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Frame semantics (Fillmore 1982) is a linguistic theory that has been instantiated for English in
the FrameNet lexicon (Fillmore, Johnson, and Petruck 2003). We solve the problem of frame-
semantic parsing using a two-stage statistical model that takes lexical targets (i.e., content
words and phrases) in their sentential contexts and predicts frame-semantic structures. Given a
target in context, the first stage disambiguates it to a semantic frame. This model employs latent
variables and semi-supervised learning to improve frame disambiguation for targets unseen at
training time. The second stage finds the target’s locally expressed semantic arguments. At
inference time, a fast exact dual decomposition algorithm collectively predicts all the arguments
of a frame at once in order to respect declaratively stated linguistic constraints, resulting in
qualitatively better structures than naïve local predictors. Both components are feature-based
and discriminatively trained on a small set of annotated frame-semantic parses. On the SemEval
2007 benchmark dataset, the approach, along with a heuristic identifier of frame-evoking targets,
outperforms the prior state of the art by significant margins. Additionally, we present experi-
ments on the much larger FrameNet 1.5 dataset. We have released our frame-semantic parser as
open-source software.

1. Introduction

FrameNet (Fillmore, Johnson, and Petruck 2003) is a linguistic resource storing consider-

able information about lexical and predicate-argument semantics in English. Grounded
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in the theory of frame semantics (Fillmore 1982), it suggests—but does not formally

define—a semantic representation that blends representations familiar from word-sense

disambiguation (Ide and Véronis 1998) and semantic role labeling (Gildea and Juraf-

sky 2002). Given the limited size of available resources, accurately producing richly

structured frame-semantic structures with high coverage will require data-driven tech-

niques beyond simple supervised classification, such as latent variable modeling, semi-

supervised learning, and joint inference.

In this article, we present a computational and statistical model for frame-semantic

parsing, the problem of extracting from text semantic predicate-argument structures

such as those shown in Figure 1. We aim to predict a frame-semantic representation

with two statistical models rather than a collection of local classifiers, unlike earlier ap-

proaches (Baker, Ellsworth, and Erk 2007). We use a probabilistic framework that cleanly

integrates the FrameNet lexicon and limited available training data. The probabilistic

framework we adopt is highly amenable to future extension through new features, more

relaxed independence assumptions, and additional semi-supervised models.

Carefully constructed lexical resources and annotated datasets from FrameNet, de-

tailed in Section 3, form the basis of the frame structure prediction task. We decompose

this task into three subproblems: target identification (Section 4), in which frame-evoking

predicates are marked in the sentence; frame identification (Section 5), in which the

evoked frame is selected for each predicate; and argument identification (Section 6), in

which arguments to each frame are identified and labeled with a role from that frame.

Experiments demonstrating favorable performance to the previous state of the art on

SemEval 2007 and FrameNet datasets are described in each section. Some novel aspects

of our approach include a latent-variable model (Section 5.2) and a semi-supervised

extension of the predicate lexicon (Section 5.5) to facilitate disambiguation of words not
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Figure 1: An example sentence from the annotations released as part of FrameNet 1.5
with three targets marked in bold. Note that this annotation is partial because not all
potential targets have been annotated with predicate-argument structures. Each target
has its evoked semantic frame marked above it, enclosed in a distinct shape or border
style. For each frame, its semantic roles are shown enclosed within the same shape or
border style, and the spans fulfilling the roles are connected to the latter using dotted
lines. For example, manner evokes the CONDUCT frame, and has the Agent and Manner
roles fulfilled by “Austria” and “most un-Viennese,” respectively.

in the FrameNet lexicon; a unified model for finding and labeling arguments (Section 6)

that diverges from prior work in semantic role labeling; and an exact dual decomposi-

tion algorithm (Section 7) that collectively predicts all the arguments of a frame together,

thereby incorporating linguistic constraints in a principled fashion.

Our open-source parser, named SEMAFOR (Semantic Analyzer of Frame Represen-

tations)1 achieves the best published results to date on the SemEval 2007 frame-semantic

structure extraction task (Baker, Ellsworth, and Erk 2007). Herein, we also present

results on newly released data with FrameNet 1.5, the latest edition of the lexicon.

Some of the material presented in this article has appeared in previously published

conference papers: Das et al. (2010) presented the basic model, Das and Smith (2011)

described semi-supervised lexicon expansion, Das and Smith (2012) demonstrated a

1 See http://www.ark.cs.cmu.edu/SEMAFOR.
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sparse variant of lexicon expansion, and Das, Martins, and Smith (2012) presented the

dual decomposition algorithm for constrained joint argument identification. We present

here a synthesis of those results and several additional details:

1. The set of features used in the two statistical models for frame identification and

argument identification.

2. Details of a greedy beam search algorithm for argument identification that avoids

illegal argument overlap.

3. Error analysis pertaining to the dual decomposition argument identification algo-

rithm, in contrast with the beam search algorithm.

4. Results on full frame-semantic parsing using graph-based semi-supervised learn-

ing with sparsity-inducing penalties; this expands the small FrameNet predicate

lexicon, enabling us to handle unknown predicates.

Our primary contributions are the use of efficient structured prediction techniques

suited to shallow semantic parsing problems, novel methods in semi-supervised learn-

ing that improve the lexical coverage of our parser and making frame-semantic struc-

tures a viable computational semantic representation usable in other language tech-

nologies. To set the stage, we next consider related work in the automatic prediction of

predicate-argument semantic structures.

2. Related Work

In this section, we will focus on previous scientific work relevant to the problem of

frame-semantic parsing. First, we will briefly discuss work done on PropBank-style se-

mantic role labeling, following which we will concentrate on the more relevant problem

of frame-semantic structure extraction. Next, we review previous work that has used

4

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

semi-supervised learning for shallow semantic parsing. Finally, we discuss prior work

on joint structure prediction relevant to frame-semantic parsing.

2.1 Semantic Role Labeling

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, there

has been a great deal of computational work using predicate-argument structures for

semantics. The development of PropBank (Kingsbury and Palmer 2002), followed by

CoNLL shared tasks on semantic role labeling (Carreras and Màrquez 2004, 2005)

boosted research in this area. Figure 2(a) shows an annotation from PropBank. PropBank

annotations are closely tied to syntax, because the dataset consists of the phrase-

structure syntax trees from the Wall Street Journal section of the Penn Treebank (Marcus,

Marcinkiewicz, and Santorini 1993) annotated with predicate-argument structures for

verbs. In Figure 2(a), the syntax tree for the sentence is marked with various semantic

roles. The two main verbs in the sentence, “created” and “pushed,” are the predicates.

For the former, the constituent “more than 1.2 million jobs” serves as the semantic role

ARG1 and the constituent “In that time” serves as the role ARGM-TMP. Similarly for

the latter verb, roles ARG1, ARG2, ARGM-DIR and ARGM-TMP are shown in the figure.

PropBank defines core roles ARG0 through ARG5, which receive different interpretations

for different predicates. Additional modifier roles ARGM-* include ARGM-TMP (temporal)

and ARGM-DIR (directional), as shown in Figure 2(a). The PropBank representation

therefore has a small number of roles, and the training dataset comprises some 40,000

sentences, thus making the semantic role labeling task an attractive one from the per-

spective of machine learning.

There are many instances of influential work on semantic role labeling using

PropBank conventions. Pradhan et al. (2004) present a system that uses SVMs to identify

the arguments in a syntax tree that can serve as semantic roles, followed by classification
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of the identified arguments to role names via a collection of binary SVMs. Punyakanok

et al. (2004) describe a semantic role labeler that uses integer linear programming

for inference and uses several global constraints to find the best suited predicate-

argument structures. Joint modeling for semantic role labeling with discriminative log-

linear models is presented by Toutanova, Haghighi, and Manning (2005), where global

features looking at all arguments of a particular verb together are incorporated into

in a dynamic programming and reranking framework. The Computational Linguistics

special issue on semantic role labeling (Màrquez et al. 2008) includes other interesting

papers on the topic, leveraging the PropBank conventions for labeling shallow semantic

structures. Recently, there have been initiatives to predict syntactic dependencies as

well as PropBank-style predicate-argument structures together using one joint model

(Surdeanu et al. 2008; Hajič et al. 2009).

Here, we focus on the related problem of frame-semantic parsing. Note from the

annotated semantic roles for the two verbs in the sentence of Figure 2(a) that it is unclear

what the core roles ARG1 or ARG2 represent linguistically. To better understand the

roles’ meaning for a given verb, one has to refer to a verb-specific file provided along

with the PropBank corpus. Although collapsing these verb-specific core roles into tags

ARG0-ARG5 leads to a small set of classes to be learned from a reasonable sized corpus,

analysis shows that the roles ARG2–ARG5 serve many different purposes for different

verbs. Yi, Loper, and Palmer (2007) point out that these four roles are highly overloaded

and inconsistent, and they mapped them to VerbNet (Schuler 2005) thematic roles to get

improvements on the SRL task. Recently, Bauer and Rambow (2011) presented a method

to improve the syntactic subcategorization patterns for FrameNet lexical units using

VerbNet. Instead of working with PropBank, we focus on shallow semantic parsing of

sentences in the paradigm of frame semantics (Fillmore 1982), to which we turn next.
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2.2 Frame-Semantic Parsing

The FrameNet lexicon (Fillmore, Johnson, and Petruck 2003) contains rich linguistic

information about lexical items and predicate-argument structures. A semantic frame

present in this lexicon includes a list of lexical units, which are associated words and

phrases that can potentially evoke it in a natural language utterance. Each frame in the

lexicon also enumerates several roles corresponding to facets of the scenario represented

by the frame. In a frame-analyzed sentence, predicates evoking frames are known

as targets, and a word or phrase filling a role is known as an argument. Figure 2(b)

shows frame-semantic annotations for the same sentence as in Figure 2(a). (In the

figure, for example, the CARDINAL_NUMBERS frame, “M” denotes the role Multiplier and

“E” denotes the role Entity.) Note that the verbs “created” and “pushed” evoke the

frames INTENTIONALLY_CREATE and CAUSE_CHANGE_POSITION_ON_A_SCALE, respectively.

The corresponding lexical units2 from the FrameNet lexicon, create.V and push.V, are

also shown. The PropBank analysis in Figure 2(a) also has annotations for these two

verbs. While PropBank labels the roles of these verbs with its limited set of tags, the

frame-semantic parse labels each frame’s arguments with frame-specific roles shown in

the figure, making it immediately clear what those arguments mean. For example, for

the INTENTIONALLY_CREATE frame, “more than 1.2 million jobs” is the Created_entity, and

“In that time” is the Time when the jobs were created. FrameNet also allows non-verbal

words and phrases to evoke semantic frames: in this sentence, “million” evokes the

frame CARDINAL_NUMBERS and doubles as its Number argument, with “1.2” as Multiplier,

“jobs” as the Entity being quantified, and “more than” as the Precision of the quantity

expression.

2 See Section 5.1 for a detailed description of lexical units.
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Figure 2: (a) A phrase-structure tree taken from the Penn Treebank and annotated with PropBank predicate-argument structures. The
verbs “created” and “pushed” serve as predicates in this sentence. Dotted arrows connect each predicate to its semantic arguments
(bracketed phrases). (b) A partial depiction of frame-semantic structures for the same sentence. The words in bold are targets, which
instantiate a (lemmatized and part-of-speech–tagged) lexical unit and evoke a semantic frame. Every frame annotation is shown enclosed
in a distint shape or border style, and its argument labels are shown together on the same vertical tier below the sentence. See text for
explanation of abbreviatons.
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Time

cough.v, gobble.v, 
hiss.v, ring.v, yodel.v, ...

blare.v, honk.v, play.v, 
ring.v, toot.v, ...—

affect.v, effect.n, 
impact.n, impact.v, ...

event.n, happen.v, 
occur.v, take place.v, ...

Inheritance relation Causative_of relation
Excludes relation

Purpose

Figure 3: Partial illustration of frames, roles, and lexical units related to the
CAUSE_TO_MAKE_NOISE frame, from the FrameNet lexicon. “Core” roles are filled bars.
Non-core roles (such as Place and Time) as unfilled bars. No particular significance is
ascribed to the ordering of a frame’s roles in its lexicon entry (the selection and ordering
of roles above is for illustrative convenience). CAUSE_TO_MAKE_NOISE defines a total of
14 roles, many of them not shown here.

Whereas PropBank contains verbal predicates and NomBank (Meyers et al. 2004) con-

tains nominal predicates, FrameNet counts these as well as allowing adjectives, adverbs

and prepositions among its lexical units. Finally, FrameNet frames organize predicates

according to semantic principles, both by allowing related terms to evoke a common

frame (e.g. push.V, raise.V and growth.N for CAUSE_CHANGE_POSITION_ON_A_SCALE) and

by defining frames and their roles within a hierarchy (see Figure 3). PropBank does not

explicitly encode relationships among predicates.

Most early work on frame-semantic parsing has made use of the exemplar sentences

in the FrameNet corpus (see Section 3.1), each of which is annotated for a single frame

and its arguments. Gildea and Jurafsky (2002) presented a discriminative model for

arguments given the frame; Thompson, Levy, and Manning (2003) used a generative

model for both the frame and its arguments. Fleischman, Kwon, and Hovy (2003) first

used maximum entropy models to find and label arguments given the frame. Shi and
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Mihalcea (2004) developed a rule-based system to predict frames and their arguments

in text, and Erk and Padó (2006) introduced the Shalmaneser tool, which employs Naïve

Bayes classifiers to do the same. Other FrameNet SRL systems (Giuglea and Moschitti

2006, for instance) have used SVMs. Most of this work was done on an older, smaller

version of FrameNet, containing around 300 frames and fewer than 500 unique semantic

roles. Unlike this body of work, we experimented with the larger SemEval 2007 shared

task dataset, and also the newer FrameNet 1.5,3 which lists 877 frames and 1068 role

types—thus handling many more labels, and resulting in richer frame-semantic parses.

Recent work in frame-semantic parsing—in which sentences may contain multiple

frames which need to be recognized along with their arguments—was undertaken

as the SemEval 2007 task 19 of frame-semantic structure extraction (Baker, Ellsworth,

and Erk 2007). This task leveraged FrameNet 1.3, and also released a small corpus

containing a little more than 2000 sentences with full text annotations. The LTH system

of Johansson and Nugues (2007), which we use as our baseline (Section 3.4), had the

best performance in the SemEval 2007 task in terms of full frame-semantic parsing.

Johansson and Nugues (2007) broke down the task as identifying targets that could

evoke frames in a sentence, identifying the correct semantic frame for a target, and

finally determining the arguments that fill the semantic roles of a frame. They used

a series of SVMs to classify the frames for a given target, associating unseen lexical

items to frames and identifying and classifying token spans as various semantic roles.

Both the full text annotation corpus as well as the FrameNet exemplar sentences were

used to train their models. Unlike Johansson and Nugues, we use only the full text

annotated sentences as training data, model the whole problem with only two statis-

tical models, and obtain significantly better overall parsing scores. We also model the

3 Available at http://framenet.icsi.berkeley.edu as of January 19, 2013.
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argument identification problem using a joint structure prediction model and use semi-

supervised learning to improve predicate coverage. We also present experiments on

recently released FrameNet 1.5 data.

