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ABSTRACT

Click-through data has proven to be a critical resource for
improving search ranking quality. Though a large amount
of click data can be easily collected by search engines, var-
ious biases make it difficult to fully leverage this type of
data. In the past, many click models have been proposed
and successfully used to estimate the relevance for individual
query-document pairs in the context of web search. These
click models typically require a large quantity of clicks for
each individual pair and this makes them difficult to apply in
systems where click data is highly sparse due to personalized
corpora and information needs, e.g., personal search. In this
paper, we study the problem of how to leverage sparse click
data in personal search and introduce a novel selection bias
problem and address it in the learning-to-rank framework.
This paper proposes a few bias estimation methods, includ-
ing a novel query-dependent one that captures queries with
similar results and can successfully deal with sparse data.
We empirically demonstrate that learning-to-rank that ac-
counts for query-dependent selection bias yields significant
improvements in search effectiveness through online exper-
iments with one of the world’s largest personal search en-
gines.
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1. INTRODUCTION

In the past several years, click-through data has become
an indispensable resource for online information retrieval
services. It provides a natural, abundant and continuously
renewable source of user feedback. However, despite its
tremendous value, click-through data is inherently biased
and very noisy. Previous research shows that in order to
reliably leverage click-through data one has to account for
multiple sources of bias including: position bias [22], presen-
tation bias [33], and trust bias [28]. Therefore, directly using
click-through data may result in noisy and biased training
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data, which will negatively impact the downstream applica-
tions [21]. As a result, there has been a great deal of research
on extracting reliable signals from click-through data [10].

Previous work has typically focused on click modeling to
estimate relevance for individual query-document pairs. For
instance, Craswell et al. [11] proposed the Cascade model, in
which the conditional probability of a click on a document x
given position ¢ is predicated on the marginal probability of
the document x being relevant to the query and the marginal
probabilities of documents at positions 1, . ..,i—1 being non-
relevant to the query. In order to estimate these marginals,
the click models often assume access to large quantities of
click data for each document x given the query [8, 11, 15].
Such models have generally proven to be successful in the
context of web search, where this assumption holds. How-
ever, it is less clear how they can be applied in search sce-
narios where click data is highly sparse.

One such scenario that is the focus of this paper is per-
sonal search. Personal search is an important and well stud-
ied information retrieval task with applications such as email
search [6], desktop search [13], and, most recently, on-device
search [23]. One important difference between personal and
web search is that in the personal search scenario each user
has access only to their own private document corpus (e.g.,
emails, files, or mobile application data). Therefore, the vast
majority of the existing click models that learn click prob-
abilities from large quantities of clicks for individual query-
document pairs are not applicable in the personal search
scenario.

Another important challenge in the context of personal
search is the collection of explicit relevance judgments. Col-
lection of TREC-like document relevance judgments by third
party raters (that are commonly used in other information
retrieval tasks) such as LETOR data set [29] are difficult to
obtain due to privacy restrictions. In addition, since each
user will have their own unique set of information needs and
documents that evolve over time (e.g., new emails arrive ev-
ery day), explicit relevance judgments may be prohibitively
costly to maintain. Therefore, development of ranking mod-
els in general, and specifically learning-to-rank models [26]
that utilize click-through data as a noisy and biased source
of relevance data becomes essential for personal search.

In this paper, we study the the problem of learning-to-
rank from click data in personal search. Different from the
majority of past click modeling work whose focus is on es-
timating the relevance for individual query-document pairs,
we propose a novel selection bias problem in the context of
the learning-to-rank from click data. The basic idea of the



selection bias problem is that queries are under-sampled to
different extents and thus biased when click data is collected
to learn ranking functions. We propose several methods to
estimate this bias. We begin with a global bias model and
refine it to a segmented bias model. We show that such a
segmented bias model gives rise to a general framework that
defines a query-dependent bias, where every query (and its
associated result set) can be associated with a potentially
different bias model. This general query-dependent frame-
work is especially powerful in the personal search scenario
as it allows accurate bias estimation without explicit access
to a large number of clicks for any given query-document
pair. To the best of our knowledge, this is the first study
that both proposes a theoretical framework for eliminating
selection bias in personal search and provides an extensive
empirical evaluation using large-scale live experiments.

Our primary contributions of this paper can be summa-
rized as follows:

e We propose the problem of selection bias and address
it when applying learning-to-rank to click data.

e We propose several novel bias prediction methods, in-
cluding a query-dependent model that does not need
a large quantity of click data for any given query-
document pair.

e We propose a novel, unbiased and theoretically sound
offline evaluation methodology for our problem.

e We verify the effectiveness of the proposed methods in
the context of personal search through rigorous offline
experiments and large-scale online experiments.

The remainder of the paper is organized as follows. In
Section 2, we review previous related work. Our problem is
formally defined in Section 3. Different methods of quantify-
ing selection bias are described in Section 4. We present our
extensive experimental study and our evaluation methodol-
ogy in Section 5. Finally, we conclude and discuss future
work in Section 6.

