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Abstract

This work compares the performance of deep Locally-
Connected Networks (LCN) and Convolutional Neural Net-
works (CNN) for text-dependent speaker recognition. These
topologies model the local time-frequency correlations of the
speech signal better, using only a fraction of the number of
parameters of a fully connected Deep Neural Network (DNN)
used in previous works. We show that both a LCN and CNN
can reduce the total model footprint to 30% of the original size
compared to a baseline fully-connected DNN, with minimal im-
pact in performance or latency. In addition, when matching pa-
rameters, the LCN improves speaker verification performance,
as measured by equal error rate (EER), by 8% relative over the
baseline without increasing model size or computation. Simi-
larly, a CNN improves EER by 10% relative over the baseline
for the same model size but with increased computation.

1. Introduction

Speaker Verification (SV) is the process of verifying, based on
a speaker’s known utterances, whether an utterance belongs to
the speaker. When the lexicon of the spoken utterances is con-
strained to a single word or phrase across all users, the process
is referred to as global password Text-Dependent Speaker Ver-
ification (TD-SV). By constraining the lexicon, TD-SV com-
pensates for phonetic variability, which poses a significant chal-
lenge in SV [1]. At Google, we target a global password TD-
SV where the spoken password is given by: “Ok Google”. This
particularly short, approximately 0.6 seconds long global pass-
word was chosen as it relates to the Google Keyword Spotting
system [2] and Google VoiceSearch [3], facilitating the combi-
nation of all three systems.

Our goal is to create a small footprint TD-SV system that
can run in real-time in space-constrained mobile platforms. Our
constraints are a) total number of model parameters must be
small (e.g. 0.8M parameters), and b) total number of operations
must be small (e.g. 1.5M multiplications), in order to keep la-
tency below 40ms on most platforms. Previous work [4] intro-
duced our baseline system and compared it to the more standard
i-vector approach. This system used a fully-connected Deep
Neural Network (DNN) to extract a speaker-discriminative fea-
ture, “d-vector”, from each utterance. Utterance d-vectors were
incrementally computed frame by frame, and improved latency
by avoiding the computational costs associated with the latent
variables of a factor analysis model [5], which occurred after
utterance completion.

In this paper, we explore alternative architectures to the
fully-connected feed-forward DNN architecture used to com-
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pute d-vectors, with the goal of improving the equal error
rate (EER) of the SV system while limiting and even reduc-
ing the number of parameters and latency. We explore locally-
connected (LCN) and convolutional neural network (CNN) [6]
architectures; these architectures focus on exploiting the local
correlations of the speech signal. Both LCNs and CNNs are
based on local receptive fields (i.e. patches), whose charac-
teristic shape is sparse but locally dense. LCNs and CNNs
have been widely used in image processing [7] and more re-
cently in speech processing too [8, 9, 10]. Unlike in previous
works, this paper uses LCNs and CNNs to directly compute
speaker discriminative features while simultaneously constrain-
ing the size and latency of the model. In this paper we show
that LCNs and CNNs can reduce the number of parameters in
the first hidden layer by an order of magnitude with minimal
performance degradation. We also show that for the same num-
ber of parameters, LCNs and CNNs can achieve better perfor-
mance than fully-connected layers. Finally, we propose apply-
ing LCNs over CNNs in our global password TD-SV system
because LCNs have lower latency.

This paper is organized as follows: Section 2 describes the
baseline fully-connected d-vector system. Section 3 describes
the LCNs and CNNs that are explored in this paper. Section
4 presents the results of two experiments: the first experiment
compares models that differ only in the first hidden layer, while
the second experiment compares models of the same size. Sec-
tion 5 concludes the paper.

2. d-vector Baseline Model

Figure 1 contains the complete topology of the baseline fully-
connected DNN and its position in the SV pipeline. Let z* be
the input features of the input layer at time ¢. 2* is formed by
stacking g-dimensional mel-filterbank vectors by [ contextual
vectors to the left and r contextual vectors to the right; the total
number of stacked frames is [ + r + 1. Therefore, there are
v = q(I + r + 1) visible units per input x*. The hidden layers
contain units with a rectified linear unit (ReLU) activation. Each
hidden layer contains k units.

The output of the DNN is a softmax layer which corre-
sponds to the number of speakers in the development set, N.
Each input has a target label, which is an integer correspond-
ing to speaker identity. See [4] for details. The DNN is trained
using the cross-entropy criterion.