In other work based on FrameNet, Matsubayashi, Okazaki, and Tsujii (2009) investi-

gated various uses of FrameNet’s taxonomic relations for learning generalizations over

roles; they trained a log-linear model on the SemEval 2007 data to evaluate features

for the subtask of argument identification. Another line of work has sought to extend

the coverage of FrameNet by exploiting VerbNet and WordNet (Shi and Mihalcea 2005;

Giuglea and Moschitti 2006; Pennacchiotti et al. 2008) and by projecting entries and

annotations within and across languages (Boas 2002; Fung and Chen 2004; Pado and La-

pata 2005; Fürstenau and Lapata 2009b). Others have explored the application of frame-

semantic structures to tasks such as information extraction (Moschitti, Morarescu, and

Harabagiu 2003; Surdeanu et al. 2003), textual entailment (Burchardt and Frank 2006;

Burchardt et al. 2009), question answering (Narayanan and Harabagiu 2004; Shen and

Lapata 2007), and paraphrase recognition (Padó and Erk 2005).

2.3 Semi-Supervised Methods

Although there has been a significant amount of work in supervised shallow semantic

parsing using both PropBank- and FrameNet-style representations, a few improve-

ments over vanilla supervised methods using unlabeled data are notable. Fürstenau and

Lapata (2009b) present a method of projecting predicate-argument structures from some

seed examples to unlabeled sentences, and use a linear program formulation to find

the best alignment explaining the projection. Next, the projected information as well

as the seeds are used to train statistical model(s) for SRL. The authors ran experiments

using a set of randomly chosen verbs from the exemplar sentences of FrameNet and

found improvements over supervised methods. In an extension to this work, Fürstenau
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SemEval 2007 Data FrameNet 1.5 Release
count count

Exemplar sentences 139,439 154,607
Frame labels (types) 665 877
Role labels (types) 720 1,068
Sentences in training data 2,198 3,256
Targets in training data 11,195 19,582
Sentences in test data 120 2,420
Targets in test data 1,059 4,458
Unseen targets in test data 210 144

Table 1: Salient statistics of the datasets used in our experiments. There is a significant
overlap between the two datasets.

and Lapata (2009a) present a method for finding examples for unseen verbs using a

graph alignment method; this method represents sentences and their syntactic analysis

as graphs and graph alignment is used to project annotations from seed examples to

unlabeled sentences. This alignment problem is again modeled as a linear program.

Fürstenau and Lapata (2012) present an detailed expansion of the aforementioned

papers. Although this line of work presents a novel direction in the area of SRL, the

published approach does not yet deal with non-verbal predicates and does not evaluate

the presented methods on the full text annotations of the FrameNet releases.

Deschacht and Moens (2009) present a technique of incorporating additional infor-

mation from unlabeled data by using a latent words language model. Latent variables

are used to model the underlying representation of words, and parameters of this model

are estimated using standard unsupervised methods. Next, the latent information is

used as features for an SRL model. Improvements over supervised SRL techniques

are observed with the augmentation of these extra features. The authors also compare

their method with the aforementioned two methods of Fürstenau and Lapata (2009a,

2009b) and show relative improvements. Experiments are performed on the CoNLL

2008 shared task dataset (Surdeanu et al. 2008), which follows the PropBank conventions
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and only labels verbal and nominal predicates—in contrast to our work, which includes

most lexicosyntactic categories. A similar approach is presented by Weston, Ratle, and

Collobert (2008) who use neural embeddings of words, which are eventually used for

SRL; improvements over state-of-the-art PropBank-style SRL systems are observed.

Recently, there has been related work in unsupervised semantic role labeling (Lang

and Lapata 2010, 2011; Titov and Klementiev 2012) that attempts to induce semantic

roles automatically from unannotated data. This line of work may be useful in discov-

ering new semantic frames and roles, but here we stick to the concrete representation

provided in FrameNet, without seeking to expand its inventory of semantic types. We

present a new semi-supervised technique to expand the set of lexical items with the

potential semantic frames that they could evoke; we use a graph-based semi-supervised

learning framework to achieve this goal (Section 5.5).

2.4 Joint Inference and Shallow Semantic Parsing

Most high-performance SRL systems that use conventions from PropBank (Kingsbury

and Palmer 2002) and NomBank (Meyers et al. 2004) employ joint inference for semantic

role labeling (Màrquez et al. 2008). To our knowledge, the separate line of work investi-

gating frame-semantic parsing has not previously dealt with joint inference. A common

trait in prior work, both in PropBank and FrameNet conventions, has been the use of a

two-stage model that identifies arguments first, then labels them, often using dynamic

programming or integer linear programs (ILPs); we treat both problems together here.4

Recent work in NLP problems has focused on ILP formulations for complex struc-

ture prediction tasks like dependency parsing (Riedel and Clarke 2006; Martins, Smith,

4 In prior work, there are exceptions where identification and classification of arguments have been treated
in one step; for more details, please refer to the systems participating in the CoNLL-2004 shared task on
semantic role labeling (Carreras and Màrquez 2004).
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and Xing 2009; Martins et al. 2010), sequence tagging (Roth and Yih 2004) as well as

PropBank SRL (Punyakanok et al. 2004). While early work in this area focused on

declarative formulations tackled with off-the-shelf solvers, Rush et al. (2010) proposed

subgradient-based dual decomposition (also called Lagrangian relaxation) as a way

of exploiting the structure of the problem and existing combinatorial algorithms. The

method allows the combination of models which are individually tractable, but not

jointly tractable, by solving a relaxation of the original problem. Since then, dual decom-

position has been used to build more accurate models for dependency parsing (Koo et

al. 2010), CCG supertagging and parsing (Auli and Lopez 2011) and machine translation

(DeNero and Macherey 2011; Rush and Collins 2011; Chang and Collins 2011).

Recently, Martins et al. (2011b) showed that the success of subgradient-based dual

decomposition strongly relies on breaking down the original problem into a “good”

decomposition, i.e., one with few overlapping components. This leaves out many

declarative constrained problems, for which such a good decomposition is not readily

available. For those, Martins et al. (2011b) proposed the Alternating Directions Dual

Decomposition (AD3) algorithm, which retains the modularity of previous methods, but

can handle thousands of small overlapping components. We adopt that algorithm as it

perfectly suits the problem of argument identification, as we observe in Section 7.5 We

also contribute an exact branch-and-bound technique wrapped around AD3.

Before delving into the details of our modeling framework, we describe in detail the

structure of the FrameNet lexicon and the datasets used to train our models.

5 AD3 was previously referred to as “DD-ADMM,” in reference to the use of dual decomposition with the
alternating directions method of multipliers.
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targets arguments
count % count %

Noun 5,155 52 Noun 9,439 55
Verb 2,785 28 Preposition or

complementizerAdjective 1,411 14 2,553 15
Preposition 296 3 Adjective 1,744 10
Adverb 103 1 Verb 1,156 7
Number 63 1 Pronoun 736 4
Conjunction 8 Adverb 373 2
Article 3 Other 1047 6

9,824 17,048

Table 2: Breakdown of targets and arguments in the SemEval 2007 training set in terms
of part of speech. The target POS is based on the LU annotation for the frame instance.
For arguments, this reflects the part of speech of the head word (estimated from an
automatic dependency parse); the percentage is out of all overt arguments.

3. Resources and Task

We consider frame-semantic parsing resources consisting of a lexicon and annotated

sentences with frame-semantic structures, evaluation strategies and previous baselines.

3.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose semantic

frames for English.6 Listed in the lexicon with each frame are a set of lemmas (with parts

of speech) that can denote the frame or some aspect of it—these are called lexical units

(LUs). In a sentence, word or phrase tokens that evoke a frame are known as targets. The

set of LUs listed for a frame in FrameNet may not be exhaustive; we may see a target

in new data that does not correspond to an LU for the frame it evokes. Each frame defi-

nition also includes a set of frame elements, or roles, corresponding to different aspects

of the concept represented by the frame, such as participants, props, and attributes. We

use the term argument to refer to a sequence of word tokens annotated as filling a frame

6 Like the SemEval 2007 participants, we used FrameNet 1.3 and also the newer version of the lexicon,
FrameNet 1.5 (http://framenet.icsi.berkeley.edu).
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role. Figure 1 shows an example sentence from the training data with annotated targets,

LUs, frames, and role-argument pairs. The FrameNet lexicon also provides information

about relations between frames and between roles (e.g., INHERITANCE). Figure 3 shows

a subset of the relations between five frames and their roles.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexico-

graphic exemplar sentences (primarily from the British National Corpus) annotated for

that frame. Typically chosen to illustrate variation in argument realization patterns for

the frame in question, these sentences only contain annotations for a single frame.

In preliminary experiments, we found that using exemplar sentences directly to

train our models hurt performance as evaluated on SemEval 2007 data, which formed

a benchmark for comparison with previous state of the art. This was a noteworthy

observation, given that the number of exemplar sentences is an order of magnitude

larger than the number of sentences in training data that we consider in our experiments

(Section 3.2). This is presumably because the exemplars are not representative as a

sample, do not have complete annotations, and are not from a domain similar to the

test data. Instead, we make use of these exemplars in the construction of features

(Section 5.2).

3.2 Data

In our experiments on frame-semantic parsing, we use two sets of data:

1. SemEval 2007 data: In benchmark experiments for comparison with previous

state of the art, we use a dataset that was released as part of the SemEval 2007

shared task on frame-semantic structure extraction (Baker, Ellsworth, and Erk

2007). Full text annotations in this dataset consisted of a few thousand sentences

containing multiple targets, each annotated with a frame and its arguments. The
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then-current version of the lexicon (FrameNet 1.3) was employed for the shared

task as the inventory of frames, roles, and lexical units (Figure 3 illustrates a

small portion of the lexicon). In addition to the frame hierarchy, FrameNet 1.3

also contained 139,439 exemplar sentences containing one target each. Statistics

of the data used for the SemEval 2007 shared task are given in the first column

of Table 1. 665 frame types and 720 role types appear in the exemplars and

the training portion of the data. We adopted the same training and test split as

the SemEval 2007 shared task; however, we removed four documents from the

training set7 for development. Table 2 shows some additional information about

the SemEval dataset; the variety of lexicosyntactic categories of targets stands in

marked contrast with the PropBank-style SRL data and task.

2. FrameNet 1.5 release: A more recent version of the FrameNet lexicon was released

in 2010.8 We also test our statistical models (only frame identification and argu-

ment identification) on this dataset to get an estimate of how much improvement

additional data can provide. Details of this dataset are shown in the second

column of Table 1. Of the 78 documents in this release with full text annotations,

we selected 55 (19,582 targets) for training and held out the remaining 23 (4,458

targets) for testing. There are fewer target annotations per sentence in the test set

than the training set.9 Das and Smith (2011, supplementary material) give the

names of the test documents for fair replication of our work. We also randomly

7 These were: StephanopoulousCrimes, Iran_Biological, NorthKorea_Introduction, and
WMDNews_042106.

8 Released on September 15, 2010, and downloadable from http://framenet.icsi.berkeley.edu as
of February 13, 2013. In our experiments, we used a version downloaded on September 22, 2010.

9 For creating the splits, we first included the documents that had incomplete annotations as mentioned in
the initial FrameNet 1.5 data release in the test set; since we do not evaluate target identification for this
version of data, the small number of targets per sentence does not matter. After these documents were
put into the test set, we randomly selected 55 remaining documents for training, and picked the rest for
additional testing. The final test set contains a total of 23 documents. When these documents are
annotated in their entirety, the test set will become larger and the training set will be unaltered.
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selected 4,462 targets from the training data for development of the argument

identification model (Section 6.1).

Preprocessing. We preprocessed sentences in our dataset with a standard set of anno-

tations: POS tags from MXPOST (Ratnaparkhi 1996) and dependency parses from the

MST parser (McDonald, Crammer, and Pereira 2005); manual syntactic parses are not

available for most of the FrameNet-annotated documents. We used WordNet (Fellbaum

1998) for lemmatization. Our models treat these pieces of information as observations.

We also labeled each verb in the data as having ACTIVE or PASSIVE voice, using code

from the SRL system described by Johansson and Nugues (2008).

3.3 Task and Evaluation Methodology

Automatic annotations of frame-semantic structure can be broken into three parts: (1)

targets, the words or phrases that evoke frames; (2) the frame type, defined in the lexicon,

evoked by each target; and (3) the arguments, or spans of words that serve to fill roles

defined by each evoked frame. These correspond to the three subtasks in our parser,

each described and evaluated in turn: target identification (Section 4), frame identifi-

cation (Section 5, not unlike word-sense disambiguation), and argument identification

(Section 6, essentially the same as semantic role labeling).

The standard evaluation script from the SemEval 2007 shared task calculates pre-

cision, recall, and F1-measure for frames and arguments; it also provides a score that

gives partial credit for hypothesizing a frame related to the correct one. We present pre-

cision, recall, and F1-measure microaveraged across the test documents, report labels-

only matching scores (spans must match exactly), and do not use named entity labels.10

10 For microaveraging, we concatenated all sentences of the test documents and measured precision and
recall over the concatenation. Macroaveraging, on the other hand, would mean calculating these metrics
for each document, then averaging them. Microaveraging treats every frame or argument as a unit,
regardless of the length of the document it occurs in.
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More details can be found in the task description paper from SemEval 2007 (Baker,

Ellsworth, and Erk 2007). For our experiments, statistical significance is measured using

a reimplementation of Dan Bikel’s randomized parsing evaluation comparator, a strat-

ified shuffling test whose original implementation11 is accompanied by the following

description (quoted verbatim, with explanations of our use of the test given in square

brackets):

The null hypothesis is that the two models that produced the observed results are the
same, such that for each test instance [here, a set of predicate-argument structures for a
sentence], the two observed scores are equally likely. This null hypothesis is tested by
randomly shuffling individual sentences’ scores between the two models and then
re-computing the evaluation metrics [precision, recall or F1 score in our case]. If the
difference in a particular metric after a shuffling is equal to or greater than the original
observed difference in that metric, then a counter for that metric is incremented. Ideally,
one would perform all 2n shuffles, where n is the number of test cases (sentences), but
given that this is often prohibitively expensive, the default number of iterations is
10,000 [we use independently sampled 10,000 shuffles]. After all iterations, the
likelihood of incorrectly rejecting the null [hypothesis, i.e., the p-value] is simply
(nc+ 1)/(nt+ 1), where nc is the number of random differences greater than the
original observed difference, and nt is the total number of iterations.

3.4 Baseline

A strong baseline for frame-semantic parsing is the system presented by Johansson and

Nugues (2007, hereafter J&N’07), the best system in the SemEval 2007 shared task. That

system is based on a collection of SVMs. They used a set of rules for target identification

which we describe in Appendix A. For frame identification, they used an SVM classifier

to disambiguate frames for known frame-evoking words. They used WordNet synsets

to extend the vocabulary of frame-evoking words to cover unknown words, and then

used a collection of separate SVM classifiers—one for each frame—to predict a single

evoked frame for each occurrence of a word in the extended set.

J&N’07 followed Xue and Palmer (2004) in dividing the argument identification

problem into two subtasks: first, they classified candidate spans as to whether they were

11 See http://www.cis.upenn.edu/~dbikel/software.html#comparator.
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arguments or not; then they assigned roles to those that were identified as arguments.