2. RELATED WORK

There is an abundance of prior work on interpreting clicks
as implicit feedback from users. One of the seminal papers
in the field by Joachims et al. [22] evaluates the reliabil-
ity of click-through signals via a user study. The overall
conclusion of the study is that clicks are indeed useful for
implicit feedback interpretation as long as certain biases are
accounted for, including “trust bias” (commonly referred to
as “position bias” in later work) that leads to more clicks on
higher-ranked results, and “quality bias” in which the click
behavior is influenced by the overall quality of the ranked
list.

Joachims et al. [22] also proposed five simple strategies to
eliminate these biases, including the CLICK > SKIP ABOVE
strategy, which gave rise to the well-known Cascade model
[11]. Later work also introduced a variety of click mod-
eling techniques including, among many others, a dynamic
Bayesian network click model [8], click chain model [17], ses-
sion utility model [14], whole page click model [9], multiple
browsing model [15], and a general click model [36]. A re-
cent survey by Chuklin et al. [10] provides a good overview
of the latest advances in the field.

While both click models in prior work and selection bias
estimation presented in this paper focus on deriving useful
implicit feedback from click-through data, there are several
important differences. First, while the majority of the past
click modeling work focuses on estimating the degree of rele-
vance between a query and a document, the main goal of this
paper is to study the selection bias problem in which click
data used in learning-to-rank may drift away from the true
underlying distribution. Second, the existing click models
assume that a sufficient amount of click data is available for
each query-document pair in each position to reliably train
the model parameters. While this assumption holds in the
web search setting, it is not feasible in domains like desk-
top search, email search or enterprise search, where each
user might have access to a different set of documents, and
it is impossible to leverage the “wisdom of the crowds” to
aggregate clicks across users. Third, the click models are
generally evaluated using the perplexity between the esti-
mated and observed clicks [9, 15]. In contrast, we directly
evaluate the ranking effectiveness of our methods through
offline evaluation and online live experiments.

Click data is extensively used in sponsored search where
the main goal is to predict the click-through rate for ads
(e.g., [30, 36]). Noticeably, our selection bias estimation
methods are related to the position bias model in [30]. The
main difference is that we use the estimated bias to address
the selection bias problem, while the bias was used as the
expected ads impressions when computing the click-through
rate of ads using data from multiple positions. Furthermore,
we also propose more advanced query-dependent bias models
that are more tractable even in scenarios where training data
can be scarce due to small sample sizes, low search volume
or personal document collections.

Our bias estimation models rely on the randomized ex-
perimental data. Order randomization removes the position
biases that are inherent to click data, and therefore one can
view the proposed models as propensity score [31] estimates.
Furthermore, randomized data is the basis for our proposed
unbiased offline evaluator. Similar evaluation methodologies
were proposed by Li et al. in prior work [24, 25]. The dif-
ference is that we also use the randomized data for selection
bias estimation to improve ranking functions, which is not
the case in the past work.

Order randomization also eliminates, to a certain degree,
the selection bias inherent in many information retrieval ap-
plications that employ pooling of top retrieved results [27].
Previous work [5] proposed methods to avoid the selection
bias in TREC-style evaluation settings. However, such ap-
proaches do not easily extend to the online evaluation case,
which is addressed in this work.

The methods proposed in this paper can also be viewed as
a novel extension of sample selection bias correction meth-
ods, which are well-studied in the context of regression and
classification [20, 34, 32], in the online learning-to-rank set-
ting. In contrast to previously proposed learning-to-rank
models that make explicit assumptions about user behavior
[19] or use heuristic-based method for document selection [1],
we learn the selection bias directly from experimental data.

3. PROBLEM FORMULATION

In this section, we introduce the selection bias problem
for learning-to-rank in personal search scenarios. We begin
by briefly reviewing the general setting of learning-to-rank.



3.1 Learning-to-Rank

Let Q = (¢, {x1,...,Xn}) denote a query string ¢ and its
set of result documents. We write x € Q to indicate that x
is in the result set of Q. Let P(Q) denote the probability of
observing query @, based on the underlying distribution of
queries in the universe Q of all possible queries that users
can issue together with all possible result combinations. The
goal of learning-to-rank is to find a scoring function f(x)
that can minimize the loss function defined as:

L(f) = /Q Q.0 P@) (1)

where [(Q, f) is the incurred loss of scoring function f ap-
plied to query Q. Let x; >¢ x; denote all pairs x;,x; of
result documents in @ for which x; is more relevant than
x;. An example of a pair-wise loss function used in [35] is
defined as:

Q. £ = Y max(0, f(x;) — f(x:))? (2)
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The intuition behind this loss function is to penalize the
out-of-order pairs when ranked by f.

In practice, the distribution of queries in Q is is unknown
and the empirical loss defined over a uniformly random sam-
ped = {Q € Q: Q ~ P(Q)} is used as the objective
function for learning.

