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ABSTRACT
The k-means clustering algorithm has a long history and a
proven practical performance, however it does not scale to
clustering millions of data points into thousands of clusters
in high dimensional spaces. The main computational bottle-
neck is the need to recompute the nearest centroid for every
data point at every iteration, a prohibitive cost when the
number of clusters is large. In this paper we show how to
reduce the cost of the k-means algorithm by large factors by
adapting ranked retrieval techniques. Using a combination
of heuristics, on two real life data sets the wall clock time
per iteration is reduced from 445 minutes to less than 4, and
from 705 minutes to 1.4, while the clustering quality remains
within 0.5% of the k-means quality.

The key insight is to invert the process of point-to-centroid
assignment by creating an inverted index over all the points
and then using the current centroids as queries to this in-
dex to decide on cluster membership. In other words, rather
than each iteration consisting of “points picking centroids”,
each iteration now consists of “centroids picking points”.
This is much more efficient, but comes at the cost of leaving
some points unassigned to any centroid. We show exper-
imentally that the number of such points is low and thus
they can be separately assigned once the final centroids are
decided. To speed up the computation we sparsify the cen-
troids by pruning low weight features. Finally, to further re-
duce the running time and the number of unassigned points,
we propose a variant of the WAND algorithm that uses the
results of the intermediate results of nearest neighbor com-
putations to improve performance.
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1. INTRODUCTION
The web abounds in high-dimensional “big” data: for ex-

ample, collections such as web pages, web users, search clicks,
and on-line advertising transactions. A common way to mit-
igate Bellman’s infamous “curse of dimensionality” [9] is to
cluster these items: for example, classifying users accord-
ing to their interests and demographics. Among popular
approaches to clustering, the classic k-means algorithm re-
mains a standard tool of practitioners despite its poor the-
oretical convergence properties [4, 34]. However, when clus-
tering n data points into k clusters, each iteration of the
k-means method requires O(kn) distance calculations, mak-
ing it untenable for clustering scenarios requiring a partition
of millions of points each with hundreds of non-null coordi-
nates into thousands of clusters. While parallel program-
ming techniques alleviate this cost by distributing the com-
putation across many machines, with web scaled datasets,
even massively parallelized implementation based on Hadoop
(e.g. [16]) might take thousands of CPU-hours to converge
on current hardware.

Approaches optimizing the k-means running time gener-
ally fall into two categories: Some assume that the data is
contained in a low dimensional space and use kd-trees and
other geometric data structures to reduce the number of
distance computations [21, 28, 29]; Others (e.g. [19, 30])
assume that the number of points per cluster is large, and
subsample the data to deal with scale. Unfortunately when
both the data dimensionality is high and the average num-
ber of points per cluster is small, both of the approaches
above fail to provide significant speed ups. This is precisely
the situation we address in this paper: we show how to re-
duce the cost of the k-means algorithm by large factors by
adapting ranked retrieval techniques. Using a combination
of heuristics, on two real-world data sets the wall clock time
per iteration is reduced from 445 minutes to less than 4, and
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from 705 minutes to 1.4, without affecting quality or conver-
gence speed—after 13 phases the algorithm has converged to
within 0.5% of the k-means quality with the same number
of phases.

To reduce the cost of the k-means algorithm we use nearest
neighbor data structures, optimized for retrieving the top `
closest points1 to a query point. Specifically, we use inverted
indexes and a novel variant of the WAND ranked retrieval
algorithm [12] to speed up the nearest centroid computations
at the core of the k-means method.

The k-means algorithm uses an iterative refinement tech-
nique where each iteration consists of two steps: the as-
signment step where the points are assigned to the closest
centroid, and the update step where the centroids are re-
calculated based on the last assignment. The latter phase
can be performed in a linear scan over the assigned points
and is the less expensive of the two. Thus, we focus on the
use of indexing to speed up point assignment. But what
should we index? The natural choice is to index the cen-
troids, and then run a query for each data point, retrieving
the closest centroid. This approach would exactly imple-
ment the k-means algorithm, but since the centroids change
in each iteration, this method requires both rebuilding the
index and evaluating n queries at each iteration. In addition,
as the centroids have many non-zero elements, they corre-
spond to dense documents for which top-` nearest neighbor
retrieval algorithms are not particularly efficient.

In this work we propose the converse approach. Instead
of indexing the centroids and using the points as queries, we
propose indexing the points and using centroids as queries.
This approach has several benefits. First, we do not need
to rebuild the index between iterations since the points are
stationary and only the centroids move from one iteration
to the next. Second, the number of queries per iteration is
significantly smaller (k rather than n) since we only pose
one query per centroid.