Both phases used SVMs. Thus, their formulation of the problem involves a multitude

of independently trained classifiers that share no information—whereas ours uses two

log-linear models, each with a single set of parameters shared across all contexts, to find

a full frame-semantic parse.

We compare our models with J&N’07 using the benchmark dataset from SemEval

2007. However, since we are not aware of any other work using the FrameNet 1.5 full

text annotations, we report our results on that dataset without comparison to any other

system.

4. Target Identification

Target identification is the problem of deciding which word tokens (or word token se-

quences) evoke frames in a given sentence. In other semantic role labeling schemes (e.g.,

PropBank), simple part-of-speech criteria typically distinguish targets from non-targets.

But in frame semantics, verbs, nouns, adjectives, and even prepositions can evoke

frames under certain conditions. One complication is that semantically-impoverished

support predicates (such as make in make a request) do not evoke frames in the context of

a frame-evoking, syntactically dependent noun (request). Furthermore, only temporal,

locative, and directional senses of prepositions evoke frames.12

Preliminary experiments using a statistical method for target identification gave

unsatisfactory results; instead, we followed J&N’07 in using a small set of rules to

identify targets. First, we created a master list of all the morphological variants of

targets that appear in the exemplar sentences and a given training set. For a sentence in

12 Note that there have been dedicated shared tasks to determine relationships between nominals (Girju et
al. 2007) and word-sense disambiguation of prepositions (Litkowski and Hargraves 2007), but we do not
build specific models for predicates of these categories.
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TARGET IDENTIFICATION P R F1

Our technique (§4) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

Table 3: Target identification results for our system and the baseline on the SemEval’07
dataset. Scores in bold denote significant improvements over the baseline (p < 0.05).

new data, we considered as candidate targets only those substrings that appear in this

master list. We also did not attempt to capture discontinuous frame targets: e.g. we treat

there would have been as a single span even though the corresponding LU is there be.V.13

Next, we pruned the candidate target set by applying a series of rules identical

to the ones described by Johansson and Nugues (2007, see Appendix A), with two

exceptions. First, they identified locative, temporal, and directional prepositions using

a dependency parser so as to retain them as valid LUs. In contrast, we pruned all types

of prepositions because we found them to hurt our performance on the development

set due to errors in syntactic parsing. In a second departure from their target extraction

rules, we did not remove the candidate targets that had been tagged as support verbs for

some other target. Note that we used a conservative white list which filters out targets

whose morphological variants were not seen either in the lexicon or the training data.14

Therefore, when this conservative process of automatic target identification is used, our

system loses the capability to predict frames for completely unseen LUs, despite the fact

that our our powerful frame identification model (Section 5) can accurately label frames

for new LUs.15

13 There are 629 multiword LUs in the lexicon, and they correspond to 4.8% of the targets in the training set;
among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N. In the SemEval 2007
training data, there are just 99 discontinuous multiword targets (1% of all targets).

14 This conservative approach violates theoretical linguistic assumptions about frame-evoking targets as
governed by frame semantics. It also goes against the spirit of using linguistic constraints to improve the
separate subtask of argument identification (see Section 7); however, due to varying distributions of
target annotations, high empirical error in identifying locative, temporal and directional prepositions and
support verbs, we resorted to this aggressive filtering heuristic to avoid making too many target
identification mistakes.

15 To predict frames and roles for new and unseen LUs, SEMAFOR provides the user with an option to
mark those LUs in the input.
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Results. Table 3 shows results on target identification tested on the SemEval 2007 test

set; our system gains 3 F1 points over the baseline. This is statistically significant with

p < 0.01. Our results are also significant in terms of precision (p < 0.05) and recall (p <

0.01). There are 85 distinct LUs for which the baseline fails to identify the correct target

while our system succeeds. A considerable proportion of these units have more than

one token (e.g. chemical and biological weapon.N, ballistic missile.N, etc.), which J&N’07 do

not model. The baseline also does not label variants of there be.V, e.g. there are and there

has been, which we correctly label as targets. Some examples of other single token LUs

that the baseline fails to identify are names of months, LUs that belong to the ORIGIN

frame (e.g. iranian.A) and directions, e.g., north.A or north-south.A.16

5. Frame Identification

Given targets, our parser next identifies their frames, using a statistical model.

5.1 Lexical units

FrameNet specifies a great deal of structural information both within and among

frames. For frame identification we make use of frame-evoking lexical units, the (lem-

matized and POS-tagged) words and phrases listed in the lexicon as referring to specific

frames. For example, listed with the BRAGGING frame are 10 LUs, including boast.N,

boast.V, boastful.A, brag.V, and braggart.N. Of course, due to polysemy and homonymy,

the same LU may be associated with multiple frames; for example, gobble.V is listed

under both the INGESTION and MAKE_NOISE frames. We thus term gobble.V an ambiguous

16 We do not evaluate the target identification module on the FrameNet 1.5 dataset; we instead ran
controlled experiments on those data to measure performance of the statistical frame identification and
argument identification subtasks, assuming that the correct targets were given. Moreover, as discussed in
Section 3.2, the target annotations on the FrameNet 1.5 test set were fewer in number in comparison to
the training set, resulting in a mismatch of target distributions between train and test settings.
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LU. All targets in the exemplar sentences, our training data, and most in our test data,

correspond to known LUs. (See Section 5.4 for statistics of unknown LUs in the test sets.)

To incorporate frame-evoking expressions found in the training data but not the

lexicon—and to avoid the possibility of lemmatization errors—our frame identification

model will incorporate, via a latent variable, features based directly on exemplar and

training targets rather than LUs. Let L be the set of (unlemmatized and automatically

POS-tagged) targets found in the exemplar sentences of the lexicon and/or the sen-

tences in our training set. Let Lf ⊆ L be the subset of these targets annotated as evoking

a particular frame f .17 Let Ll and Ll
f denote the lemmatized versions of L and Lf ,

respectively. Then, we write boasted.VBD ∈ LBRAGGING and boast.VBD ∈ Ll
BRAGGINGto

indicate that this inflected verb boasted and its lemma boast have been seen to evoke the

BRAGGING frame. Significantly, however, another target, such as toot your own horn, might

be used elsewhere to evoke this frame. We thus face the additional hurdle of predicting

frames for unknown words.

In producing full text annotations for the SemEval 2007 dataset, annotators created

several domain-critical frames that were not already present in version 1.3 of the lexicon.

For our experiments we omit frames attested in neither the training data nor the exem-

plar sentences from the lexicon.18 This leaves a total of 665 frames for the SemEval 2007

dataset and a total of 877 frames for the FrameNet 1.5 dataset.

17 For example, on average, there are 34 targets per frame in the SemEval 2007 dataset; the average frame
ambiguity of each target in L is 1.17.

18 Automatically predicting new frames is a challenge not yet attempted to our knowledge (including here).
Note that the scoring metric (Section 3.3) gives partial credit for related frames (e.g., a more general frame
from the lexicon).

23

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

• the POS of the parent of the head word of ti
•∗ the set of syntactic dependencies of the head word20 of ti
•∗ if the head word of ti is a verb, then the set of dependency labels of its children
• the dependency label on the edge connecting the head of ti and its parent
• the sequence of words in the prototype, w`

• the lemmatized sequence of words in the prototype
• the lemmatized sequence of words in the prototype and their part-of-speech tags
π`

• WordNet relation21 ρ holds between ` and ti
• WordNet relation21 ρ holds between ` and ti, and the prototype is `
• WordNet relation21 ρ holds between ` and ti, the POS tag sequence of ` is π`, and

the POS tag sequence of ti is πt

Table 4: Features used for frame identification (Equation 2). All also incorporate f , the
frame being scored. ` = 〈w`,π`〉 consists of the words and POS tags22 of a target seen
in an exemplar or training sentence as evoking f . The features with starred bullets were
also used by Johansson and Nugues (2007).

5.2 Model

For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word

sequence).19 Let tli denote its lemma. We seek a list f = 〈f1, . . . , fm〉 of frames, one per

target. In our model, the set of candidate frames for ti is defined to include every frame

f such that tli ∈ Ll
f—or if tli 6∈ Ll, then every known frame (the latter condition applies

for 4.7% of the annotated targets in the SemEval 2007 development set). In both cases,

we let Fi be the set of candidate frames for the ith target in x. We denote the entire set

of frames in the lexicon as F .

To allow frame identification for targets whose lemmas were seen in neither the

exemplars nor the training data, our model includes an additional variable, `i. This

19 Here each ti is a word sequence 〈wu, . . . , wv〉, 1 ≤ u ≤ v ≤ n, though in principle targets can be
noncontiguous.

20 If the target is not a subtree in the parse, we consider the words that have parents outside the span, and
apply three heuristic rules to select the head: 1) choose the first word if it is a verb; 2) choose the last word
if the first word is an adjective; 3) if the target contains the word of, and the first word is a noun, we
choose it. If none of these hold, choose the last word with an external parent to be the head.

21 These are: IDENTICAL-WORD, SYNONYM, ANTONYM (including extended and indirect antonyms),
HYPERNYM, HYPONYM, DERIVED FORM, MORPHOLOGICAL VARIANT (e.g., plural form), VERB
GROUP, ENTAILMENT, ENTAILED-BY, SEE-ALSO, CAUSAL RELATION, and NO RELATION.

22 POS tags are found automatically during preprocessing.
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variable ranges over the seen targets in Lfi , which can be thought of as prototypes

for the expression of the frame. Importantly, frames are predicted, but prototypes are

summed over via the latent variable. The prediction rule requires a probabilistic model

over frames for a target:

fi ← argmax
f∈Fi

∑
`∈Lf

pθ(f, ` | ti,x) (1)

We model the probability of a frame f and the prototype unit `, given the target and the

sentence x as:

pθ(f, ` | ti,x) =
expθ>g(f, `, ti,x)∑

f ′∈F

∑
`′∈Lf ′

expθ>g(f ′, `′, ti,x)
(2)

The above is a conditional log-linear model: for f ∈ Fi and ` ∈ Lf , where θ are the

model weights, and g is a vector-valued feature function. This discriminative formu-

lation is very flexible, allowing for a variety of (possibly overlapping) features; e.g., a

feature might relate a frame type to a prototype, represent a lexical-semantic relation-

ship between a prototype and a target, or encode part of the syntax of the sentence.

Previous work has exploited WordNet for better coverage during frame identifica-

tion (Johansson and Nugues 2007; Burchardt, Erk, and Frank 2005, e.g., by expanding

the set of targets using synsets), and others have sought to extend the lexicon itself.

We differ in our use of a latent variable to incorporate lexical-semantic features in a

discriminative model, relating known lexical units to unknown words that may evoke

frames. Here we are able to take advantage of the large inventory of partially-annotated

exemplar sentences. Note that this model makes an independence assumption: each

frame is predicted independently of all others in the document. In this way the model

is similar to J&N’07. However, ours is a single conditional model that shares features

and weights across all targets, frames, and prototypes, whereas the approach of J&N’07
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consists of many separately trained models. Moreover, our model is unique in that it

uses a latent variable to smooth over frames for unknown or ambiguous LUs.

Frame identification features depend on the preprocessed sentence x, the prototype

` and its WordNet lexical-semantic relationship with the target ti, and of course the

frame f . Our model uses binary features, which are detailed in Table 4.

5.3 Parameter Estimation

Given a training dataset (either SemEval 2007 dataset or the FrameNet 1.5 full text

annotations), which is of the form
〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

, we discriminatively train

the frame identification model by maximizing the training data log-likelihood:23

max
θ

N∑
j=1

mj∑
i=1

log
∑

`∈L
f
(j)
i

pθ(f
(j)
i , ` | t(j)i ,x(j)) (3)

Above, mj denotes the number of frames in a sentence indexed by j. Note that the

training problem is non-convex because of the summed-out prototype latent variable

` for each frame. To calculate the objective function, we need to cope with a sum over

frames and prototypes for each target (see Equation 2), often an expensive operation. We

locally optimize the function using a distributed implementation of L-BFGS.24 This is

the most expensive model that we train: with 100 parallelized CPUs using MapReduce

(Dean and Ghemawat 2008), training takes several hours.25 Decoding takes only a few

minutes on one CPU for the test set.

23 We found no benefit on either development dataset from using an L2 regularizer (zero-mean Gaussian
prior).

24 We do not experiment with the initialization of model parameters during this non-convex optimization
process; all parameters are initialized to 0.0 before running the optimizer. However, in future work,
experiments can be conducted with different random initialization points to seek non-local optima.

25 In later experiments, we used another implementation with 128 parallel cores in a multi-core MPI setup
(Gropp, Lusk, and Skjellum 1994), where training took several hours.
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FRAME IDENTIFICATION (§5.2) exact matching partial matching
P R F1 P R F1

SemEval 2007 Data

gold targets 60.21 60.21 60.21 74.21 74.21 74.21
automatic targets (§4) 69.75 54.91 61.44 77.51 61.03 68.29
J&N’07 targets 65.34 49.91 56.59 74.30 56.74 64.34
Baseline: J&N’07 66.22 50.57 57.34 73.86 56.41 63.97

FrameNet 1.5 Release
gold targets 82.97 82.97 82.97 90.51 90.51 90.51
– unsupported features 80.30 80.30 80.30 88.91 88.91 88.91

& – latent variable 75.54 75.54 75.54 85.92 85.92 85.92

Table 5: Frame identification results on both the SemEval 2007 dataset and the FrameNet
1.5 release. Precision, recall, and F1 were evaluated under exact and partial frame
matching; see §3.3. Bold indicates best results on the SemEval 2007 data, which are also
statistically significant with respect to the baseline (p < 0.05).

5.4 Supervised Results

SemEval 2007 Data. On the SemEval 2007 dataset, we evaluate the performance of

our frame identification model given gold-standard targets and automatically identified

targets (Section 4); see Table 5. Together, our target and frame identification outperform

the baseline by 4 F1 points. To compare the frame identification stage in isolation with

that of J&N’07, we ran our frame identification model with the targets identified by their

system as input. With partial matching, our model achieves a relative improvement of

0.6% F1 over J&N’07, as shown in the third row of Table 5 (though this is not significant).

Note that for exact maching, the F1 score of the automatic targets setting is better than

the gold target setting. This is due to the fact that there are many unseen predicates in

the test set on which the frame identification model performs poorly; however, for the

automatic targets which are mostly seen in the lexicon and training data, the model gets

high precision, resulting in better overall F1 score.

Our frame identification model thus performs on par with the previous state of the

art for this task, and offers several advantages over J&N’s formulation of the problem:

it requires only a single model, learns lexical-semantic features as part of that model
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rather than requiring a preprocessing step to expand the vocabulary of frame-evoking

words, and is probabilistic, which can facilitate global reasoning.

In the SemEval 2007 dataset, for gold-standard targets, 210 out of 1,059 lemmas

were not present in the white list that we used for target identification (see Section 4).