Lu(f) = — 3 1@, f) 3)

Ul 5=,

Most learning-to-rank algorithms differ in how the loss func-
tion I(Q, f) is defined [26]. Generally, the state-of-the-art
loss functions are pair-wise or list-wise. Practically, pair-
wise loss functions tend to be more efficient for training and
have been widely adopted by large search engines [4, 35].
Thus, in the rest of the paper, we make the assumption that
a pair-wise loss function (e.g., Eq 2) is being used. However,
it is important to point out that the methods described in
this paper are general enough to be applied to list-wise loss
functions as well.

3.2 Selection Bias Problem

The data set U in Eq 3 is the training data used to learn
the scoring function f(x). There are two commonly used
approaches to obtain relevance estimates for U/. One way
is to sample a set of queries and ask human raters to ez-
plicitly judge the relevance of the retrieved documents. The
other way is to collect implicit relevance judgments such as
click-through data. The click-through data approach has at-
tracted the attention of the research community [21], as it is
much cheaper to obtain than human-judged data, especially
for major search engines. However, as we mentioned before,
click data is biased and very noisy. For example, because
of position bias, simple click counts can not be used directly
to estimate relevance. A great deal of previous work (see
Section 2) focuses on overcoming such bias to infer actual
(or unbiased) relevance. Our focus is on the more general
selection bias problem that arises when using click-through
data to train learning-to-rank models.

Observation 1 When using click-through data for learning-
to-rank, queries without clicks provide no useful information
when optimizing pair-wise loss functions.

— —

Q1 Q2

Figure 1: An illustration of selection bias in click
data. The shaded documents are the relevant ones.
A check mark means the document is clicked.

For example, consider Eq 2. When there are no clicks for
query @, the set x; >¢ x; is empty since there is no way to
derive preferences between any pairs of documents. Such an
observation can be generalized to list-wise loss functions as
well. In the following, we focus on the collection of queries
with clicks and use S to denote this collection.

Observation 2 The collection of queries S is biased. For-
mally, let P(Q) denote the probability mass of query Q in

S, then P(Q) # P(Q).

We use an example to better explain this observation. In
Figure 1, we have two queries Q1 and Q)2 that both have
equal probability of being issued by users, i.e., P(Q1) =
P(Q2) as they have equal probability in ¢/. The relevant
document for ) is at position 1 and is clicked every time
the query is issued. On the contrary, the relevant document
for Q2 is at position 2 and is clicked half of the time when the
query is issued. Thus, ﬁ(Qg) = %p(Ql) in §, which helps
illustrate how selection bias may arise in click data. The
problem illustrated in this example is rooted at the com-
monly known position bias and confirmed by eye tracking
studies [22, 30] as well, which found that the users are less
likely to see, and hence click on, lower-ranked documents.

3.3 Inverse Propensity Weighting

Selection bias is a widely known problem in many other
scientific communities, such as the health care field in which
the problem arises in clinical trial studies [31]. Many meth-
ods such as propensity matching, inverse propensity weight-
ing, and doubly robust estimation have been applied in on-
line settings [7] with the goal of comparing the effect of a
treatment wvs. its control (e.g., showing vs. not showing
the ad). Some methods, including propensity matching, are
specifically designed for comparison: given any individual in
the treatment group, match it with another individual in the
control group in the sense of their propensity scores being
equal; the effect is obtained as the difference between the
average of the treatment group and the matched individuals
from the control group. It is not immediately clear how to
adapt these methods to our use-case.

On the other hand, the inverse propensity weighting ap-
proach can easily be adopted to help overcome selection
bias for learning-to-rank. With inverse propensity weight-
ing, P(Q) is known as the propensity score of Q. Let wg =
P(Q)/F’(Q), i.e. the ratio between the probability of Q ap-
pearing in U and the probability that @ actually appears in



S. Then the empirical loss function becomes:

1
Ls(f)=ﬁ >
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To the best of our knowledge, our work is the first to gen-
erally study selection bias to improve the effectiveness of
learning-to-rank models. The problem of selection bias is es-
pecially important in the scenario of personal search where
the personalized nature of information needs strongly biases
the available training data.

To apply selection bias in practice, the primary challenge
becomes estimating the inverse propensity weights wg. An
open question is also whether such a weighting approach will
have a significant impact on the effectiveness of learning-to-
rank models. We address this challenge and answer this
question in the following sections.

4. PROPOSED METHODS

Before we describe different methods of inverse propensity
weighting estimation, we briefly describe our application sce-
nario and the data set used to quantify the bias.

Application Scenario. Our application is a search en-
gine for one of the world’s largest commercial email and
cloud file storage services. Given a query, the search en-
gine provides instant results (i.e., the results refresh as the
user types). These instant results provide an efficient way
for the user to examine the results. There are up to n in-
stant results with no pagination. The results are retrieved
from a personal corpus (e.g. emails or cloud storage files)
and therefore are generally unique to the user. Once the
user detects a relevant result and clicks on it, the clicked
document is immediately opened in the browser.

Our click data is obtained exclusively from the instant
results. Therefore, for each issued query, there will be either
no click or exactly one click. In the rest of the paper, we
study the selection bias problem in this setting. While the
methods presented here can easily be extended to the web
search setting, it is beyond the scope of the current study.