For enrollment, the parameters of the DNN are fixed. We
derive the d-vector speaker feature from output activations of
the last hidden layer (before the softmax layer). To compute the
d-vector, for every input 2* of a given utterance, we compute
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Figure 1: Pipeline process from the waveform to the final score (left). DNN topology (middle). DNN description (right).

the output activations h; of the last hidden layer j, using stan-
dard feed-forward propagation. Then we take the element-wise
maximum of activations to form the compact representation of
that utterance, the d-vector d. Thus, the i component of the
k-dimensional d-vector d is given by:

d; = mtaX(hﬁ-i) ey

Note that in the computation of d we do not use any of the
parameters in the output layer, which can be discarded. Thus,
for M hidden layers, the number of total weights w in real-time
system is given by:

w=vk+ (M —1)k* )

Each utterance generates exactly one d-vector. For enroll-
ment, a speaker provides a few utterances of the global pass-
word; the d-vector from each of these utterances is averaged
together to form a speaker model that is used for speaker verifi-
cation, similar to the original i-vector model [11].

During evaluation, the scoring function is the cosine dis-
tance between the speaker model d-vector and the d-vector of
an evaluation utterance.

3. Optimizing Local Connections

In order for our SV system to run in real-time on space-
constrained platforms, the size of the DNN feature extractor
must be small. However, in a fully-connected model with large
number of visible units v, the term vk dominates over the rest of
terms in Eq. 2; the first hidden layer accounts for most of the pa-
rameters. For example, our baseline model is a fully-connected
DNN model with v = 48 x 48 input elements and £ = 256 hid-
den nodes in each of M = 4 hidden layers, such that the input
layer accounts for the 75% of the model parameters. Similarly,
in the previous work [4], the input layer accounted for 70% of
the network parameters. Direct methods to reduce DNN size
include reducing the number of hidden layers, reducing the in-
put size by using fewer stacked context frames, and reducing
the number of hidden nodes per layer; however, Table 1 shows
that reducing the number of layers, context size, or hidden units
strongly hurts performance. Therefore, in order to limit model
size, this paper focuses on reducing the size of the first hidden
layer using alternative architectures.

Although the first hidden layer contains most of our base-
line fully-connected DNN model’s weights, the weight matri-
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Layers Patch Depth  Weights  Multiplies EER
4 787K 787K 3.88

3 48> 48 256 721k 721k 4.16
18 x 48 787K 787k 3.88

4 20 x 48 256 442k 442k 4.05

5 x 48 258k 258k 5.04

256 787K 787k 3.88

4 4848 g 344k 344k 5.53

Table 1: Baseline results for various configurations of fully-
connected networks: with variable number of layers (top),
with variable context sizes (middle) and with variable number
of nodes (bottom.) The “Weights” column is the number of
weights in each model, and represents the model footprint. The
“Multiplies” column corresponds to the number of multiplica-
tions required for computing the feed-forward neural net, and
represents the latency impact.

Figure 2: Weight matrices of first fully-connected layer in
DNN. The weight matrices are sparse with well-localized non-
zero weights.

ces of the first fully-connected hidden layer are very sparse and
low-rank; Fig. 2 shows visualizations of the weight matrices
from the first hidden layer. Previous works have taken note
of DNN sparsity and attempted to train networks that are less
sparse [12], or iteratively prune low-value weights [13]. We
observe that the sparse non-zero weights are clumped close to-
gether, not scattered throughout the matrix, such that a small
patch could span over the well-localized non-zero weights. This
is important because we rely heavily on parallel SIMD opera-
tions (as in [14]) to efficiently compute neural nets using small
dense matrices rather than large and sparse matrices. In this
work, we seek to use LCN and CNN layers to take advantage of
the sparse and local nature of the DNN to constrain the model
size while improving performance.
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Figure 3: In a fully-connected input layer, each filter contains
non-zero weights for each input element. In a LCN input layer,
each filter is only non-zero for a subset of the input elements,
and different filters may cover different subsets of the input.
While each filter in a LCN layer covers only one patch of the
input, each filter in a CNN layer covers all the patches in the
input through convolution. Each patterned square corresponds
to a filter matrix.

3.1. Locally Connected DNNs

To reduce the model size, we experiment with explicitly enforc-
ing sparsity in the first hidden layer by using a LCN layer [6].
When using local connections, each of the hidden activations is
the result of processing a locally-connected “patch” of v, rather
than all of v as done in fully-connected DNNs. Fig. 3 com-
pares the weight matrices of a fully-connected layer and a LCN
layer, emphasizing how a LCN layer is equivalent to a sparse
fully-connected layer.