Our model correctly identifies the frames for 4 of these 210 lemmas. For 44 of these

lemmas, the evaluation script assigns a score of 0.5 or more, suggesting that our model

predicts a closely related frame. Finally, for 190 of the 210 lemmas, a positive score is

assigned by the evaluation script. This suggests that the hidden variable model helps

in identifying related (but rarely exact) frames for unseen targets, and explains why

under exact—but not partial—frame matching, the F1 score using automatic targets is

commensurate with the score for oracle targets.26

For automatically identified targets, the F1 score falls because the model fails to

predict frames for unseen lemmas. However, our model outperforms J&N’07 by 4

F1 points. The partial frame matching F1 score of our model represents a significant

improvement over the baseline (p < 0.01). The precision and recall measures are

significant as well (p < 0.05 and p < 0.01, respectively). However, because targets

identified by J&N’07 and frames classified by our frame identification model resulted

in scores on par with the baseline, we note that the significant results follow due to

better target identification. Note from the results that the automatic target identification

model shows an increase in precision, at the expense of recall. This is because the white

list for target identification restricts the model to predict frames only for known LUs.

If we label the subset of test set with already seen LUs (seen only in the training set,

excluding the exemplars) with their corresponding most frequent frame, we achieve

26 J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame
identification models is difficult.
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an exact match accuracy between 52.9% and 91.2%, depending on the accuracy of the

unseen LUs (these bounds assume, respectively, that they are all incorrectly labeled or

all correctly labeled).

FrameNet 1.5 Release. The bottom three rows of Table 5 show results on the full text

annotation test set of the FrameNet 1.5 release. Since the number of annotations nearly

doubled, we see large improvements in frame identification accuracy. Note that we only

evaluate with gold targets as input to frame identification. (As mentioned in Section 3.2,

some documents in the test set have not been annotated for all targets, so evaluating

automatic target identification would not be informative.) We found that 50.1% of the

targets in the test set were ambiguous, i.e. they associated with more than one frame

either in FrameNet or our training data. On these targets, the exact frame identification

accuracy is 73.10% and the partial accuracy is 85.77%, which indicates that the frame

identification model is robust to target ambiguity. On this dataset, the most frequent

frame baseline achieves an exact match accuracy between 74.0% and 88.1%, depending

on the accuracy of the unseen LUs.

We conducted further experiments with ablation of the latent variable in our frame

identification model. Recall that the decoding objective used to choose a frame by

marginalizing over a latent variable `, whose values range over targets known to

associate with the frame f being considered (see Equations 1–2) in training. How much

do the prototypes, captured by the latent variable, contribute to performance? Instead

of treating ` as a marginalized latent variable, we can fix its value to the observed target.

An immediate effect of this choice is a blow-up in the number of features; we

must instantiate features (see Table 4) for all 4,194 unique targets observed in training.

Because each of these features needs to be associated with all 877 frames in the partition
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function of Equation 2, the result is an eighty-fold blowup of the feature space (the latent

variable model had 465,317 features). Such a model is not computationally feasible in

our engineering framework, so we considered a model using only features observed to

fire at some point in the training data (called “supported” features),27 resulting in only

72,058 supported features. In Table 5, we see a significant performance drop (on both

exact and partial matching accuracy) with this latent variable–free model, compared

both to our latent variable model with all features and with only supported features

(of which there are 165,200). This establishes that the latent variable in our frame

identification model helps in terms of accuracy, and lets us use a moderately sized

feature set incorporating helpful unsupported features.

Finally, in our test set, we found that 144 out of the 4,458 annotated targets were un-

seen, and our full frame identification model only labeled 23.1% of the frames correctly

for those unseen targets; in terms of partial match accuracy, the model achieved a score

of 46.6%. This, along with the results on the SemEval 2007 unseen targets, shows that

there is substantial opportunity for improvement when unseen targets are presented to

the system. We address this issue next.

5.5 Semi-Supervised Lexicon Expansion

We next address the poor performance of our frame identification model on targets that

were unseen as LUs in FrameNet or as instances in training data, and briefly describe a

technique for expanding the set of lexical units with potential semantic frames that they

can associate with. These experiments were carried out on the FrameNet 1.5 data only.

We employ a semi-supervised learning (SSL) technique that uses a graph constructed

27 The use of unsupported features, i.e., those that can fire for an analysis in the partition function but not
observed to fire in the training data, has been observed to give performance improvements in NLP
problems; see, e.g., Sha and Pereira (2003) and Martins et al. (2010).
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from labeled and unlabeled data. The widely-used graph-based SSL framework—see

Bengio, Delalleau, and Le Roux (2006) and Zhu (2008) for introductory material on

this topic—has been shown to perform better than several other semi-supervised algo-

rithms on benchmark datasets (Chapelle, Schölkopf, and Zien 2006, ch. 21). The method

constructs a graph where a small portion of vertices correspond to labeled instances,

and the rest are unlabeled. Pairs of vertices are connected by weighted edges denoting

the similarity between the pair. Traditionally, Markov random walks (Szummer and

Jaakkola 2001; Baluja et al. 2008) or optimization of a loss function based on smoothness

properties of the graph (Corduneanu and Jaakkola 2003; Zhu, Ghahramani, and Lafferty

2003; Subramanya and Bilmes 2008, inter alia) are performed to propagate labels from

the labeled vertices to the unlabeled ones. In our work, we are interested in multi-class

generalizations of graph-propagation algorithms suitable for NLP applications, where

each graph vertex can assume one or more out of many possible labels (Talukdar and

Crammer 2009; Subramanya and Bilmes 2008, 2009). For us, graph vertices correspond

to natural language types (not tokens) and undirected edges between them are weighted

using a similarity metric. Recently, this setup has been used to learn soft labels on

natural language types (say, word n-grams or in our case, syntactically disambiguated

predicates) from seed data, resulting in large but noisy lexicons, which are used to con-

strain structured prediction models. Applications have ranged from domain adaptation

of sequence models (Subramanya, Petrov, and Pereira 2010) to unsupervised learning

of POS taggers by using bilingual graph-based projections (Das and Petrov 2011).

We describe our approach to graph construction, propagation for lexicon expansion,

and the use of the result to impose constraints on frame identification.

5.5.1 Graph Construction. We construct a graph with lexical units as vertices. Thus,

each vertex corresponds to a lemmatized word or phrase appended with a coarse POS
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Figure 4: Excerpt from our constructed graph over LUs. Green LUs are observed in
the FrameNet 1.5 data. Above/below them are shown the most frequently observed
frame that these LUs associate with. The black LUs are unobserved and graph propa-
gation produces a distribution over most likely frames that they could evoke as target
instances.

tag. We use two resources for graph construction. First, we take all the words and

phrases present in a dependency-based thesaurus constructed using syntactic cooc-

currence statistics (Lin 1998), and aggregate words and phrases that share the same

lemma and coarse POS tag. To construct this resource, Lin used a corpus containing

64 million words that was parsed with a fast dependency parser (Lin 1993, 1994), and

syntactic contexts were used to find similar lexical items for a given word or phrase. Lin

separately treated nouns, verbs and adjectives/adverbs, so these form the three parts of

the thesaurus. This resource gave us a list of possible LUs, much larger in size than the

LUs present in FrameNet data.

The second component of graph construction comes from FrameNet itself. We

scanned the exemplar sentences in FrameNet 1.5 and the training section of the full text

annotations and gathered a distribution over frames for each LU appearing in FrameNet

data. For a pair of LUs, we measured the Euclidean distance between their frame

distributions. This distance was next converted to a similarity score and interpolated

with the similarity score from Lin’s dependency thesaurus. We omit further details

about the interpolation and refer the reader to full details given in Das and Smith (2011).
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For each LU, we create a vertex and link it to the K nearest neighbor LUs under the

interpolated similarity metric. The resulting graph has 64,480 vertices, 9,263 of which

are labeled seeds from FrameNet 1.5 and 55,217 of which are unlabeled. Each vertex has

a possible set of labels corresponding to the 877 frames defined in the lexicon. Figure 4

shows an excerpt from the constructed graph.

5.5.2 Propagation by Optimization. Once the graph is constructed, the 9,263 seed

vertices with supervised frame distributions are used to propagate the semantic frame

information via their nearest neighbors to all vertices. Here we discuss two graph-

based SSL objective functions. Das and Smith (2012) compare several other graph-based

SSL algorithms for this problem; we refer the interested reader to that paper. Let V

denote the set of all vertices in our graph, V̂ ⊂ V be the set of seed vertices and F

denote the set of all frames. Let N (v) denote the set of neighbors of vertex v ∈ V . Let

q = {q1, q2, . . . , q|V |} be the set of frame distributions, one per vertex. For each seed

vertex v ∈ V̂ , we have a supervised frame distribution q̂v . All edges in the graph are

weighted according to the aforementioned interpolated similarity score, denoted wuv

for the edge adjacent to vertices u and v. We find q by solving:

NGF-`2 : argmin
q, s.t. q≥0,
∀v∈V,‖qv‖1=1

∑
v∈V̂

‖q̂v − qv‖22 + µ
∑

v∈V,u∈N (v)

wuv‖qv − qu‖22 + ν
∑
v∈V
‖qv − 1

|F|‖
2
2

(4)

We call the objective in Equation 4 NGF-`2 because it uses normalized probability distri-

butions at each vertex and is a Gaussian field; it also employs a uniform `2 penalty—the

third term in the objective function. This is a multiclass generalization of the quadratic

cost criterion (Bengio, Delalleau, and Le Roux 2006), also used by Subramanya, Petrov,

and Pereira (2010) and Das and Petrov (2011). Our second graph objective function is as
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follows:

UJSF-`1,2 : argmin
q, s.t. q≥0

∑
v∈V̂

DJS(q̂v‖qv) + µ
∑

v∈V,u∈N (v)

wuvDJS(qv‖qu) + ν
∑
v∈V
‖qv‖21 (5)

We call it UJSF-`1,2 since it uses unnormalized probability measures at each vertex and

is a Jensen-Shannon field, employing pairwise Jensen-Shannon divergences (Burbea and

Rao 2006; Lin 1991) and a sparse `1,2 penalty (Kowalski and Torrésani 2009) as the

third term. Das and Smith (2012) proposed the objective function in Equation 5. It

seeks at each graph vertex a sparse measure, as we expect in a lexicon (i.e., few frames

have nonzero probability for a given target). The above two graph objectives can be

optimized by iterative updates, whose details we omit in this article; more informa-

tion about the motivation behind using the `1,2 penalty in the UJSF-`1,2 objective, the

optimization procedure, and an empirical comparison of these and other objectives on

another NLP task can be found in Das and Smith (2012).

5.5.3 Constraints for Frame Identification. Once a graph-based SSL objective function

is minimized, we arrive at the optimal set of frame distributions q∗, which we use

to constrain our frame identification inference rule, expressed in Equation 1. In that

rule, ti is the ith target in a sentence x, and fi is the corresponding evoked frame. We

now add a constraint to that rule. Recall from Section 5.2 that for targets with known

lemmatized forms, Fi was defined to be the set of frames that associate with lemma tli

in the supervised data. For unknown lemmas, Fi was defined to be all the frames in the

lexicon. If the LU corresponding to ti is present in the graph, let it be the vertex vi. For

such targets ti covered by the graph, we redefine Fi as:

Fi = {f : f ∈M -best frames under q∗vi} (6)
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UNKNOWN TARGETS ALL TARGETS Graph
exact partial exact partial Lexicon

frame matching frame matching frame matching frame matching Size
Supervised 23.08 46.62 82.97 90.51 –
Self-training 18.88 42.67 82.27 90.02 –
NGF-`2 39.86 62.35 83.51 91.02 128,960
UJSF-`1,2 42.67 65.29 83.60 91.12 45,544

Table 6: Exact and partial frame identification accuracy on the FrameNet 1.5 dataset
with the size of lexicon (in terms of non-zero frame components in the truncated frame
distributions) used for frame identification, given gold targets. The supervised model
is compared to alternatives in Table 5. Bold indicates best results. UJSF-`1,2 produces
statistically significant results (p < 0.001) for all metrics with respect to the supervised
baseline for both the unseen LUs as well as the whole test set. Although the NGF-`2 and
UJSF-`1,2 models are statistically indistinguishable, it is noteworthy that the UJSF-`1,2
objective produces a much smaller lexicon.

For targets ti in test data whose LUs are not present in the graph (and hence in

supervised data), Fi is the set of all frames. Note that in this semi-supervised extension

of our frame identification inference procedure, we introduced several hyperparam-

eters, namely µ, ν, K (the number of nearest neighbors for each vertex included in

the graph) and M (the number of highest scoring frames per vertex according to the

induced frame distribution). We choose these hyperparameters using cross-validation

by tuning the frame identification accuracy on unseen targets. (Different values of the

first three hyperparameters were chosen for the different graph objectives and we omit

their values here for brevity; M turned out to be 2 for all models.)

Table 6 shows frame identification accuracy, both using exact match as well as

partial match. Performance is shown on the portion of the test set containing unknown

LUs, as well as the whole test set. The final column presents lexicon size in terms

of the set of truncated frame distributions (filtered according to the top M frames in

qv for a vertex v) for all the LUs in a graph. For comparison with a semi-supervised

baseline, we consider a self-trained system. For this system, we used the supervised

frame identification system to label 70,000 sentences from the English Gigaword corpus
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with frame-semantic parses. For finding targets in a raw sentence, we used a relaxed

target identification scheme, where we marked as potential frame-evoking units all

targets seen in the lexicon and all other words which were not prepositions, particles,

proper nouns, foreign words or WH-words. We appended these automatic annotations

to the training data, resulting in 711,401 frame annotations, more than 36 times the

annotated data. These data were next used to train a frame identification model.28 This

setup is very similar to that of Bejan (2009) who used self-training to improve frame

identification. In our setting, however, self-training hurts relative to the fully supervised

approach (Table 6).

Note that for the unknown part of the test set the graph-based objectives outperform

both the supervised model as well as the self-training baseline by a margin of ∼20%

absolute. The best model is UJSF-`1,2, and its performance is significantly better than

the supervised model (p < 0.01). It also produces a smaller lexicon (using the sparsity-

inducing penalty) than NGF-`2, requiring less memory during frame identification

inference. The small footprint can be attributed to the removal of LUs for which all

frame components were zero (qi = 0). The improvements of the graph-based objectives

over the supervised and the self-trained models are modest for the whole test set, but

the best model still has statistically significant improvements over the supervised model

(p < 0.01).

6. Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of targets t = 〈t1, . . . , tm〉, and a list of evoked

frames f = 〈f1, . . . , fm〉 corresponding to each target, argument identification is the task

28 We ran self-training with smaller amounts of data, but found no significant difference with the results
achieved with 711,401 frame annotations. As we observe in Table 6, in our case, self-training performs
worse than the supervised model, and we do not hope to improve with even more data.
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of choosing which of each fi’s roles are filled, and by which parts of x. This task is most

similar to the problem of semantic role labeling, but uses a richer set of frame-specific

labels than PropBank annotations.

6.1 Model

LetRfi = {r1, . . . , r|Rfi
|} denote frame fi’s roles (named frame element types) observed

in an exemplar sentence and/or our training set. A subset of each frame’s roles are

marked as core roles; these roles are conceptually and/or syntactically necessary for

any given use of the frame, though they need not be overt in every sentence involving

the frame. These are roughly analogous to the core arguments ARG0–ARG5 in PropBank.