By retrieving only the top ` points closest to each cen-
troid, we run the risk of leaving some points unassigned to
any centroid. We show experimentally that the number of
such points is low and thus they can be separately assigned
once the final centroids are decided. In any case, these points
are precisely the outliers in the dataset (they are far away
from all known cluster centers), thus the setting of the pa-
rameter ` allows a tradeoff between the clustering speed and
the acceptable number of outliers. Finally, in many applica-
tions, such as web search and ad selection, the application
per se requires indexing the items of interest, thus large scale
clustering of these items can be done without requiring sig-
nificant additional infrastructure.

To speed up the computation we begin by sparsifying the
centroids by pruning low weight features: we show experi-
mentally that this pruning brings significant improvements
in efficiency while not changing the clustering performance
at all. We then delve into the details of the WAND algo-
rithm [12], and modify it to remember all of the points that
were ranked in the top ` list during the retrieval. Again,
our experimental evaluation over two datasets from realistic

1we use the term top-` instead of top-k to avoid confusion
between the number of retrieved points and the number of
clusters in k-means clustering.

practical scenarios shows that the proposed approaches are
efficient and scale well with the number of clusters k, while
having virtually no impact on the quality of the results. In-
deed, in some cases, the new approaches produce clusters of
slightly better quality than the standard k-means algorithm
possibly by reducing the confusing effect of outliers.

The techniques presented in this paper can be used in a
single-machine setting, or at individual nodes in partitioned
implementations. In both cases, the proposed method re-
duces the processing time and resource use by one to two
orders of magnitude, while resulting in a negligible loss in
clustering quality.

In summary the contributions of this paper are as follows:

• We describe an implementation of the k-means algo-
rithm that is over 100 times faster than the standard
implementation on realistic datasets by using an in-
verted index over all the points and then using the
current centroids as queries into this index to decide
on cluster membership.

• We show experimentally that selectively re-assigning
in each iteration only the subset of the points that are
“close enough” to the current centroids and sparsifying
the centroids does not materially change the quality of
the final clustering.

• For retrieval in the index above, we modify the WAND
algorithm for similarity search to remember the runner-
ups in the current iteration and the radius of each
cluster in the previous one, thus making significant
efficiency gains.

2. BACKGROUND
We follow the standard vector space model. Let T =
{t1, t2, . . . , tm} be a collection of m terms, and D be a col-
lection of n documents over the terms, D = {d1, d2, . . . , dn}.
We treat each document d ∈ D as a vector lying in m-
dimensional term space, and use d(i) to denote the i-th co-
ordinate. To judge the similarity between a pair of docu-
ments, we use the cosine similarity metric: for two docu-
ments d, d′ ∈ D:

cossim(d, d′) =
d ◦ d′

‖d‖‖d′‖ ,

where ◦ denotes the vector dot product, and ‖·‖ the vector’s
length. Note that since the cossim measure is a function of
the angle between the vectors d and d′, it is invariant under
scaling of its inputs. For any constants α, β > 0:

cossim(d, d′) = cossim(αd, βd′).

Thus we can assume without loss of generality that all of
the documents d ∈ D are normalized to have unit length,
‖d‖ = 1.

Recall that, the cossim of any pair of documents is always
between 0 and 1, and f(d, d′) = 1 − cossim(d, d′) defines a
metric: that is, it is non-negative, symmetric and satisfies
the triangle inequality.

Our goal is to find a partition of the documents in D
into k non-overlapping clusters, C = {C1, C2, . . . , Ck} each
with a representative point ci that maximizes the average
cosine similarity between a document and its closest (under
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f) representative. We will refer to the points ci as centers
of individual clusters. Formally, we want to find a partition
C which maximizes:

ψ(D, C) =
∑
d∈D

max
c∈C

cossim(c, d).

2.1 The k-means algorithm
The k-means algorithm is a widely used clustering method

[24]. In its usual formulation, the algorithm is given a point
set X ⊂ Rd, and a desired number of clusters k. It returns
a set C of |C| = k cluster centers {c1, . . . , ck} that forms a
local minimum for a potential function

φ(X, C) =
∑
x∈X

min
c∈C
‖x− c‖2.

In other words, it attempts to find a set of centers that
minimizes the sum of squared distances between each point
and its nearest cluster center.

The algorithm is a local search method that minimizes φ
by repeatedly (1) assigning each point to its nearest cluster
center and (2) recomputing the best cluster centers given
the point assignment.

K-means for Cosine Similarity
We adapt the k-means algorithm to maximize the aver-
age cosine similarity, ψ. The assignment phase remains
identical—we assign each point to the cluster center with
the maximal cosine similarity. Next we show how to com-
pute the optimal center given a set of points. To preserve
the structure of the algorithm, we show below that selecting
the (normalized) mean of the points as the center, maximizes
the average similarity of a cluster. A similar observation has
previously been made by Strehl et al. [32].