Previous works suggested that any reasonable tiling of the
input space, including random patches, could be sufficient to
obtain high performance [15, 16]. Thus, as more sophisticated
approaches may not be necessary, we use LCN with square
patches of size p X p that perfectly tile the input elements in
a grid with no gaps. Let v be the number of input features, p the
width and length of the square patch, n = v/p? the number of
patches over the input and fic, is the number of filters over each
patch. Then, the total number of filters used by the LCN layer
is given by n ficn, while the number of weights in the network
is:

w = Uflcn + nflcnk + (M — 2)k2 (3)

Here k denotes the number of nodes of the rest of the hid-
den layers in the network. Note by comparing (2) and (3)
that the variables ficn and n offer finer control over the num-
ber of parameters in the network. The first two hidden layers
are influenced by fi.,, while remaining hidden layers have k2
weights. One interpretation of local connections is that they
enforce patch-based sparse matrices when training; given the
sparse filters in the first fully-connected hidden layer (Figure
3), local connections are a natural fit. By using a LCN layer, we
are implementing a sparse-coding with hand-crafted bases.
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Figure 4: Filters from LCN layer with 12x12 patches.

Figure 5: Filters from CNN layer with 12x12 patches.

3.2. Convolutional Neural Networks

As Figure 4 shows, several LCN filters appear similar, suggest-
ing further compression is possible. This motivates us to look
at CNNs to reduce model size further. Like LCN, CNN also de-
fine a topology where local receptive fields, or patches, are used
to model the local correlations in the input [7]. However, unlike
LCN layers—where each filter is applied to a single patch in the
input—in CNN layers, filters are convolved, such that all filters
are applied to every input patch. (Figure 3). This approach
may be interpreted as using a unique set of fen filters repeated
over all patches, versus using n sets of localized filters, each
of size ficn, as in LCN. As several LCN filters appeared similar
in Figure 4, this strategy of sharing filters suggests that further
compression is possible. Furthermore, previous work suggested
that CNNs are particularly good in handling noisy or reverber-
ant conditions [17, 18].

CNN layers take orders of magnitude more multiplications
to compute than similarly sized fully-connected or LCN layers.
In order to keep latency under 40ms on our target platforms, we
limit our experiments to CNN configurations with 1.5M mul-
tiplications; under this constraint, the only configurations we
consider are filters that shift with very large strides of size p
when convolving. We do not using pooling layers, as they re-
duce speaker variance [19]. Given a 48 X 48 input, we present
experiment results for CNN layers with 4 24 x 24 patches, 16
12 x 12 patches, or 64 6 x 6 patches.

We compute the number of weights in a model with CNN
first hidden layer as follows. Let v be the number of input fea-
tures, p the width and length of square patch filter, n = v/p?
the number of patches, fcnn be the number filters from first hid-
den layer, and k be the number of nodes in the rest of the hidden
layers; then the number of weights for a CNN model is

w = fcnnp2 + nfcnnk + (M — 2)k2

Unlike fully-connected and LCN models, the number of
multiplications necessary to compute the CNN model is not
equal to the number of model weights. The number of multi-
plications required to compute a CNN model is

U fenn 4+ N femk + (M — 2)k°

Some of the filters learned by CNN layer can be seen in
Figure 5. The CNN filters appear to be smoother and sparser
than the LCN filters in Figure 4.



4. Experiment results

The experiments are performed on a small footprint global pass-
word TD-SV task. The spoken password in all our datasets
is given by “Ok Google” and samples are collected from
anonymized real traffic from the Google KWS system [2]. The
training set for our neural networks contains 3,200 anonymized
speakers speaking, with an average of ~745 repetitions per
speaker. Repetitions are recorded in multiple sessions in a wide
variety of environments, including multiple devices and lan-
guages. A non-overlapped set of 3,000 speakers are present for
enrollment and evaluation. Each speaker in the evaluation set
enrolls with 3 to 9 utterances and it is evaluated with 7 positive
utterances. In our results, all possible trials were considered,
leading to ~21k target trials and ~6.3M non-target trials. Re-
sults are reported in Equal Error Rate (EER). We found that
relative differences with other operating points are preserved.

The hidden layers generally contain 256 nodes, except in
Section 4.3, when our experiment calls for matching the num-
ber of parameters between different model architectures. The
focus of this paper is on experimenting with variations of the
first hidden layer, which processes the input frames.