Non-core roles—analogous to the various ARGM-* in PropBank—loosely correspond to

syntactic adjuncts, and carry broadly applicable information such as the time, place, or

purpose of an event. The lexicon imposes some additional structure on roles, including

relations to other roles in the same or related frames, and semantic types with respect to

a small ontology (marking, for instance, that the entity filling the protagonist role must

be sentient for frames of cognition). Figure 3 illustrates some of the structural elements

comprising the frame lexicon by considering the CAUSE_TO_MAKE_NOISE frame.

We identify a set S of spans that are candidates for filling any role r ∈ Rfi . In

principle, S could contain any subsequence of x, but in this work we only consider

the set of contiguous spans that (a) contain a single word or (b) comprise a valid subtree

of a word and all its descendants in the dependency parse produced by the MST parser.

This covers approximately 80% of arguments in the development data for both datasets.

The empty span, denoted ∅, is also included in S, since some roles are not explicitly

filled; in the SemEval 2007 development data, the average number of roles an evoked
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frame defines is 6.7, but the average number of overt arguments is only 1.7.29 In training,

if a labeled argument is not a subtree of the dependency parse, we add its span to S.30

Let Ai denote the mapping of roles in Rfi to spans in S. Our model makes a

prediction for each Ai(rk) (for all roles rk ∈ Rfi ) using:

Ai(rk)← argmax
s∈S

pψ(s | rk, fi, ti,x) (7)

We use a conditional log-linear model over spans for each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti,x) =
expψ>h(s, rk, fi, ti,x)∑

s′∈S

expψ>h(s′, rk, fi, ti,x)
(8)

Note that our model chooses the span for each role separately from the other roles and

ignores all frames except the frame the role belongs to. Our model departs from the

traditional SRL literature by modeling the argument identification problem in a single

stage, rather than first classifying token spans as arguments and then labeling them.

A constraint implicit in our formulation restricts each role to have at most one overt

argument, which is consistent with 96.5% of the role instances in the SemEval 2007

training data and 96.4% of the role instances in the FrameNet 1.5 full text annotations.

Out of the overt argument spans in the training data, 12% are duplicates, having

been used by some previous frame in the sentence (supposing some arbitrary ordering

of frames). Our role-filling model, unlike a sentence-global argument detection-and-

29 In the annotated data, each core role is filled with one of three types of null instantiations indicating how
the role is conveyed implicitly. For instance, the imperative construction implicitly designates a role as
filled by the addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this
work we do not distinguish different types of null instantiation. The interested reader may refer to Chen
et al. (2010), who handle the different types of null instantions during argument identification.

30 Here is an example in the FrameNet 1.5 training data where this occurs. In the sentence: As capital of
Europe ’s most explosive economy, Dublin seems to be changing before your very eyes., the word economy evokes
the ECONOMY frame with the phrase most explosive fulfilling the Descriptor role. However, in the
dependency parse for the sentence the phrase is not a subtree since both words in the frame attach to the
word economy. Future work may consider better heuristics to select potential arguments from the
dependency parses to recover more gold arguments than what the current work achieves.
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classification approach,31 permits this sort of argument sharing among frames. Word

tokens belong to an average of 1.6 argument spans, including the quarter of words that

do not belong to any argument.

Appending together the local inference decisions from Equation 7 gives us the best

mapping Ât for target t. Features for our log-linear model (Equation 8) depend on the

preprocessed sentence x; the target t; a role r of frame f ; and a candidate argument span

s ∈ S.32 For features using the head word of the target t or a candidate argument span

s, we use the heuristic described in footnote 20 for selecting the head of non-subtree

spans.

Table 7 lists the feature templates used in our model. Every feature template has

a version which does not take into account the role being filled (so as to incorporate

overall biases). The G# symbol indicates that the feature template also has a variant

which is conjoined with r, the name of the role being filled; and  indicates that the

feature template additionally has a variant which is conjoined with both r and f , the

name of the frame.33 The role-name-only variants provide for smoothing over frames

for common types of roles such as Time and Place; see Matsubayashi, Okazaki, and

Tsujii (2009) for a detailed analysis of the effects of using role features at varying levels

of granularity. Certain features in our model rely on closed-class POS tags, which are

defined to be all Penn Treebank tags except for CD and tags that start with V, N, J, or R.

Finally, the features that encode a count or a number are binned into groups: (−∞,−20],

[−19,−10], [−9,−5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19], [20,∞).

31 J&N’07, like us, identify arguments for each target.
32 In this section we use t, f , and r without subscripts since the features only consider a single role of a

single target’s frame.
33 I.e., the  symbol subsumes G#, which in turn subsumes #.
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6.2 Parameter Estimation

We train the argument identification model by:

max
ψ

N∑
j=1

mj∑
i=1

|R
f
(j)
i

|∑
k=1

log pψ(A(j)
i (rk) | f (j)i , t

(j)
i ,x(j))− C ‖ψ‖22 (9)

Here N is the number of data points (sentences) in the training set, and m is the

number of frame annotations per sentence. The above objective function is concave.

For experiments with the SemEval 2007 data, we trained the model using stochastic

gradient ascent (Bottou 2004) with no Gaussian regularization (C = 0).34 Early stopping

was done by tuning on the development set, and the best results were obtained with a

batch size of 2 and 23 passes through the data.

On the FrameNet 1.5 release, we trained this model using L-BFGS (Liu and Nocedal

1989) and ran it for 1000 iterations. C was tuned on the development data, and we

obtained best results for C = 1.0. We did not use stochastic gradient descent for this

dataset as the number of training instances increased and parallelization of L-BFGS

on a multicore setup implementing MPI (Gropp, Lusk, and Skjellum 1994) gave faster

training speeds.

6.3 Decoding with Beam Search

Naïve prediction of roles using Equation 7 may result in overlap among arguments

filling different roles of a frame, since the argument identification model fills each role

independently of the others. We want to enforce the constraint that two roles of a single

frame cannot be filled by overlapping spans.35 Toutanova, Haghighi, and Manning

34 This was the setting used by Das et al. (2010) and we kept it unchanged.
35 On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments to

be shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation for
this task only considers the primary layer, which is guaranteed to have disjoint arguments.
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Algorithm 1 Joint decoding of frame fi’s arguments via beam search. topk(S, pψ, rj)
extracts the k most probable spans from S , under pψ , for role rj . extend(D0:(j−1),S ′)
extends each span vector inD0:(j−1) with the most probable non-overlapping span from
S ′, resulting in k best extensions overall.
Input: k > 0,Rfi , S, the distribution pψ from Equation 8 for each role rj ∈ Rfi

Output: Âi, a high-scoring mapping of roles of fi to spans with no token overlap
among the spans

1: Calculate Ai according to Equation 7
2: ∀r ∈ Rfi such that Ai(r) = ∅, let Âi(r)← ∅
3: R+

fi
← {r : r ∈ Rfi ,Ai(r) 6= ∅}

4: n← |R+
fi
|

5: Arbitrarily orderR+
fi

as {r1, r2, . . . rn}
6: LetD0:j = 〈D0:j

1 , . . . , D0:j
k 〉 refer to the k-best list of vectors of compatible filler spans

for roles r1 through rj
7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S, pψ, rj))

10: end for
11: ∀j ∈ {1, . . . , n}, Âi(rj)← D0:n

1 [j]

12: return Âi

(2005) presented a dynamic programming algorithm to prevent overlapping arguments

for SRL; however, their approach used an orthogonal view to the argument identi-

fication stage, wherein they labeled phrase-structure tree constituents with semantic

roles. That formulation admitted a dynamic programming approach; our formulation

of finding the best argument span for each role does not.

To eliminate illegal overlap, we adopt the beam search technique detailed in Al-

gorithm 1. The algorithm produces a set of k-best hypotheses for a frame instance’s

full set of role-span pairs, but uses an approximation in order to avoid scoring an

exponential number of hypotheses. After determining which roles are most likely not

explicitly filled, it considers each of the other roles in turn: in each iteration, hypotheses
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incorporating a subset of roles are extended with high-scoring spans for the next role,

always maintaining k alternatives. We set k=10,000 as the beam width.36

6.4 Results

Performance of the argument identification model is presented in Table 8 for both

datasets in consideration. We analyze them below.

SemEval 2007 Data: For the SemEval dataset, the table shows how performance varies

given different types of input: correct targets and correct frames, correct targets but

automatically identified frames, and ultimately, no oracle input (the full frame parsing

scenario). Rows 1–2 isolate the argument identification task from the frame identifica-

tion task. Given gold targets and frames, our argument identification model (without

beam search) gets an F1 score of 68.09%; when beam search is applied, this increases to

68.46%, with a noticeable increase in precision. Note that an estimated 19% of correct

arguments are excluded because they are neither single words nor complete subtrees

(see Section 6.1) of the automatic dependency parses.37

Qualitatively, the problem of candidate span recall seems to be largely due to

syntactic parse errors.38 Although our performance is limited by errors when using

the syntactic parse to determine candidate spans, it could still improve; this suggests

that the model has trouble discriminating between good and bad arguments, and that

additional feature engineering or jointly decoding arguments of a sentence’s frames

may be beneficial.

36 We show the effect of varying beam widths in Table 9, where we present performance of an exact
algorithm for argument identification.

37 We found that using all constituents from the 10-best syntactic parses would improve oracle recall of
spans in the development set by just a couple of percentage points, at the computational cost of a larger
pool of candidate arguments per role.

38 Note that, because of our labels-only evaluation scheme (Section 3.3), arguments missing a word or
containing an extra word receive no credit. In fact, of the frame roles correctly predicted as having an
overt span, the correct span was predicted 66% of the time, while 10% of the time the predicted starting
and ending boundaries of the span were off by a total of 1 or 2 words.
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Features with both null and non-null variants: These features come in two
flavors: if the argument is null, then one version fires; if it is overt (non-null),
then another version fires.
 some word in t has lemma λ  some word in t has POS π
G# some word in t has lemma λ, and the

sentence uses PASSIVE voice
G# some word in t has lemma λ, and the

sentence uses ACTIVE voice
G# the head of t has subcategorization se-

quence τ = 〈τ1, τ2, . . . 〉
G# some syntactic dependent of the head

of t has dependency type τ
 the head of t has c syntactic depen-

dents
 bias feature (always fires)

Span content features: apply to overt argument candidates.
# POS tag π occurs for some word in s # the head word of s has POS π
# the first word of s has POS π  |s|, the number of words in the span
# the last word of s has POS π # the first word of s has lemma λ
# the head word of s has syntactic de-

pendency type τ
 the first word of s: ws1 , and its POS tag
πs1 , if πs1 is a closed-class POS

 ws2 and its closed-class POS tag πs2 ,
provided that |s| ≥ 2

 the syntactic dependency type τs1 of
the first word with respect to its head

# the head word of s has lemma λ  τs2 , provided that |s| ≥ 2
# the last word of s: ws|s| has lemma λ  τs|s| , provided that |s| ≥ 3
 ws|s| , and its closed-class POS tag πs|s| ,

provided that |s| ≥ 3

G# lemma λ is realized in some word in s
G# lemma λ is realized in some word in s,

the voice denoted in the span, s’s
position with respect to t (BEFORE,
AFTER, or OVERLAPPING)

G# lemma λ is realized in some word in s,
the voice denoted in the span (ACTIVE
or PASSIVE)

Syntactic features: apply to overt argument candidates.
# dependency path: sequence of labeled,

directed edges from the head word of
s to the head word of t

# length of the dependency path

Span context POS features: for overt candidates, up to 6 of these features will
be active.
# a word with POS π occurs up to 3

words before the first word of s
# a word with POS π occurs up to 3

words after the last word of s
Ordering features: apply to overt argument candidates.
 the position of s with respect to to the

span of t: BEFORE, AFTER, or OVERLAP-
PING (i.e. there is at least one word
shared by s and t)

# target-argument crossing: there is at
least one word shared by s and t, at
least one word in s that is not in t, and
at least one word in t that is not in s

# linear word distance between the near-
est word of s and the nearest word of t,
provided s and t do not overlap

# linear word distance between the mid-
dle word of s and the middle word of
t, provided s and t do not overlap

Table 7: Features used for argument identification. Section 6.1 describes the meanings
of the different circles attached to each feature.
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ARGUMENT IDENTIFICATION exact matching partial matching
targets frames decoding P R F1 P R F1

SemEval’07 Data

Argument
identification (full)

gold gold naïve 77.43 60.76 68.09 1

gold gold beam 78.71 60.57 68.46 2

Parsing (oracle targets) gold supervised (§5.2) beam 49.68 42.82 46.00 57.85 49.86 53.56 3

Parsing (full) auto supervised (§5.2) beam 58.08 38.76 46.49 62.76 41.89 50.24 4

Parsing (J&N’07
targets and frames)

auto supervised (§3.4) beam 56.26 36.63 44.37 60.98 39.70 48.09 5

Baseline: J&N’07 auto supervised (§3.4) N/A 51.59 35.44 42.01 56.01 38.48 45.62 6

FrameNet 1.5 Release

Argument
identification (full)

gold gold naïve 82.00 76.36 79.08 7

gold gold beam 83.83 76.28 79.88 8

Parsing (oracle targets)
gold supervised (§5.2) beam 67.81 60.68 64.05 72.47 64.85 68.45 9

gold SSL (NGF-`2, §5.5) beam 68.22 61.04 64.43 72.87 65.20 68.82 10

gold SSL (UJSF-`1,2, §5.5) beam 68.33 61.14 64.54 72.98 65.30 68.93 11

Table 8: Argument identification results on both the SemEval’07 data as well as the full text annotations of FrameNet 1.5. For decoding,
“beam” and “naïve” indicate whether the approximate joint decoding algorithm has been used or local independent decisions have
been made for argument identification, respectively. On the SemEval 2007 data, for full parsing (automatic target, frame and argument
identification), bold scores indicate best results, which are also significant improvements relative to the baseline (p < 0.05). On the
FrameNet 1.5 dataset, bold scores indicate best results on automatic frame and argument identification—this is achieved by the frame
identification model that uses the UJSF-`1,2 graph-objective and automatic argument identification using beam search. This result is
statistically significant over the supervised results shown in row 9 (p < 0.001). In terms of precision and F1 score measured with partial
frame matching, the results with the UJSF-`1,2 model is statistically significant over the NGF-`2 model (p < 0.05). For recall with partial
frame matching, and for all the three metrics with exact frame matching, the results with the two graph objectives are statistically
indistinguishable. Note that certain partial match results are missing because in those settings, gold frames have been used for argument
identification.
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Rows 3–4 show the effect of automatic supervised frame identification on overall

frame parsing performance. There is a 22% absolute decrease in F1 (18% when partial

credit is given for related frames), suggesting that improved frame identification

or joint prediction of frames and arguments is likely to have a sizeable impact on

overall performance. Rows 4–6 compare our full model (target, frame, and argument

identification) with the baseline, showing significant improvement of more than 4.4

F1 points for both exact and partial frame matching. As with frame identification, we

compared the argument identification stage with that of J&N’07 in isolation, using the

automatically identified targets and frames from the latter as input to our model. As

shown in row 5, with partial frame matching, this gave us an F1 score of 48.1% on the

test set—significantly better (p < 0.05) than 45.6%, the full parsing result from J&N’07

(row 6 in Table 8). This indicates that our argument identification model—which uses a

single discriminative model with a large number of features for role filling (rather than

argument labeling)—is more accurate than the previous state of the art.