Lemma 1. For a set of n vectors D = {d1, d2, . . . , dn},
the unit length vector c =

∑
i di

‖
∑

i di‖
maximizes∑

d∈D

cossim(c, d).

Proof. We want to find a unit length vector c that max-
imizes:∑

d∈D

cossim(c, d) =
∑
d∈D

c ◦ d
‖c‖‖d‖ =

∑
d∈D

c ◦ d = c ◦
∑
d∈D

d

The vector c that maximizes the dot product with vector
D̄ =

∑
d∈D d must be parallel to D̄, setting

c =
1

‖D̄‖
∑
i

di

ensures that it is parallel to D̄ and is of unit length.

Given the lemma, we can conclude that the k-means method
will converge to a local optimum.

Proposition 2. Given a set of documents D = {d1, . . . , dn},
the k-means method which assigns each document to its most
similar cluster, and recomputes the cluster center as the
mean of the documents assigned to it converges to a local
maximum of the objective function:

ψ(D, C) =
∑
d∈D

max
c∈C

cossim(d, ci)

.

2.2 Ranked retrieval
Inverted indexes have become a de facto standard for eval-

uation of similarity queries across many different domains
due to their very low latency and good scalability proper-
ties [35]. In an inverted index, each term t ∈ T has an
associated postings list which contains all of the documents
d ∈ D that contain t (those with d ∩ t 6= ∅). For each
such document d, the list contains an entry called a post-
ing. A posting is composed of the document id (DID) of
d, and other relevant information necessary to evaluate the
similarity of d to the query. In this paper we denote that
additional information with d(t), and assume that it repre-
sents a weight for the particular term in the document. Such
weights can be derived using variety of IR models [6] and in
this work we chose to use the tf-idf weighting framework,
but other methods are equally well applicable with our ap-
proach. The postings in each list are sorted in increasing
order of DID. Often, B-trees or skip lists are used to index
the postings lists, which facilitates searching for a particular
DID within each list [35].

Inverted indexes are optimized for retrieving most simi-
lar documents for a query under an additive scoring model.
Formally, a query q is a subset of terms, q ⊆ T , each with
a given weight q(t). In this manner, a query can be seen as
another document. Given a similarity function g, the score
of a document for a query, is

∑
t∈d∩q g(q(t), d(t)). When

working with cosine similarity, the score is q ◦ d, with both
q and d normalized to be unit length.

Broder et al. [12] describe WAND, a method that allows
for fast retrieval of the top-` ranked documents for a query.
We choose WAND due to its ability to scale well with the
number of features in the query, as reported in [15]. Ad-
ditionally, this is a method where we can use information
from previous rounds to further improve the retrieval time.
A major difference in our setting is the fact that queries,
representing centroids in k-means, are dense. We take spe-
cial measures to sparsity the vectors, nevertheless, in our
work queries are still substantially longer than the average
search query of approximately 3 words.

The main intuition behind the WAND algorithm (pre-
sented in Algorithm 1) is to use an upper bound of the
similarity contribution of each term to eliminate documents
that are too dissimilar from the query to make it into the
top-` list. WAND works by keeping one pointer called a
cursor for each of the query terms (dimensions) that points
at a document in the corresponding posting list. During the
evaluation, the algorithm repeatedly choses a cursor to be
moved, and advances this cursor as far as possible in order
to avoid examining unnecessary documents. To find the op-
timal cursor and improve the efficiency, the cursors are kept
sorted by the DID they point to.

At initialization time, for each term t ∈ T , WAND first
fetches the upper bound UBt of the document weights across
all documents in the posting list of t. UBt is query indepen-
dent and is computed and stored during the index building
phase at no extra cost. Next, all cursors are initialized by
pointing at the first posting in their corresponding posting
lists (the one with the minimum DID). The outer loop of the
algorithm repeatedly retrieves the next (in order of DID)
document that qualifies for the top-` list.
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During the evaluation, the algorithm maintains a heap of
highest scoring top-` documents among those examined so
far. The minimum score in this heap, or the score of the
current `-th best result, is denoted by θ. The key property
of WAND is that it does not fully score every document,
but skips the ones that have no chance in making it in the
top-` list. Intuitively, if we can determine that the score of
a an unexamined document cannot be higher than θ, then
we can forego any further evaluation of this document and
skip to the next DID that has a chance at success. The first
document that has the property of having upper bound of
its score higher than θ is known as the pivot document. We
present the pivot finding subroutine as Algorithm 2.