Result Randomization. In order to quantify the posi-
tion bias, which will be used for inverse propensity weighting
estimation, we employ result randomization and collect user
click data on the randomized result sets. Specifically, given
a ranked result list of n documents returned for some query,
instead of showing the original list, we permute the results
uniformly at random and present the shuffled list to a small
fraction of end users. We denote the collected randomized
data by R. As a special case, when n = 2, the randomization
reduces to the previously proposed FairPairs algorithm [11,
33].

In the rest of this section, we present different methods to
quantify the selection bias using the collected randomized
data.

4.1 Global Bias Model

The global bias model can be viewed as the standard po-
sition bias model [11, 30]. It assumes that the bias is a func-
tion of the position within the ranked list itself. Formally,
let ¢% denote the probability of receiving a click when a
document x is shown at position 4 for query @, r& be the
probability of relevance of x to @, and b; be the bias at posi-
tion ¢ (meaning how likely a user is to examine the document
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Figure 2: The position bias propensity scores for
user emails and cloud storage files.

at this position), then it follows that:
Q _ Q. b;

xi

C

Our goal is to estimate b; for 1 < ¢ < n. Given query Q,
P(x|@Q,%) denotes the probability of showing result x € Q
at position ¢. In the randomized data, the probability of
showing a given result x € @ is the same for all positions,
ie., P(x|Q,i1) = P(x|Q,i2) for all 1 < 41,42 < n. Thus,
given @, for all 1 < 41,i3 < n:

/ r2 AP(x|Q.i1) = / r2 dP(x(Q, i2)
x€Q x€EQ

Hence,

ZQER fercxi dP(X‘Q,@) .
bi N 1 X1 dP(x 1),
2 qer ferTde(X\Q,z) x Z /erc (x1Q,9)

QER

which is the total number of clicks at position ¢ in the ran-
domized data R. In our application, every query in S has
a single click. Let ¢ be the clicked position for ). Then
b; is proportional to the ratio between the probability of Q
appearing in S and the probability of @ in the uniformly
sampled collection U, i.e., 13’(Q)/P(Q)7 and thus
o= PO 1
(ORI

We now show some empirical data for the global bias
model. We ran our randomization experiments for two doc-
ument corpora (user emails and cloud storage files) and col-
lected their data. We set n = 4, normalize all b; so that
>, bi =1, and plot the normalized b; values in Figure 2. As
the results show, there are clearly position biases in both the
email corpus and the cloud file storage corpus. For exam-
ple, b1 in the email corpus is about 0.40 but b4 is about 0.15,
confirming the strong bias of clicking top positions. More
interestingly, Figure 2 also shows that the emails and the
cloud storage files have very different bias values: the bias
for files is much more flat than that of the emails.

4.2 Segmented Bias Model

The global bias model quantifies the position bias solely
based on the clicked position, which is a rather coarse esti-



mate. Most of past work does not go beyond this. However,
motivated by the bias difference shown in Figure 2, it is
possible that even within a single document corpus (e.g.,
email), different segments of queries have different position
biases. We thus propose a more fine-grained model called
the segmented bias model.

The basic idea of the segmented bias model is to parti-
tion queries into a few segments and then apply the global
position bias model separately within each segment. Thus,
we have a specific bias model for each segment. There may
be multiple application-specific ways of segmenting queries
such as using a query classifier. In our application, we focus
on the email corpus from now on, and rely on the categories
or labels assigned to each email. There are several such la-
bels available in our corpus such as Promotional or Social.
Each email can be associated with multiple labels'. There
are multiple emails in the result list for each query and our
goal is to select a single label and treat it as the segment for
the query.

Inspired by the inverse document frequency (IDF) metric,
we compute the inverse query frequency (IQF) for each label.
For a label t,

v
{Q:teQ}

where t € Q means that label t is attached to some email
retrieved for query @ and |{Q : ¢t € Q}| is the total number
of queries that have label t attached in the randomized data.
Then the label ¢(Q) of a query Q is:

4(Q) = argmax{IQF(t)}

IQF(t) x

A Dby-product is that this creates segments with more bal-
anced size. Given all the queries labelled by ¢, we can then
estimate the position bias b! for this segment. Thus, for
query @, its inverse propensity weighting becomes:

1
wWQ X ——
bZ(Q>

where 7 is the clicked position of (). Though simple, we find
that this method is quite effective in our experiments.

4.3 Generalized Bias Model

The segmented model goes a step further to model the
bias in a more fine-grained manner. A natural question
is how to generalize this even further. For example, is it
possible to have a query-dependent bias model? In other
words, each query can potentially have different position bi-
ases. Due to the large number of unique queries, such a
formulation seems intractable. However, as we show in this
section, result randomization makes it possible to formulate
a generalized query-dependent bias model.