FrameNet 1.5 Release: Rows 7–12 show results on the newer dataset, which is part of

the FrameNet 1.5 release. As in the frame identification results of Table 5, we do not

show results using predicted targets, as we only test the performance of the statistical

models. First, we observe that for results with gold frames, the F1 score is 79.08%

with naïve decoding, which is significantly higher than the SemEval counterpart. This

indicates that increased training data greatly improves performance on the task. We also

observe that beam search improves precision by nearly 2%, while getting rid of overlap-

ping arguments. When both model frames and model arguments are used, we get an F1

score of 68.45%, which is encouraging in comparison to the best results we achieved on

the SemEval 2007 dataset. Semi-supervised lexicon expansion for frame identification
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Figure 5: (a) Output of the supervised frame-semantic parsing model, with beam search
for argument identification, given the target discrepancies. The output is incorrect. (b)
Output using the constrained frame identification model that takes into account the
graph-based frame distributions over unknown predicates. In this particular example,
the UJSF-`1,2 graph objective is used. This output matches the gold annotation. The LU
discrepancy.N is unseen in supervised FrameNet data.

further improves parsing performance. We observe the best results when the UJSF-`1,2

graph objective is used for frame identification, significantly outperforming the fully

supervised model on parsing (p < 0.001) for all evaluation metrics. The improvements

with SSL can be explained by noting that frame identification performance goes up

when the graph objectives are used, which carries over to argument identification.

Figure 5 shows an example where the graph-based model UJSF-`1,2 corrects an error

made by the fully supervised model for the unseen LU discrepancy.N, both for frame

identification and full frame-semantic parsing.

7. Collective Argument Identification with Constraints

The argument identification strategy described in the previous section does not capture

some facets of semantic knowledge represented declaratively in FrameNet. In this

section, we present an approach that exploits such knowledge in a principled, unified,

and intuitive way. In prior NLP research using FrameNet, these interactions have been
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largely ignored, though they have the potential to improve the quality and consistency

of semantic analysis. The beam search technique (Algorithm 1) handles one kind of

constraint: avoiding argument overlaps. It is, however, approximate and cannot handle

other forms of constraints.

Here, we present an algorithm that exactly identifies the best full collection of

arguments of a target given its semantic frame. Although we work within the conven-

tions of FrameNet, our approach is generalizable to other semantic role labeling (SRL)

frameworks. We model argument identification as constrained optimization, where the

constraints come from expert knowledge encoded in FrameNet. Following prior work

on PropBank-style SRL that dealt with similar constrained problems (Punyakanok et

al. 2004; Punyakanok, Roth, and Yih 2008, inter alia), we incorporate this declarative

knowledge in an integer linear program.

Because general-purpose ILP solvers are proprietary and do not fully exploit the

structure of the problem, we turn to a class of optimization techniques called dual

decomposition (Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010; Martins et

al. 2011a). We derive a modular, extensible, parallelizable approach in which semantic

constraints map not just to declarative components in the algorithm, but also to pro-

cedural ones, in the form of “workers.” While dual decomposition algorithms only

solve a relaxation of the original problem, we make our approach exact by wrapping

the algorithm in a branch-and-bound search procedure.39

We experimentally find that our algorithm achieves accuracy comparable to the

results presented in Table 8, while respecting all imposed linguistic constraints. In

comparison to beam search that violates many of these constraints, the presented ex-

39 Open-source code in C++ implementing the AD3 algorithm can be found at
http://www.ark.cs.cmu.edu/AD3.
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act decoder is slower, but it decodes nine times faster than CPLEX, a state-of-the-art,

proprietary, general-purpose exact ILP solver.40

7.1 Joint Inference

Here, we take a declarative approach to modeling argument identification using an ILP

and relate our formulation to prior work in shallow semantic parsing. We show how

knowledge specified in a linguistic resource (FrameNet in our case) can be used to

derive the constraints in our ILP. Finally, we draw connections of our specification to

graphical models, a popular formalism in artificial intelligence and machine learning,

and describe how the constraints can be treated as factors in a factor graph.

7.1.1 Declarative Specification. Let us simplify notation by considering a given target

t and not consider its index in a sentence x; let the semantic frame it evokes be f . To

solely evaluate argument identification, we assume that the semantic frame f is given,

which is traditionally the case in controlled experiments used to evaluate SRL systems

(Màrquez et al. 2008). Let the set of roles associated with the frame f beRf . In sentence

x, the set of candidate spans of words that might fill each role is enumerated, usually

following an overgenerating heuristic, which is described in Section 6.1; as before, we

call this set of spans S. As before, this set also includes the null span ∅; connecting it to a

role r ∈ Rf denotes that the role is not overt. Our approach assumes a scoring function

that gives a strength of association between roles and candidate spans. For each role

r ∈ Rf and span s ∈ S, this score is parameterized as:

c(r, s) = ψ>h(s, r, f, t,x), (10)

40 See http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.
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where ψ are model weights and h is a feature function that looks at the target t,

the evoked frame f , sentence x, and its syntactic analysis, along with r and s. This

scoring function is identical in form to the numerator’s exponent in the log-linear model

described in Equation 8. The SRL literature provides many feature functions of this form

and many ways to use machine learning to acquire ψ. Our presented method does not

make any assumptions about the score except that it has the form in Equation 10.

We define a vector z of binary variables zr,s ∈ {0, 1} for every role and span pair. We

have that: z ∈ {0, 1}d, where d = |Rf | × |S|. zr,s = 1 means that role r is filled by span

s. Given the binary z vector, it is straightforward to recover the collection of arguments

by checking which components zr,s have an assignment of 1; we use this strategy to

find arguments, as described in Section 7.3 (strategies 4 and 6). The joint argument

identification task can be represented as a constrained optimization problem:

maximize
∑
r∈Rf

∑
s∈S

c(r, s)× zr,s

with respect to z ∈ {0, 1}d

such that Az ≤ b. (11)

In the last line, A is a k-by-dmatrix and b is a vector of length k. Thus, Az ≤ b is a set of

k inequalities representing constraints that are imposed on the mapping between roles

and spans; these are motivated on linguistic grounds and are described next.41

41 Note that equality constraints a · z = b can be transformed into double-side inequalities a · z ≤ b and
−a · z ≤ −b.
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Uniqueness. Each role r is filled by at most one span in S. This constraint can be

expressed by:

∀r ∈ Rf ,
∑
s∈S

zr,s = 1. (12)

There areO(|Rf |) such constraints. Note that since S contains the null span ∅, non-overt

roles are also captured using the above constraints. Such a constraint is used extensively

in prior literature (Punyakanok, Roth, and Yih 2008, Section 3.4.1).

Overlap. SRL systems commonly constrain roles to be filled by non-overlapping spans.

For example, Toutanova, Haghighi, and Manning (2005) used dynamic programming

over a phrase structure tree to prevent overlaps between arguments, and Punyakanok,

Roth, and Yih (2008) used constraints in an ILP to respect this requirement. Inspired by

the latter, we require that each input sentence position of x be covered by at most one

argument of t. We define:

G(i) = {s | s ∈ S, s covers position i in x}. (13)

We can define our overlap constraints in terms of G as follows, for every sentence

position i:

∀i ∈ {1, . . . , |x|},
∑
r∈Rf

∑
s∈G(i)

zr,s ≤ 1, (14)

This gives usO(|x|) constraints. It is worth noting that this constraint aims to achieve the

same effect as beam search, as described in Section 6.3, which tries to avoid argument

overlap greedily.
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Pairwise “Exclusions”. For many target classes, there are pairs of roles forbidden to

appear together in the analysis of a single target token. Consider the following two

sentences:

(1) A blackberry
Entity_1

resembles a loganberry
Entity_2

.

(2) Most berries
Entities

resemble each other.

Consider the uninflected target resemble in both sentences, evoking the same

meaning. In example 1 above, two roles—which we call Entity_1 and Entity_2—describe

two entities that are similar to each other. In the second sentence, a phrase fulfills a

third role, called Entities, that collectively denotes some objects that are similar. It is clear

that the roles Entity_1 and Entities cannot be overt for the same target at once, because

the latter already captures the function of the former; a similar argument holds for the

Entity_2 and Entities roles. We call this phenomenon the “excludes” relationship. Let us

define a set of pairs fromRf that have this relationship:

Exclf = {(ri, rj) | ri and rj exclude each other}

Using the above set, we define the constraint:

∀(ri, rj) ∈ Exclf , zri,∅ + zrj ,∅ ≥ 1 (15)

If both roles are overt in a parse, this constraint will be violated, contravening the

“excludes” relationship specified between the pair of roles. If neither or only one of

the roles is overt, the constraint is satisfied. The total number of such constraints is

O(|Exclf |), which is the number of pairwise “excludes” relationships of a given frame.
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Pairwise “Requirements”. The sentence in example 1 illustrates another kind of constraint.

The target resemble cannot have only one of Entity_1 and Entity_2 as roles in text. For

example,

(3) * A blackberry
Entity_1

resembles.

Enforcing the overtness of two roles sharing this “requires” relationship is straight-

forward. We define the following set for a frame f :

Reqf = {(ri, rj) | ri and rj require each other}

This leads to constraints of the form

∀(ri, rj) ∈ Reqf , zri,∅ − zrj ,∅ = 0 (16)

If one role is overt (or absent), the other must be as well. A related constraint has

been used previously in the SRL literature, enforcing joint overtness relationships be-

tween core arguments and referential arguments (Punyakanok, Roth, and Yih 2008,

Section 3.4.1), which are formally similar to the example above.42

7.1.2 Integer Linear Program and Relaxation. Plugging the constraints in Equa-

tions 12, 14, 15 and 16 into the last line of Equation 11, we have the argument iden-

tification problem expressed as an ILP, since the indicator variables z are binary. Here,

apart from the ILP formulation, we will consider the following relaxation of Equation 11,

42 We noticed that, in the annotated data, in some cases, the “requires” constraint is violated by the
FrameNet annotators. This happens mostly when one of the required roles is absent in the sentence
containing the target, but is rather instantiated in an earlier sentence (Gerber and Chai 2010). We apply
the hard constraint in Equation 16, though extending our algorithm to seek arguments outside the
sentence is straightforward. For preliminary work extending SEMAFOR this way, see Chen et al. (2010).
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which replaces the binary constraint z ∈ {0, 1}d by a unit interval constraint z ∈ [0, 1]d,

yielding a linear program:

maximize
∑
r∈Rf

∑
s∈S

c(r, s)× zr,s

with respect to z ∈ [0, 1]d

such that Az ≤ b. (17)

There are several LP and ILP solvers available, and a great deal of effort has been

spent by the optimization community to devise efficient generic solvers. An example is

CPLEX, a state-of-the-art solver for mixed integer programming that we employ as a

baseline to solve the ILP in Equation 11 as well as its LP relaxation in Equation 17. Like

many of the best implementations, CPLEX is proprietary.

7.1.3 Linguistic Constraints from FrameNet. Although enforcing the four different sets

of constraints above is intuitive from a general linguistic perspective, we ground their

use in definitive linguistic information present in the FrameNet lexicon. From the anno-

tated data in the FrameNet 1.5 release, we gathered that only 3.6% of the time is a role

instantiated multiple times by different spans in a sentence. This justifies the uniqueness

constraint enforced by Equation 12. Use of such a constraint is also consistent with prior

work in frame-semantic parsing (Johansson and Nugues 2007). Similarly, we found that

in the annotations, no arguments overlapped with each other for a given target. Hence,

the overlap constraints in Equation 14 are also justified.

Our third and fourth sets of constraints, presented in Equations 15 and 16, come

from FrameNet, too. Examples 1–2 are instances where the target resemble evokes the

SIMILARITY frame, which is defined in FrameNet as:

Two or more distinct entities, which may be concrete or abstract objects or types, are
characterized as being similar to each other. Depending on figure/ground relations, the
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entities may be expressed in two distinct frame elements and constituents, Entity_1 and
Entity_2, or jointly as a single frame element and constituent, Entities.

For this frame, the lexicon lists several roles other than the three we have already

observed, such as Dimension (the dimension along which the entities are similar), Differ-

entiating_fact (a fact that reveals how the concerned entities are similar or different), and

so forth. Along with the roles, FrameNet also declares the “excludes” and “requires”

relationships noted in our discussion in Section 7.1.1. The case of the SIMILARITY frame

is not unique; in Figure 1, the frame COLLABORATION, evoked by the target partners, also

has two roles Partner_1 and Partner_2 that share the “requires” relationship. In fact, out

of 877 frames in FrameNet 1.5, 204 frames have at least a pair of roles for which the

“excludes” relationship holds, and 54 list at least a pair of roles that share the “requires”

relationship.

7.1.4 Constraints as Factors in a Graphical Model. The LP in Equation 17 can be repre-

sented as a maximum a posteriori (MAP) inference problem in an undirected graphical

model. In the factor graph, each component (zr,s) of the vector z corresponds to a

binary variable, and each instantiation of a constraint in Equations 12, 14, 15 and 16

corresponds to a factor. Smith and Eisner (2008) and Martins et al. (2010) used such

a representation to impose constraints in a dependency parsing problem; the latter

discussed the equivalence of linear programs and factor graphs for representing dis-

crete optimization problems. All of our constraints take standard factor forms we can

describe using the terminology of Smith and Eisner (2008) and Martins et al. (2010). The

uniqueness constraint in Equation 12 corresponds to an XOR factor, while the overlap

constraint in Equation 14 corresponds to an ATMOSTONE factor. The constraints in

Equation 15 enforcing the “excludes” relationship can be represented with an OR factor.
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Finally, each “requires” constraints in Equation 16 is equivalent to an XORWITHOUTPUT

factor.

In the following section, we describe how we arrive at solutions for the LP in

Equation 17 using dual decomposition, and how we adapt it to efficiently recover the

exact solution of the ILP (Equation 11), without the need of an off-the-shelf ILP solver.

7.2 “Augmented” Dual Decomposition

Dual decomposition methods address complex optimization problems in the dual, by

dividing them into simple worker problems (subproblems), which are repeatedly solved

until a consensus is reached. The simplest technique relies on the subgradient algorithm

(Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010); as an alternative, Martins et

al. (2011a, 2011b) proposed an augmented Lagrangian technique, which is more suitable

when there are many small components—commonly the case in declarative constrained

problems, like the one at hand. Here, we present a brief overview of the latter, which is

called Alternating Directions Dual Decomposition (AD3).

Let us start by establishing some notation. Let m ∈ {1, . . . ,M} index a factor, and

denote by i(m) the vector of indices of variables linked to that factor. (Recall that each

factor represents the instantiation of a constraint.) We introduce a new set of variables,

u ∈ Rd, called the “witness” vector. We split the vector z into M overlapping pieces

z1, . . . , zM , where each zm ∈ [0, 1]|i(m)|, and add M constraints zm = ui(m) to impose

that all the pieces must agree with the witness (and therefore with each other). Each of

the M constraints described in Section 7.1 can be encoded with its own matrix Am and

vector bm (which jointly define A and b in Equation 17). For convenience, we denote

by c ∈ Rd the score vector, whose components are c(r, s), for each r ∈ Rf and s ∈ S
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(Equation 10), and define the following scores for the mth subproblem:

cm(r, s) = δ(r, s)−1c(r, s), ∀(r, s) ∈ i(m)

where δ(r, s) is the number of constraints that involve role r and span s. Note that

according to this definition, c · z =
∑M

m=1 cm · zm. We can rewrite the LP in Equation 17

in the following equivalent form:

maximize
M∑

m=1

cm · zm

with respect to u ∈ Rd, zm ∈ [0, 1]i(m), ∀m

such that Amzm ≤ bm, ∀m

zm = ui(m), ∀m. (18)

We introduce Lagrange multipliers λm for the equality constraints in the last line.