4.1. Baseline system

Our baseline system is a fully-connected neural network with 4
fully-connected hidden layers of 256 nodes each, described in
Figure 1 and Section 2. Our baseline system is similar to our
DNN in previous work [4], but more recent experiments sug-
gested the following optimizations: a) maxout layers have been
replaced by fully-connected layers with rectified linear units, b)
in Eq. 1, the dimension-wise max function replaces the aver-
age function used before c¢) visible input elements are given by
matrices of 48 x 48 elements instead of 41 x 40, which gives
us more flexibility in the configuration of patches. Note that
48 x 48 facilitates the definition of square patches as it is divis-
ible by 24, 12, 8, 6, 4, 3 and 2.

4.2. Compressing first hidden layer

We experiment with only modifying the first hidden layer, fixing
the last three hidden layers as fully-connected layers with 256
nodes, 66k weight parameters each. For LCN layers and CNN
layers, we experiment with three patch sizes: 24 x 24,12 x
12,6 x 6. In order to achieve 256 output nodes from the first
hidden layer, the depth of each layer is varied with the type of
layer and patch size. For example, a fully-connected layer with
depth of 256 would have 256 output nodes. A LCN layer with
24 x 24 patch size with depth of 64 would generate 4 patches
with depth 64, for a total of 256 output nodes as well.

Table 2 shows the configuration and equal error rate (EER)
for each experimental model, as well model footprint and la-
tency information. This experiment shows that the baseline
fully-connected first hidden layer can be reduced from 590k pa-
rameters to 37k (6% of baseline layer) parameters with about
4% increase in EER by using a LCN layer with 12 x 12 patches
or a CNN layer with 24 x 24 patches. For 4% increase in EER,
we have LCN and CNN models that are 30% the size of the
baseline model; in this experiment, the best LCN model and
the best CNN model have the same number of parameters and
similar EER.

4.3. Improve performance given size constraint

Section 4.2 focuses on reducing model size, allowing the EER
to increase above that of the baseline model. In this section, we
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Patch Depth  Weights  Multiplies EER

Fully 48 x 48 256 787k 787k 3.88
24 x 24 64 345k 345k 4.11

LCN 12x12 16 234k 234k 4.02
6x6 4 206k 206k 4.54

24 x 24 64 234k 345k 4.04

CNN 12 x 12 16 199k 234k 4.24
6x6 4 197k 206k 4.45

Table 2: Compare fully-connected, LCN, and CNN first hidden
layer. First hidden layer has 256 outputs, while the remaining
hidden layers have 256 inputs and 256 outputs. “Weights” cor-
responds to model size. “Multiplies” corresponds to latency.

focus on closely matching the model size across different ex-
perimental models and decreasing EER. The model size is im-
portant for resource-constrained platforms. To match the model
size, the first hidden layer is no longer constrained to have 256
hidden units, allowing us to increase the depth of the LCN and
CNN layers. The last two hidden layers are fully-connected,
have 256 inputs and outputs, and contain 66k weights.

Table 3 shows the EER, number of weights (model size),
and number of multiplications (latency) for each experimental
model. When parameters are matched, every LCN and CNN
experimental model has smaller EER than that of the baseline
fully-connected model. With approximately the same num-
ber of weights and multiplications, LCN model with 12 x 12
patches has EER that is 8% lower than baseline model. With
approximately the same number of weights and 90% more mul-
tiplications, CNN model with 24 x 24 patches has EER that is
10% lower than the baseline model. When the number of model
parameters is held constant, CNN models have better perfor-
mance than LCN models.

Patch Depth  Weights  Multiplies EER

Fully 48 x 48 256 787k 787k 3.88
24 x 24 197 787k 787k 3.71

LCN 12 x 12 102 784k 784k 3.60
6x6 35 786k 786k 3.75

24 x24 411 789k 1499k 3.52

CNN 24 x 24 154 785k 1117k 3.75
24 x 24 40 788k 879k 3.87

Table 3: Match total number of parameters, holding last 2

hidden layers constant while varying the first 2 hidden layers.
“Weights” corresponds to model size. “Multiplies” corresponds
to latency.

5. Conclusions

In this paper, we compare two alternative neural network layer
architectures to a fully-connected baseline for small footprint
text-dependent speaker verification. Both LCN and CNN lay-
ers can be used to shrink model size to 30% of baseline with
a 4% relative increase in EER (Table 2). When model size is
held constant, CNN model is preferred because it reduces base-
line EER by 10% relatively, versus 8% for LCN model of the
same size (Table 3). If latency, which corresponds to number
of model multiplications, is constrained, then the LCN model is
preferred because it uses 52% fewer multiplications than CNN
model, though LCN model has slightly higher EER.
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