Specifically, to estimate the position bias for query @, sup-
pose that we can present a randomly shuffled list of docu-
ments every time the query is issued and that user clicks are
independent. A similar approach to the global bias model
can be applied on the randomized data specifically for query
Q. However, this is not practically feasible for the following
reasons. First, to be able to accurately estimate the position
bias for the query @, hundreds or thousands of data points

!The labeling algorithm itself is out of the scope of the pa-
per, but the reader may refer to Grbovic et al. [16] or Bekker-
man [2] for some prior work on the subject.

are needed. This means most queries will be filtered out
because of data sparseness. Second, in the private search
scenario, as discussed here, documents are unique to an in-
dividual user. Even for the same query string, the retrieved
documents will differ across users. In order to collect suffi-
cient data for a query, we need to show different randomized
results for the same user from time to time. This will not
only annoy the users, but also miss the purpose of data ran-
domization since the data independence assumption will be
violated. Thus, the challenge is how to tackle the following
prediction problem.

Definition 1 (Position Bias Prediction) Given a query
Q = (¢, {x1,..-,Xn}), the problem of Position Bias Predic-
tion s to estimate the click probability at each position
(1 <i < n) if we show the set of documents in a uniformly
random order, specifically for Q.

Recall that we have a set of queries in the randomized
data. To solve the problem above, we propose a learning-
based approach using multi-class logistic regression. We
have n positions and thus n classes in the regression. For
each query, we seek to estimate the probability of the query
belonging to each class. Thus, we construct the training
data from the randomized data and describe our approach
as follows:

e Labels: For each query instance in the randomized
data, we have the clicked position i. The label of this
instance is class ¢. We use binary logistic regression
as our algorithm and this query becomes a positive
training example for class i and a negative example
for all other classes.

e Features: For each query @, we can construct a fea-
ture vector v(@). In our setting, a feature can be
query-dependent or user-dependent. For a feature which
depends on documents, the feature should only depend
on the “set” of retrieved documents, without depen-
dency on the actual order in the randomized data. For
example, ¢(Q) in the segmented bias model is such a
feature that only depends on the “set” of the emails.

e Training: We train n logistic regression models, each
for a single position, based on the feature vectors and
positive/negative training examples defined above. The
logistic regression model for position ¢ is parameterized
by a vector ;. For a feature vector v(Q),

1
be = 4
I e R ) @
The parameter 3; can be obtained by maximizing the
likelihood on the training data.

e Prediction: Given a query with its features, we can
apply these n models and obtain n prediction values
based on Eq 4. A value corresponding to position i is
the click probability when the results are shown uni-
formly randomly and thus the position bias.

We call the above the generalized bias model. Indeed,
both global and segmented models are special cases in this
generalized bias model.

Proposition 1 When the feature vector for each query has
a single constant element 1, the generalized bias model is
reduced to the global bias model.



Proof Sketch. Let c¢; denote the total number of clicks on
position i and C' =}, ¢;. When the feature vector for each

query has a single constant element 1, b? only depends on ¢
and the log likelihood of b; in Eq 4 is

cilog(bi) + (C — ¢;) log(1 — by)
which is maximized when b; = ¢;/C. [

Proposition 2 The segmented bias model becomes a spe-
cial case of the gemeralized bias model when we construct
the feature vectors as follows. We create a binary feature
for each segment, and a query has a value 1 in the feature
corresponding to its segment and O elsewhere.

Proof Sketch. The feature vector defined for the segmented
model can partition the queries in the same way as the seg-
mented model. The log likelihood of the whole data set can
be separated into a few individual components, with each
corresponding to a segment. Each component will be maxi-
mized similarly to Proposition 1 and thus the yielded biases
are the same as the segmented bias model. []

As noted before, the generalized bias model is flexible to
take any types of features such as query-specific or user-
specific features. In our experiments we use a simple yet
effective set of query length and query segment features de-
scribed in Table 1. In Section 5, we will report some empiri-
cal results on the effectiveness of the generalized bias model
based on these features.

S. EXPERIMENTS

In this section, we conduct experiments to compare differ-
ent position bias prediction methods. All the methods that
we compare are summarized in Table 2. In this table, No-
Correction means learning a scoring function without taking
selection bias into account. It serves as the baseline to com-
pare the other methods against. In the following, we first
describe the experimental design and then present the ex-
perimental results.

5.1 Experimental Design

5.1.1 Data Sets

We use two data sets in this paper: regular click data and
randomized click data.

e Regular Data. This is data collected from our click
logs that is used for learning a scoring function. This
data is made up of a random sample of email search
logs from 2015-12-01 to 2015-12-07, resulting in 4 mil-
lion queries with clicks. The training and test sets used
in our offline evaluations are comprised of a 50/50 split
of this data.

e Randomized Data. This is a randomized data set
that is used to estimate bias in our proposed methods.
To obtain randomized data, we randomly permuted
the top search results returned for a a small fraction
of email search queries (from 2015-11-18 to 2015-11-
23), resulting in a total of 208K queries in total. To
estimate position bias, we only retain the queries with
exactly 4 results, which yields a data set with 148K
queries.

Feature Type Description

Binary indicator based on the buck-
etized number of query -characters:
[0,10), [10,20), [20, 30), [30, o).