The AD3 algorithm is depicted as Algorithm 2. Like dual decomposition approaches,

it repeatedly performs a broadcast operation (the zm-updates, which can be done in

parallel, one constraint per “worker”) and a gather operation (the u- and λ-updates).

Each u-operation can be seen as an averaged voting which takes into consideration

each worker’s results.

Like in the subgradient method, the λ-updates can be regarded as price adjust-

ments, which will affect the next round of zm-updates. The only difference with respect

to the subgradient method (Rush et al. 2010) is that each subproblem involved in a zm-

update also has a quadratic penalty that penalizes deviations from the previous average

voting; it is this term that accelerates consensus and therefore convergence. Martins et

al. (2011b) also provide stopping criteria for the iterative updates using primal and dual

residuals that measure convergence; we refer the reader to that paper for details.
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Algorithm 2 AD3 for Argument Identification

Input: role-span matching scores c := 〈c(r, s)〉r,s, structural constraints 〈Am,bm〉Mm=1,
penalty ρ > 0

1: initialize t← 1
2: initialize u1 uniformly (i.e., u(r, s) = 0.5, ∀r, s)
3: initialize each λ1

m = 0, ∀m ∈ {1, . . . ,M}
4: repeat
5: for each m = 1, . . . ,M do
6: make a zm-update by finding the best scoring analysis for the mth constraint,

with penalties for deviating from the consensus u:

z(t+1)
m ← argmax

Amzt
m≤bm

(cm + λt
m) · zm −

ρ

2
‖zm − ut

i(m)‖
2 (19)

7: end for
8: make a u-update by updating the consensus solution, averaging z1, . . . , zm:

u(t+1)(r, s)← 1

δ(r, s)

∑
m:(r,s)∈i(m)

z(t+1)
m (r, s)

9: make a λ-update:

λ(t+1)
m ← λt

m − ρ(z(t+1)
m − u

(t+1)
i(m) ), ∀m

10: t← t+ 1
11: until convergence.
Output: relaxed primal solution u∗ and dual solution λ∗. If u∗ is integer, it will encode

an assignment of spans to roles. Otherwise, it will provide an upper bound of the
true optimum.

A key attraction of this algorithm is that all the components of the declarative

specification remain intact in the procedural form. Each worker corresponds exactly

to one constraint in the ILP, which corresponds to one linguistic constraint. There is no

need to work out when, during the procedure, each constraint might have an effect, as

in beam search.

7.2.1 Solving the subproblems. In a different application, Martins et al. (2011b, §4)

showed how to solve each zm-subproblem associated with the XOR, XORWITHOUTPUT

and OR factors in runtime O(|i(m)| log |i(m)|). The only subproblem that remains is that

of the ATMOSTONE factor; a solution with the same runtime is given in Appendix B.
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7.2.2 Exact decoding. It is worth recalling that AD3, like other dual decomposition

algorithms, solves a relaxation of the actual problem. Although we have observed that

the relaxation is often tight—cf. Section 7.3—this is not always the case. Specifically,

a fractional solution may be obtained, which is not interpretable as an argument, and

therefore it is desirable to have a strategy to recover the exact solution. Two observations

are noteworthy. First, the optimal value of the relaxed problem (Equation 17) provides

an upper bound to the original problem (Equation 11). This is because Equation 11

has the additional integer constraint on the variables. In particular, any feasible dual

point provides an upper bound to the original problem’s optimal value. Second, during

execution of the AD3 algorithm, we always keep track of a sequence of feasible dual

points. Therefore, each iteration constructs tighter and tighter upper bounds. With this

machinery, we have all that is necessary for implementing a branch-and-bound search

that finds the exact solution of the ILP. The procedure works recursively as follows:

1. Initialize L = −∞ (our best value so far).

2. Run Algorithm 2. If the solution u∗ is integer, return u∗ and set L to the objec-

tive value. If along the execution we obtain an upper bound less than L, then

Algorithm 2 can be safely stopped and return “infeasible”—this is the bound part.

Otherwise (if u∗ is fractional) go to step 3.

3. Find the “most fractional” component of u∗ (call it u∗j) and branch: constrain uj = 0

and go to step 2, eventually obtaining an integer solution u∗0 or infeasibility; and

then constrain uj = 1 and do the same, obtaining u∗1. Return the u∗ ∈ {u∗0,u∗1} that

yields the largest objective value.

Although this procedure may have worst-case exponential runtime, we found it empir-

ically to rapidly obtain the exact solution in all test cases.

58

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

7.3 Results with Collective Argument Identification

We present experiments only on argument identification in this section, as our goal is

to exhibit the importance of incorporating the various linguistic constraints during our

inference procedure. We present results on the full text annotations of FrameNet 1.5, and

do not experiment on the SemEval 2007 benchmark, as we have already established our

constraint-agnostic models as state-of-the-art. The model weights ψ used in the scoring

function c were learned as in Section 6.1, i.e. by training a logistic regression model to

maximize conditional log-likelihood. The AD3 parameter ρ was initialized to 0.1, and

we followed Martins et al. (2011b) in dynamically adjusting it to keep a balance between

the primal and dual residuals.

We compare the following algorithms to demonstrate the efficacy of our collective

argument identification approach:43

1. Naïve: This strategy selects the best span for each role r according to the score

function c(r, s), independently of all other roles—the decoding rule formalized in

Equation 7 of Section 6.1. It ignores all constraints except “uniqueness.”

2. Beam: This strategy employs greedy beam search to eliminate overlaps between

predicted arguments, as described in Algorithm 1. Note that it does not try to

respect the “excludes” and “requires” constraints between pairs of roles. The

default size of the beam in Section 1 was a safe 10,000; this resulted in extremely

slow decoding times. For time comparison, we tried beam sizes of 100 and 2 (the

latter being the smallest size that achieves the same F1 score on the FrameNet 1.5

dev set).

43 The first two strategies correspond to rows 7 and 9, respectively, of Table 8.
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3. CPLEX, LP: This uses CPLEX to solve the relaxed LP in Equation 17. To han-

dle fractional z, for each role r, we choose the best span s∗ such that s∗ =

argmaxs∈Sr zr,s, breaking ties arbitrarily.

4. CPLEX, exact: This tackles the actual ILP (Equation 11) with CPLEX.

5. AD3, LP: The relaxed problem is solved using AD3. We choose a span for each role

as in strategy 3.

6. AD3, exact: This couples AD3 with branch-and-bound search to get the exact

integer solution.

Table 9 shows performance of these decoding strategies on the test set. We report

precision, recall, and F1 scores. As with experiments in previous sections, we use the

evaluation script from SemEval 2007 shared task. Since these scores do not penalize

constraint violations, we also report the number of overlap, “excludes” and “requires”

constraints that were violated in the test set. Finally, we tabulate each setting’s decoding

time in seconds on the whole test set averaged over 5 runs.44 The naïve model is very

fast but suffers degradation in precision and violates one constraint roughly per nine

targets. The decoding strategy of Section 6.1 used a default beam size of 10,000, which

is extremely slow; a faster version of beam size 100 results in the same precision and

recall values, but is 15 times faster on our test set. Beam size 2 results in slightly worse

precision and recall values, but is even faster. All of these, however, result in many

constraint violations. Strategies involving CPLEX and AD3 perform similarly to each

other and to beam search on precision and recall, but eliminate most or all of the

constraint violations. With respect to precision and recall, exact AD3 and beam search

with a width of 10,000 were found to be statistically indistinguishable (p > 0.01). The

44 Experiments were conducted on a 64-bit machine with 2 2.6GHz dual-core CPUs (i.e., 4 processors in all)
and a total of 8GB of RAM. The workers in AD3 were not parallelized, while CPLEX automatically
parallelized execution.
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ARGUMENT IDENTIFICATION
Method P R F1 Violations Time (s)

naïve 82.00 76.36 79.08 441 45 15 1.26 ± 0.01
beam = 2 83.68 76.22 79.78 0 49 0 2.74 ± 0.10
beam = 100 83.83 76.28 79.88 0 50 1 29.00 ± 0.25
beam = 10000 83.83 76.28 79.88 0 50 1 440.67 ± 5.53
CPLEX, LP 83.80 76.16 79.80 0 1 0 32.67 ± 1.29
CPLEX, exact 83.78 76.17 79.79 0 0 0 43.12 ± 1.26
AD3, LP 83.77 76.17 79.79 2 2 0 4.17 ± 0.01
AD3, exact 83.78 76.17 79.79 0 0 0 4.78 ± 0.04

Table 9: Comparison of decoding strategies in Section 7.3 on the dataset released
with the FrameNet 1.5 Release, given gold frames. We evaluate in terms of precision,
recall and F1 score on our test set containing 4,458 targets. We also compute the
number of constraint violations each model makes: the three values are the numbers
of overlapping arguments and violations of the “requires” and “excludes” constraints
of Section 7.1. Finally, decoding time (without feature computation steps) on the whole
test set is shown in the last column averaged over 5 runs.

decoding strategy with beam size 2 is 11–16 times faster than the CPLEX strategies,

but is only twice as fast as AD3, and results in significantly more constraint violations.

The exact algorithms are slower than the LP versions, but compared to CPLEX, AD3 is

significantly faster and has a narrower gap between its exact and LP versions. We found

that relaxation was tight 99.8% of the time on the test examples.

The example in Figure 1 is taken from our test set, and shows an instance where

two roles, Partner_1 and Partner_2, share the “requires” relationship; for this example,

the beam search decoder misses the Partner_2 role, which is a violation, while our

AD3 decoder identifies both arguments correctly. Note that beam search makes plenty

of linguistic violations. We found that beam search, when violating many “requires”

constraints, often finds one role in the pair, which increases its recall. AD3 is sometimes

more conservative in such cases, predicting neither role. Figure 6 shows such an ex-

ample where beam search finds one role (Partner_1) while AD3 is more conservative

and predicts no roles. Figure 7 shows another example contrasting the output of beam

search and AD3 where the former predicts two roles sharing an “excludes” relationship;
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(a) Gold annotation.

(b) Beam search output.

Figure 6: An example from the test set where (a) exhibits the gold annotation for a
target that evokes the COLLABORATION frame, with the Partners role filled by the span
“international.” (b) shows the prediction made by the beam search decoding scheme
(beam = 10,000), where it marks “international” with the Partner_1 role, violating the
“requires” constraint; FrameNet notes that this role should be present with the Partner_2
role. AD3 is conservative and predicts no role—it is penalized by the evaluation script,
but does not produce output that violates linguistic constraints.

AD3 does not violate this constraint and tries to predict a more consistent argument set.

Overall, we found it interesting that imposing the constraints did not have much effect

on standard measures of accuracy.

Table 9 only shows results with gold frames. We ran the exact version of AD3 with

automatic frames as well. When the semi-supervised graph objective UJSF-`1,2 is used

for frame identification, the performance with AD3 is only a bit worse in comparison to

beam search (row 11 in Table 8) when frame and argument identification are evaluated

together. We get a precision of 72.92, a recall of 65.22 and F1 score of 68.86 (partial frame

matching). Again, all linguistic constraints are respected, unlike beam search.
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8. Conclusion

We have presented an approach to rich frame-semantic parsing, based on a combination

of knowledge from FrameNet, two probabilistic models trained on full text annotations

released along with the FrameNet lexicon, and expedient heuristics. The frame identi-

fication model employs latent variables in order to generalize to predicates unseen in

either the FrameNet lexicon or training data, and our results show that, quite often,

this model chooses a frame closely related to the gold-standard annotation. We also

presented an extension of this model that uses graph-based semi-supervised learning

to better generalize to new predicates; this achieves significant improvements over the

fully supervised approach. Our argument identification model, trained using maximum

conditional log-likelihood, unifies the traditionally separate steps of detecting and label-

ing arguments. Our system achieves improvements over the previous state of the art on

the SemEval 2007 benchmark dataset at each stage of processing and collectively. We

also report stronger results on the more recent, larger FrameNet 1.5 release.

We applied the AD3 algorithm to collective prediction of a target’s arguments,

incorporating declarative linguistic knowledge as constraints. It outperforms the naïve

local decoding scheme that is oblivious to the constraints. Furthermore, it is significantly

faster than a decoder employing a state-of-the-art proprietary solver; it is only twice as

slow as beam search (our chosen decoding method for comparison with the state of

the art), which is inexact and does not respect all linguistic constraints. This method is

easily amenable to the inclusion of additional constraints.

From our results, we observed that in comparison to the SemEval 2007 dataset,

frame-semantic parsing performance significantly increases when we use the FrameNet

1.5 release; this suggests that the increase in the number of full text annotations and the

size of the FrameNet lexicon is beneficial. We believe that with more annotations in the
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future (say, in the range of the number of PropBank annotations), our frame-semantic

parser can reach even better accuracy, making it more useful for NLP applications that

require semantic analysis.

There are several open problems to be addressed. Firstly, we could further im-

prove the coverage of the frame-semantic parser by improving our semi-supervised

learning approach; two possibilities are custom metric learning approaches (Dhillon,

Talukdar, and Crammer 2010) that suit the frame identification problem in graph-based

SSL, and sparse word representations (Turian, Ratinov, and Bengio 2010) as features

in frame identification. The argument identification model might also benefit from

semi-supervised learning. Further feature engineering and improved preprocessing,

including tokenization into lexical units, improved syntactic parsing, and the use of

external knowledge bases, is expected to improve the system’s accuracy. Finally, the

FrameNet lexicon does not contain exhaustive semantic knowledge. Automatic frame

and role induction is an exciting direction of future research that could further enhance

our methods of automatic frame-semantic parsing. The parser described in this article

is available for download at http://www.ark.cs.cmu.edu/SEMAFOR.
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(a) Gold annotation.

(b) Beam search output.

(c) AD3 output.

Figure 7: An example from the test set where (a) exhibits the gold annotation for a
target that evokes the DISCUSSION frame, with the Interlocutor_1 role filled by the span
“neighbors.” (b) shows the prediction made by the beam search decoding scheme
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not violate the constraint. Both beam and AD3 inference miss the Topic role.
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Hajič, Jan, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia

Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, Pavel

Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009 shared task:

Syntactic and semantic dependencies in multiple languages. In Proceedings of the Thirteenth

Conference on Computational Natural Language Learning, pages 1–18, Boulder, Colorado, June.

Association for Computational Linguistics.

Ide, Nancy and Jean Véronis. 1998. Introduction to the special issue on word sense

disambiguation: the state of the art. Computational Linguistics, 24(1):2–40, March.

Johansson, Richard and Pierre Nugues. 2007. LTH: semantic structure extraction using

nonprojective dependency trees. In Proceedings of the 4th International Workshop on Semantic

Evaluations, pages 227–230, Prague, Czech Republic. Association for Computational

Linguistics.

