holes), but
have low scores for most other measures (except homophily).

This sense-making analysis can be extremely useful for
large networks, which cannot be easily visualized. By using



(a) Node similarity for Mark Newman (b) Node similarity for F. Robert (c) Node similarity for J. Rinzel

Figure 10: RolX produces meaningful node-similarity across (disconnected) components of a graph. For each

chosen node (in yellow circle), we use ’red’ for the nodes with high structural similarity, and blue for the

rest. (a) For Mark Newman (who is a “broker”), the red nodes are fairly central nodes, bridging others. (b)

For F. Robert (who is from a tight-knit and homophilous neighborhood): the reds are clique members (of

disconnected cliques) (c) For J. Rinzel (who is from a “pathy” but homophilous neighborhood): red nodes

form small chains.
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Figure 12: NodeSense and NeighborSense explain

roles in the network science co-authorship graph.

The blue circle authors (Role 1) are members of

tight-knit communities and are role-homophilous.

The red diamond authors (Role 2) are least ho-

mophilous. They are mostly brokers/bridges and

are neighbors of gray rectangles (Role 3). The gray

rectangle nodes (Role 3) are peripheral authors (i.e.,

have unusually high eccentricity). The green trian-

gle nodes (Role 4) are isolated authors with discon-

nected coauthors.

role-homophily and topological measures, we can interpret
roles regardless of network size.

6. RELATED WORK
Related research can be categorized into three parts: (1)

graph features, (2) role discovery, and (3) transfer learning.
Graph Features. Features have been extracted from

graphs for several data mining tasks. In [19], the authors
propose extracting topological features for pairs of nodes
for link prediction. In [14], the authors develop a multi-
level framework to detect anomalies in time-varying graphs
based on graph, sub-graph, and node level features. Their
approach relies on extracting graph-level (global) features

and tracking these metrics over time. In [2], the authors pro-
pose to detect abnormal nodes from weighted graphs based
on features and patterns from egonets. There has also been
work on using local and global structural features to improve
the performance of network classifiers [12]. Some methods
for feature extraction explicitly preserve the multi-cluster
structure in the data [4]. Our work builds upon the ap-
proach of recursive feature extraction [15].

Role discovery. We propose using recursive graph fea-
tures for role discovery of nodes. The task of role discovery
has been studied in di↵erent types of graphs (e.g., social net-
works [23]). Di↵erent approaches have been used for role dis-
covery, including Bayesian frameworks using MCMC sam-
pling algorithm for learning multiple roles of data points [28],
semi-supervised semantic role labeling [11], etc. These ap-
proaches do not scale up to handle large graphs.

There is another related body of work in role mining, a
nice overview of which is given by Molloy et al. [24]. Role
mining is somewhat di↵erent from the role discovery prob-
lem we discuss in this paper. It addresses the access per-
missions for di↵erent users in di↵erent roles in an access-
controlled system. However, role mining algorithms use
techniques similar to role discovery for inferring roles for
nodes in a graph (e.g., hierarchical clustering).

In addition to using the inferred roles for exploratory
graph mining (such as structural similarity and sense-making
tasks), we use the inferred roles for improving classification.
Previous approaches include using cluster structure for pre-
dicting class labels on graphs [16], and using cluster kernels
for semi-supervised classification [30]. RolX is scalable.

RolX is di↵erent than generalized blockmodeling [26], which
is commonly used in social network analysis. In particular,
(1) RolX roles generalize across networks; (2) RolX is scal-
able; and (3) RolX incorporates local structure in addition to
regular equivalence, and natively supports node attributes
when they are available.

Transfer learning. Another aspect of our work is e↵ec-
tive transfer learning in graphs. In the context of graph data,
nonparametric models have been proposed for transfer learn-
ing for the task of collective link prediction [5]. The general
framework of EigenTransfer constructs a graph to represent
the source-target transfer learning task [7], while similarity
matrix approximations of a hybrid graph have been explored



for transfer learning [29]. Relevant supervision has also been
transferred across domains to improve the performance of
clustering algorithms [3]. In all existing work, the features
are given as the input and the goal is to leverage the given

features to boost performance in the target domain.

7. CONCLUSIONS
Our main contribution is the careful design and exten-

sive experimental validation of RolX , a novel role discovery
approach with the following properties:

• E↵ectiveness: RolX enables numerous mining tasks,
including: Role Generalization/Transfer Learning, (§ 3),
Structural Similarity (§ 4), and Sense-making (§ 5).

• Automation: RolX is fully automatic, requiring no
user-specified parameters.

• Scalability: Runtime is linear on the number of edges.
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