Query length

Binary indicator based on category seg-
ment ¢(Q), as described in Section 4.2.

Segment

Table 1: Generalized bias model features.

Name Method Description

NoCorrection || No bias correction is applied. This
serves as our baseline.

Global The bias is estimated for each position
globally.

Segmented The bias is estimated for each position
per segment.

Generalized The bias is estimated for each position
per query using logistic regression.

Table 2: List of position bias prediction methods.

5.1.2 Learning-to-Rank Algorithm

Our learning-to-rank algorithm is an adaptive one, in which
we build a new model on top of the existing score. This is
different from the standard approach, which learns a scor-
ing function using the entire set of features. Instead, in the
adaptive approach, we aim to train the adjustment §(x) over
the base score s(x). The final scoring function becomes:

J(x) = s(x) + 8(x)

We use the following ranking features to learn the adjust-
ment 0(x):

e Email categories. This is the same set of categories
used in the segmented bias model. An email can belong
to multiple categories. For each category, we have a
binary feature with 1 indicating that the email belongs
to this category, and 0 otherwise.

e User interactions. We have a set of user interaction
features logged for each email. For example, an inter-
action feature can be whether a user opened the email
in the past or not.

This yields tens of ranking features. Although this may seem
like a small number of features, the base score s(x) is already
highly optimized and includes hundreds of different features.
The email category and user interaction features considered
here add some additional information that is somewhat or-
thogonal to those used to compute the base score. For the
NoCorrection baseline (see Table 2), we train §(x) with-
out applying any bias correction (i.e. wg = 1), and apply
the respective selection bias weights during training for the
Global, Segmented and Generalized models.

The additive nature in our adaptive model naturally fits
the Multiple Additive Regression Trees (MART) learning
algorithm [18]. In every iteration, MART trains a new tree
to be added to the existing list of trees. In our setting, we
start with our base score s(x) and then train additive trees
over it.

5.2 Experimental Results

In this section, we evaluate the position bias prediction
models in a couple of different settings. Among them, the



| | Uniform | Global | Segmented | Generalized |

Mean 4.0 3.7360 3.7337 3.7336
95% CI / +0.0202 £0.0201 +0.0197

Table 3: Perplexity on the randomized data with
95% Confidence Interval.

online experiments serve as the ultimate ground truth, but
are expensive because they need to run against live traffic.
We thus explore cheap offline evaluation methodologies and
discuss their strengths and weaknesses.

5.2.1 Perplexity on Randomized Data

The position bias prediction problem can be treated as
a standard prediction problem and thus can be evaluated
using techniques like cross-validation. We split the random-
ized data into 10 folds and use the leave-one-out strategy to
evaluate the different prediction methods. For each query, a
prediction method gives a distribution over all the positions.
We can thus use perplexity as the evaluation metric, which
is defined as:

N .
perplexity = 2*% > o=11og2 Po )

where N is the total number of observations in the test data
and p, is the probability of observation o as predicted by
the model to be evaluated. Perplexity measures how well a
distribution predicts samples and is often used to evaluate
or compare language models [3]. It is also used in recent
work to compare click models [15]. In our case, each sample
corresponds to a click at a position in the test data, and p,
is the predicted bias probability for that sample. A lower
perplexity score means the model is better at predicting the
observations.

In Table 3, we show the perplexity score and the 95% con-
fidence intervals based on the cross-validation. In this table,
Uniform is a non-informative baseline and corresponds to
the uniform prediction that gives a 25% for each of the 4
positions. From this table, we can see that all the position
bias methods outperform Uniform significantly. For exam-
ple, the 95% confidence interval of Global is [3.7158, 3.7562].
The Uniform perplexity 4.0 is outside of this range and thus
the difference is significant. Comparing across all the bias
prediction methods, we can see that Generalized achieves
the best score and Segmented is very close to Generalized.
However, the difference among all the 3 methods showed in
the table are not significant.

Perplexity is an intrinsic measure of a given method’s pre-
diction accuracy. However, from the practical perspective
we are much more interested in extrinsic evaluations of how
models trained using each approach perform in terms of re-
trieval effectiveness. In the following, we examine different
options for directly evaluating search quality.

5.2.2  Offline Evaluation on Regular Data

The obvious way of evaluating the ranking quality offline
is to apply our learnt scoring function to a held-out test
data set. However, as we will show, such a method is not
well-grounded. Let us consider the evaluation metric Mean
Reciprocal Rank (MRR), which is defined as follows:

1 1
MRR = = > (6)
|S| 5t rankg

Weighted MRR in Eq 7
Global wg | Segmented wg | Generalized wq
NoCorrection 1.0055 1.0055 1.0000
Global 1.0154 - -
Segmented - 1.0156 -
Generalized - - 1.0101
Improvement 0.9822% 0.9968% 1.0099%

Table 4: Offline evaluation on the regular data based
on the weighted MRR. The number in this table is
normalized by the smallest MRR.