Johansson, Richard and Pierre Nugues. 2008. Dependency-based semantic role labeling of

PropBank. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language

Processing, pages 69–78, Honolulu, Hawaii, October. Association for Computational

Linguistics.

71

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

Kingsbury, Paul and Martha Palmer. 2002. From TreeBank to PropBank. In Proceedings of the 3rd

International Conference on Language Resources and Evaluation, pages 1989–1993, Las Palmas,

Spain, May. ELRA.

Komodakis, Nikos, Nikos Paragios, and Georgios Tziritas. 2007. MRF optimization via dual

decomposition: Message-passing revisited. In Eleventh International Conference on Computer

Vision, pages 1–8, Rio de Janeiro, Brazil, October. IEEE Press.

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual

decomposition for parsing with non-projective head automata. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 1288–1298, Cambridge,

MA, October. Association for Computational Linguistics.

Kowalski, Matthieu and Bruno Torrésani. 2009. Sparsity and persistence: mixed norms provide

simple signal models with dependent coefficients. Signal, Image and Video Processing, 3:251–264.

Lang, Joel and Mirella Lapata. 2010. Unsupervised induction of semantic roles. In Proceedings of

the Human Language Technologies Conference of the North American Chapter of the Association for

Computational Linguistics, pages 939–947, Los Angeles, California, June. Association for

Computational Linguistics.

Lang, Joel and Mirella Lapata. 2011. Unsupervised semantic role induction with graph

partitioning. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 1320–1331, Edinburgh, Scotland, UK, July. Association for Computational

Linguistics.

Lin, Dekang. 1993. Principle-based parsing without overgeneration. In Proceedings of the 31st

annual meeting on Association for Computational Linguistics, pages 112–120, Columbus, Ohio.

Association for Computational Linguistics.

72

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

Lin, Dekang. 1994. Principar–an efficient, broad-coverage, principle-based parser. In Proceedings

of the 15th conference on Computational linguistics, pages 482–488, Kyoto, Japan. Association for

Computational Linguistics.

Lin, Dekang. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 36th

Annual Meeting of the Association for Computational Linguistics and 17th International Conference

on Computational Linguistics, pages 768–774, Montreal, Quebec, Canada. Association for

Computational Linguistics.

Lin, Jianhua. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on

Information theory, 37(1):145–151.

Litkowski, Kenneth C. and Orin Hargraves. 2007. SemEval-2007 task 06: Word-sense

disambiguation of prepositions. In Proceedings of the Fourth International Workshop on Semantic

Evaluations (SemEval-2007), pages 24–29, Prague, Czech Republic, June. Association for

Computational Linguistics.

Liu, Dong C. and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45(3).

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large

annotated corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–330, June.

Màrquez, Lluís, Xavier Carreras, Kenneth C. Litkowski, and Suzanne Stevenson. 2008. Semantic

role labeling: an introduction to the special issue. Computational Linguistics, 34(2):145–159, June.

Martins, André F. T., Mario A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and Eric P.

Xing. 2011a. An augmented Lagrangian approach to constrained MAP inference. In

Proceedings of the 28th International Conference on Machine Learning, pages 169–176, Bellevue,

Washington, USA, June. ACM.

73

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

Martins, André F. T., Noah A. Smith, Pedro M. Q. Aguiar, and Mario A. T. Figueiredo. 2011b.

Dual decomposition with many overlapping components. In Proceedings of the 2011 Conference

on Empirical Methods in Natural Language Processing, pages 238–249, Edinburgh, Scotland, UK,

July. Association for Computational Linguistics.

Martins, André F. T., Noah A. Smith, and Eric P. Xing. 2009. Concise integer linear programming

formulations for dependency parsing. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the Association of Computational Linguistics and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, pages 342–350, Suntec, Singapore, August.

Association for Computational Linguistics.

Martins, André F. T., Noah A. Smith, Eric P. Xing, Mario A. T. Figueiredo, and Pedro M. Q.

Aguiar. 2010. Turbo parsers: Dependency parsing by approximate variational inference. In

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages

34–44, Cambridge, MA, October. Association for Computational Linguistics.

Matsubayashi, Yuichiroh, Naoaki Okazaki, and Jun’ichi Tsujii. 2009. A comparative study on

generalization of semantic roles in FrameNet. In Proceedings of the Joint Conference of the 47th

Annual Meeting of the Association of Computational Linguistics and the 4th International Joint

Conference on Natural Language Processing of the AFNLP, pages 19–27, Suntec, Singapore,

August. Association for Computational Linguistics.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2005. Online large-margin training of

dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics, pages 91–98, Ann Arbor, Michigan, June. Association for

Computational Linguistics.

Meyers, Adam, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielinska, Brian

Young, and Ralph Grishman. 2004. The NomBank project: An interim report. In Proceedings of

74

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

the NAACL-HLT Workshop on Frontiers in Corpus Annotation, pages 24–31, Boston,

Massachusetts, USA, May. Association for Computational Linguistics.

Moschitti, Alessandro, Paul Morarescu, and Sanda M. Harabagiu. 2003. Open-domain

information extraction via automatic semantic labeling. In Ingrid Russell and Susan M. Haller,

editors, Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society

Conference, pages 397–401, St. Augustine, Florida, USA, May. AAAI Press.

Narayanan, Srini and Sanda Harabagiu. 2004. Question answering based on semantic structures.

In Proceedings of the 20th international conference on Computational Linguistics, Geneva,

Switzerland. Association for Computational Linguistics.

Padó, Sebastian and Katrin Erk. 2005. To cause or not to cause: cross-lingual semantic matching

for paraphrase modelling. In Proceedings of the Cross-Language Knowledge Induction Workshop,

Cluj-Napoca, Romania, July.

Pado, Sebastian and Mirella Lapata. 2005. Cross-linguistic projection of role-semantic

information. In Proceedings of Human Language Technology Conference and Conference on Empirical

Methods in Natural Language Processing, pages 859–866, Vancouver, British Columbia, Canada,

October. Association for Computational Linguistics.

Pennacchiotti, Marco, Diego De Cao, Roberto Basili, Danilo Croce, and Michael Roth. 2008.

Automatic induction of FrameNet lexical units. In Proceedings of the 2008 Conference on

Empirical Methods in Natural Language Processing, pages 457–465, Honolulu, Hawaii, October.

Association for Computational Linguistics.

Pradhan, Sameer S., Wayne H. Ward, Kadri Hacioglu, James H. Martin, and Dan Jurafsky. 2004.

Shallow semantic parsing using support vector machines. In Proceedings of the Human Language

Technologies Conference of the North American Chapter of the Association for Computational

Linguistics,, pages 233–240, Boston, Massachusetts, USA, May. Association for Computational

75

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

Linguistics.

Punyakanok, Vasin, Dan Roth, and Wen-tau Yih. 2008. The importance of syntactic parsing and

inference in semantic role labeling. Computational Linguistics, 34(2):257–287, June.

Punyakanok, Vasin, Dan Roth, Wen-tau Yih, and Dav Zimak. 2004. Semantic role labeling via

integer linear programming inference. In Proceedings of the 20th international conference on

Computational Linguistics, pages 1346–1352, Geneva, Switzerland. Association for

Computational Linguistics.

Ratnaparkhi, Adwait. 1996. A maximum entropy model for part-of-speech tagging. In

Proceedings of the 1996 Empirical Methods in Natural Language Processing, pages 133–142,

Copenhagen, Denmark, August. Association for Computational Linguistics.

Riedel, Sebastian and James Clarke. 2006. Incremental integer linear programming for

non-projective dependency parsing. In Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, pages 129–137, Sydney, Australia, July.

Roth, Dan and Wen-tau Yih. 2004. A linear programming formulation for global inference in

natural language tasks. In Hwee Tou Ng and Ellen Riloff, editors, Proceedings of the Eighth

Conference on Computational Natural Language Learning, pages 1–8, Boston, Massachusetts, USA,

May 6 - May 7. Association for Computational Linguistics.

Ruppenhofer, Josef, Michael Ellsworth, Miriam R. L. Petruck, Christopher R. Johnson, and Jan

Scheffczyk. 2006. FrameNet II: extended theory and practice.

Rush, Alexander M. and Michael Collins. 2011. Exact decoding of syntactic translation models

through Lagrangian relaxation. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pages 72–82, Portland, Oregon, USA,

June. Association for Computational Linguistics.

76

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

Rush, Alexander M, David Sontag, Michael Collins, and Tommi Jaakkola. 2010. On dual

decomposition and linear programming relaxations for natural language processing. In

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages

1–11, Cambridge, MA, October. Association for Computational Linguistics.

Schuler, Karin K. 2005. VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis,

University of Pennsylvania.

Sha, Fei and Fernando Pereira. 2003. Shallow parsing with conditional random fields. In

Proceedings of the Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics, pages 134–141, Edmonton, Alberta, Canada,

May–June.

Shen, Dan and Mirella Lapata. 2007. Using semantic roles to improve question answering. In

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, pages 12–21, Prague, Czech Republic, June.

Association for Computational Linguistics.

Shi, Lei and Rada Mihalcea. 2004. An algorithm for open text semantic parsing. In Proceedings of

Workshop on Robust Methods in Analysis of Natural Language Data, pages 59–67, Geneva,

Switzerland. Association for Computational Linguistics.

Shi, Lei and Rada Mihalcea. 2005. Putting pieces together: Combining FrameNet, VerbNet and

WordNet for robust semantic parsing. In Proceedings of the 6th International Conference on

Computational Linguistics and Intelligent Text Processing, pages 100–111, Mexico City, Mexico,

February. Springer.

Smith, David A. and Jason Eisner. 2008. Dependency parsing by belief propagation. In

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages

145–156, Honolulu, Hawaii, October. Association for Computational Linguistics.

77

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

Subramanya, Amarnag and Jeff Bilmes. 2008. Soft-supervised learning for text classification. In

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages

1090–1099, Honolulu, Hawaii, October. Association for Computational Linguistics.

Subramanya, Amarnag, Slav Petrov, and Fernando Pereira. 2010. Efficient graph-based

semi-supervised learning of structured tagging models. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, pages 167–176, Cambridge, MA, October.

Association for Computational Linguistics.

Surdeanu, Mihai, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003. Using

predicate-argument structures for information extraction. In Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics, pages 8–15, Sapporo, Japan. Association for

Computational Linguistics.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluís Màrquez, and Joakim Nivre. 2008.

The CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies. In

Proceedings of the Twelfth Conference on Computational Natural Language Learning, pages 159–177,

Manchester, England, August. Association for Computational Linguistics.

Szummer, Martin and Tommi Jaakkola. 2001. Partially labeled classification with Markov

random walks. In Advances in Neural Information Processing Systems 14, pages 945–952,

Vancouver, British Columbia, Canada, December. MIT Press.

Talukdar, Partha Pratim and Koby Crammer. 2009. New regularized algorithms for transductive

learning. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 442–457, Bled, Slovenia. Springer-Verlag.

Thompson, Cynthia A., Roger Levy, and Christopher D. Manning. 2003. A generative model for

semantic role labeling. In Proceedings of the European Conference on Machine Learning, pages

397–408, Cavtat-Dubrovnik, Croatia, September. Springer.

78

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Das et al. Frame-Semantic Parsing

Titov, Ivan and Alexandre Klementiev. 2012. A Bayesian approach to unsupervised semantic role

induction. In Proceedings of the 13th Conference of the European Chapter of the Association for

Computational Linguistics, pages 12–22, Avignon, France, April. Association for Computational

Linguistics.

Toutanova, Kristina, Aria Haghighi, and Christopher Manning. 2005. Joint learning improves

semantic role labeling. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics, pages 589–596, Ann Arbor, Michigan, June. Association for

Computational Linguistics.

Turian, Joseph, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: a simple and

general method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the

Association for Computational Linguistics, pages 384–394, Uppsala, Sweden, July. Association for

Computational Linguistics.

Weston, Jason, Frédéric Ratle, and Ronan Collobert. 2008. Deep learning via semi-supervised

embedding. In Proceedings of the 25th international conference on Machine learning, pages

1168–1175, Helsinki, Finland. ACM.

Xue, Nianwen and Martha Palmer. 2004. Calibrating features for semantic role labeling. In

Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages

88–94, Barcelona, Spain, July. Association for Computational Linguistics.

Yi, Szu-ting, Edward Loper, and Martha Palmer. 2007. Can semantic roles generalize across

genres? In Proceedings of the Human Language Technologies Conference of the North American

Chapter of the Association for Computational Linguistics, pages 548–555, Rochester, New York,

April. Association for Computational Linguistics.

Zhu, Xiaojin. 2008. Semi-supervised learning literature survey. Online publication, July.

79

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00163 
© Association for Computational Linguistics 



Computational Linguistics Volume 1, Number 1

Zhu, Xiaojin, Zoubin Ghahramani, and John Lafferty. 2003. Semi-supervised learning using

Gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on

Machine Learning, pages 912–919, Washington, D.C., USA, August. AAAI Press.

A. Target Identification Heuristics from J&N’07

We describe here the filtering rules that Johansson and Nugues (2007) used for identify-

ing frame evoking targets in their SemEval 2007 shared task paper. They built a filtering

component based on heuristics that removed words that appear in certain contexts, and

kept the remaining ones.45 These are:

r have was retained only if had an object,

r be was retained only if it was preceded by there,

r will was removed in its modal sense,

r of course and in particular were removed,

r the prepositions above, against, at, below, beside, by, in, on, over, and under

were removed unless their head was marked as locative,

r after and before were removed unless their head was marked as temporal,

r into, to and through were removed unless their head was marked as

direction,

r as, for, so and with were always removed,

r since the only sense of the word of was the frame PARTITIVE, it was

removed unless it was preceded by only, member, one, most, many, some, few,

45 Although not explicitly mentioned in the paper, we believe that these rules were applied on a white list of
potential targets seen in FrameNet and the SemEval 2007 training data.
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part, majority, minority, proportion, half, third, quarter, all, or none, or it was

followed by all, group, them or us,

r all targets marked as support verbs for some other target were removed.

Note that J&N’07 used a syntactic parser that provided dependency labels correspond-

ing to locative, temporal and directional arguments, which our syntactic parser of choice

(the MST parser) does not provide.

B. Solving ATMOSTONE subproblems in AD3

The ATMOSTONE subproblem can be transformed into that of projecting a point

(a1, . . . , ak) onto the set

Sm =
{
zm ∈ [0, 1]|i(m)| ∣∣ ∑|i(m)|

j=1 zm,j ≤ 1
}
.

This projection can be computed as follows:

1. Clip each aj into the interval [0, 1] (i.e., set a′j = min{max{aj , 0}, 1}). If the result

satisfies
∑k

j=1 a
′
j ≤ 1, then return (a′1, . . . , a

′
k).

2. Otherwise project (a1, . . . , ak) onto the probability simplex:

{
zm ∈ [0, 1]|i(m)| ∣∣ ∑|i(m)|

j=1 zm,j = 1
}
.

This is precisely the XOR subproblem and can be solved in time

O(|i(m)| log |i(m)|).

The proof of this procedure’s correctness follows from the proof in Appendix B of

Martins et al. (2011b).
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