where rankqg is the rank of the first clicked document of
query Q. In the context of selection bias, we need to incor-
porate the bias correction wg into the metric as well and
thus get the weighted MRR:
1 1
MRR = > we
2gesWQ 525

(7)

rankg

Different position bias prediction models give rise to dif-
ferent wq values in Eq 7 and thus the MRR metric is not
comparable across different wg weights. This means that
even for the same data set and the same scoring function,
we may get different MRR values. To illustrate this, Table 4
reports the weighted MRR on the test data set of the regu-
lar data. We normalize the raw MRR values by the smallest
value in the table. The row denoted by NoCorrection corre-
sponds to the evaluation results on the same data set with
the same scoring function. Clearly, the table shows differ-
ent values when different wg are used in the MRR metric.
Though we can compute the relative improvement of differ-
ent position bias correction models over the NoCorrection
model, using the MRR with the corresponding wq, such
improvement numbers are still not grounded as a reliable
comparison metric. By changing the weight wg, one can ar-
tificially manipulate the improvement. For example, a high
weight wg can be given to queries where the new model has
a higher MRR.

5.2.3 Unbiased Offline Evaluator

In this section, we address the challenge of offline evalu-
ation by proposing a novel unbiased offline evaluator based
on the randomized data. Such a method directly evaluates
the ranking quality and thus is more practically useful than
perplexity. Furthermore, it is theoretically sound, unbiased,
and can overcome the comparability issues that arise when
using the regular data for offline evaluations.

Unbiased offline evaluators have been studied extensively
in the setting of contextual-bandit problems [12, 25]. We
adapt this strategy to our problem setting. Our proposed
algorithm is detailed in Algorithm 1. This algorithm goes
through every query in the randomized data set R and se-
lects a matched subset Rs based on the provided scoring
function f(x). The matching condition is that the ranking
recorded in our log data R is the same as that ranked by
f(x) for the top k documents. The metric value is then
computed on the selected subset Rs.

Theorem 1 Given uniformly randomized data R, Algorithm 1
gives an unbiased estimate of any metric M for any scoring
function f(x).

Proof: This is a simplified version of Theorem 1 in [25] in
that we have a static scoring function. We only prove the



Algorithm 1 Offline Evaluator

Input: scoring function f; randomized data R; evaluation
metric M on top k: Mkg.

Output: evaluation value of f.

1: Set matched data collection Ry := 0

2: for Q = (¢, (x1,...,X,)) in R do

3:  Let (xj;,...,Xj,) be (X1, ...,Xn) re-ranked by f
4 if (j1,...,5c ) = (1, ..., k) then

5: Rs =RsUQ
6
7
8

end if
: end for
: return My (Rs)

case when k = n. Our goal is to show that Rs is an unbi-
ased sample of events if we use f(x) as the scoring function.
Since all the rankings in R are the same as ranked by f(x),
we only need to prove that the marginal probability on the
query string itself, P(q), in R is unbiased.

Pq) = > PQ)

{Q:Q€ER; and q€Q}

where ¢ € @ means ¢ is the query string of Q. This is
the case because P(q) in R is unbiased since we collect all
the data and the probability of entering the if condition in
Algorithm 1 is 2 for all the queries. [J

One caveat of the above algorithm is that we only use
queries with exactly n results. For queries with j < n re-
sults, we can weigh them by 37'1 when estimating the metric.

The full procedure for evaluating a position bias prediction
method is as follows:

e Split the randomized data into training and test (e.g.,
via a 50/50 split).

e Train the bias prediction model using the randomized
training data.

e Apply the learnt position bias model to the regular
training data to obtain a scoring function.

e Evaluate the scoring function on the randomized test
data based on Algorithm 1.

Using NoCorrection as the baseline, we report the relative
improvement of different bias prediction models in Table 5.
In this table, we show the MRR in Eq 6 evaluated on the top
k results along with the size of Rs. The results show that
all position bias prediction methods outperform the NoCor-
rection baseline. For the position bias prediction methods,
both Segmented and Generalized are better than Global,
and Segmented is slightly better than Generalized, demon-
strating the potential utility of advanced position bias mod-
els. However, the differences are not statistically significant,
due to the high variance incurred by the small evaluation
data set. For k, the expected size of R, is about % of
the size of R. A larger data set could be used to increase
the statistical power of our proposed methods.

5.2.4 Online Experiments on Live Traffic

Online experiments are the ultimate litmus tests to eval-
uate different scoring functions. Our online experiments are
in the form of A/B testing: we allocate a fraction of live
traffic for each experiment. One half of the fraction is used

[ k] IRs| | Global | Segmented | Generalized |

1 || 19.8K || 0.94% 1.01% 0.97%
2 || 6.7K 1.08% 1.28% 1.20%
3| 33K 1.58% 1.67% 1.68%
4 3.3K 1.37% 1.44% 1.41%

Table 5: Comparison of different position bias pre-
diction methods using the unbiased offline evalua-
tor. We report the relative improvement over the
NoCorrection baseline.

MRR
Baseline Global Segmented | Generalized
NoCorrection | 0.67%*** | (0.88%*** 0.79%***
Global - 0.21%* 0.12%
CTR
| Baseline | Global | Segmented | Generalized |
NoCorrection | 0.46%*** | 0.71%*** 0.62%***
Global - 0.25%** 0.15%

Table 6: Comparison of different bias prediction
methods using online experiments. We report the
relative improvement over the NoCorrection base-
line. Notation *, ** and *** means the difference is
significant at level 0.1, 0.05 and 0.01 respectively.

as control (i.e., the NoCorrection model, as described in Sec-
tion 5.1.2) and the other half is used as treatment (i.e., the
one of the bias prediction methods). We create an online
experiment for each of the methods listed in Table 2. We
ran all four online experiments for a period of one week, col-
lecting millions of clicks per experiment. Based on the click
data, we compare the treatment and the control by com-
puting the relative improvement in terms of our evaluation
metric MRR (mean reciprocal rank of a click) in Eq 6. We
also compute the relative improvement between two treat-
ment methods using NoCorrection as the calibrator.

Table 6 summarizes the results of our online experiments.
In this table, we report the relative improvement in MRR
compared with the NoCorrection and Global baselines. For
the NoCorrection baseline, we can see that all our position
bias methods yield statistically significant improvements at
the 0.01 level. This confirms that selection bias in click
data is significant and overcoming it can lead to significant
quality improvement. From Global baseline, we can see that
more fine-grained position bias models are capable of further
improving our metric. For example, Segmented outperforms
Global significantly at 0.1 level.

For the online experiments, we can also report the click-
through rate (CTR). The CTR metric reflects how attractive
the result section is as a whole. We also report the relative
improvement in terms of CTR in Table 6. Our observations
for the CTR metric parallel those for the MRR metric —
the Global baseline significantly increases CTR, and Seg-
mented and Generalized methods provide further improve-
ments. Furthermore, Segmented model achieves significant
improvement over Global at 0.05 level.

The results of the online experiments do not indicate a
significant difference between Segmented and Generalized
models, even though both outperform the Global baseline.
As we showed before, Segmented is a special case of General-
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Figure 3: The importance of query length varied
with positions.

ized when only the segmented features are used, suggesting
the usefulness of the category segment feature, and the im-
portance of feature engineering for further improvement of
the generalized bias model.

5.2.5 Regression Models Analysis

The generalized bias model not only provides a flexible
way for position bias prediction, but also enables us to un-
derstand the impact of different features in terms of their
usefulness in modeling position bias. In this section, we an-
alyze the features to distill additional insights.

We have two types of features in the regression models:
segment features and query length features. The question
is which group of features is more predictive. To answer
this question, we compare 3 generalized models with dif-
ferent sets of features and observe the following changes in
perplexity (as defined in Eq 5): segment and query length
features (3.7336), segment features only (3.7337), and query
length features only (3.7358). Clearly we can see that seg-
ment features are more useful than query length features in
reducing the perplexity.

Furthermore, we can observe the impact of different lengths
of query features. Our query lengths are bucketed as in Ta-
ble 1 with larger bucket IDs corresponding to longer queries.
For each position ¢ and each query length bucket j, we have
Bi; corresponding to the coefficient in the logistic regres-
sion model. Here, e® represents the contribution of query
length j to the odd of click on position i: b;/(1—b;). We plot
the relative contribution e /efi1 in Figure 3. For position
i=1, e /eﬁi1 becomes smaller when j becomes larger. In
other words, the odds of a click at position 1 decrease when
the query is longer. In contrast, for position i = 4, 6*31'-7‘/1'33’71
becomes larger when j becomes larger, which means the
odds of a click at position 4 increase as the query becomes
longer. This makes sense intuitively, since when queries are
longer, users have more refined needs and the position bias
becomes flatter. This means that the users are more willing
to examine the lower-ranked documents.

6. CONCLUSIONS

In this paper, we studied the problem of learning-to-rank
with selection bias for personal search. We discussed the

infeasibility of using existing click models in personal search
and proposed a novel approach to overcome the inherent se-
lection bias for this application. We proposed a few methods
to estimate the selection bias and addressed it using inverse
propensity weighting. In addition, we study offline and on-
line evaluation methodologies and also propose a novel unbi-
ased offline evaluator. Through extensive offline and online
experiments, we show that the proposed methods for mod-
eling selection bias can significantly improve the quality of
learning-to-rank models that use click data for training.

There are a few interesting lines of future work. (1) We
evaluate our methods in the context of personal search, but
it would be interesting to see how applicable they are to web
search. (2) Our experiments use queries with a single click.
It would be interesting to extend the framework to the search
scenarios that allow multiple clicks per query. (3) Given a
different application, such as cloud storage files, what are
the effective features in bias estimation? This could inspire
lots of interesting feature engineering work in the research
community. (4) The expensive part of our method is the
dependency on randomized data. How to collect random-
ized data in a cheaper, less-intrusive manner is also worth
studying. Furthermore, how to adapt our offline evaluator
to improve its data utilization is also an interesting research
problem.
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