The subroutine relies on two helper functions. The first,
findPivotTerm, returns the earliest term, t∗, in the list, such
that the sum of the score upper bounds, UBt for all terms
t preceding t∗ is at least θ. Given the pivot document, we
then check whether the cursors in the first and t∗-th position
point to the same document. Since the cursors are sorted
by DID, if the two cursors point to different documents, the
one pointed to by the first cursor cannot possibly make it
to the top-` list. and we advance the cursors (Lines 15-18).
The function PickCursor selects a cursor to advance to the
first document with DID at least d∗ (Line 17).

On the other hand, If both the first cursor and the cursor
at t∗ point to a posting with the same DID, the similarity
of that document is fully evaluated (Line 12).

In the description we have simplified the algorithm by not
dealing with some of the stopping conditions and end of
postings list issues. The WAND algorithm is fully described
in [12]. We have also described a basic version of the WAND
algorithm for simplicity: several modifications are possible
to improve the efficiency of the processing both for on-disk
and in-memory scenarios [15].

Algorithm 1 WAND

1: Input: Centroid query C
Index I

2: Output: Heap H with the top ` points most similar
to C

3: for t ∈ dimensions(C) do
4: fetch UBt

5: Cursors[t].DID = first DID in posting list(t);
6: end for
7: Initialize empty heap H of size `;
8: while true do
9: sort Cursors by Cursors[t].DID (ascending)

10: θ = minSimilarity(H)
11: (candidate, sim) = FindCandidate(Cursors, θ);
12: if candidate == LastDID then
13: break;
14: end if
15: replaceMinElement(H, candidate, sim);
16: end while
17: return H;

3. ALGORITHMS
In this Section we describe our main approach of using

an inverted index to speed up k-means computations. As

Algorithm 2 FindCandidate

1: Input: Query: q
Cursors[1..|q|]: array of cursors over the posting lists
used in the query,
Threshold: θ

2: Output: Next feasible document, its similarity
3: loop
4: {Find pivot cursor}
5: pivotTerm ← findPivotTerm(Cursors,θ)
6: if pivotTerm == Null then
7: return NoMoreDocs
8: end if
9: pivotDoc ← Cursors[pivotTerm].DID

10: if Cursors[0].DID == pivotDoc then
11: {Evaluate pivot document}
12: if cossim(q,pivotDoc) ≥ θ then
13: return pivotDoc, cossim(q, pivotDoc)
14: end if
15: else
16: {Advance Cursors}
17: dim ← PickCursor(Cursors[0..pivotTerm])
18: Cursors[dim].advance(pivotDoc)
19: end if
20: end loop

we mentioned previously, the main bottleneck in getting k-

means to work on millions of points and thousands of clusters
in multi-thousand dimensional spaces is the fact that at ev-
ery iteration we must find the nearest cluster center to every
one of the data points. The naive implementation requires
O(nkd) time per round. Previous work has focused on re-
ducing this complexity either by sampling ([19, 30]), which
does not work well when the number of points per cluster
is relatively small, or by employing kd-trees and other data
structures ([21, 28, 29]) which are only efficient in low di-
mensional spaces.

A simple approach to reduce the amount of time to com-
pute the nearest cluster center for every point would be to
build a nearest neighbor data structure on the cluster cen-
ters, and then issue a query for each data point to find the
nearest neighbor. Unfortunately since the cluster centers
move at every iteration this would force us to rebuild the
index at every iteration, the cost of which would outweigh
any potential savings. Instead we perform the converse. We
build a nearest neighbor data structure on the points and
then use the current centroids as queries to find the points
closest to the centroids. Since the points do not move from
one iteration to the next, we only have to build the index
once, thereby amortizing the cost across the iterations of k-
means. Furthermore, often, inverted indexes of the points
are build for other applications and can be reused for the
computation of the clusters, using the algorithms described
in this section.

This approach has an additional benefit: it automatically
detects outliers. Intuitively, the outlier points are precisely
those points that are far away from all of the centers, and
with this method these are exactly the points that are never
returned by the nearest neighbor data structure. It is well
known [18] that outliers present a problem for k-means and
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can skew the position of the final clusters. In our algorithm,
the outliers are never be retrieved as part of the top-` list
for any of the centroids, therefore they do not impact the
computation, rather we assign them to clusters in a post
processing step. The value of the parameter ` allows us to
control the rank (number of closer points) that classifies a
point into an outlier.

3.1 WAND Based k-means
We present a progression of algorithms that incorporate

the nearest neighbor index into k-means.

WAND for point assignment
The first algorithm we explore uses standard WAND to per-
form the point assignment as described in Section 2. Instead
of the nested loop computing the distances for all pairs of
centroids and points, as in regular k-means, we invoke the
WAND algorithm to find the top-` closest points to each cen-
troid. The WAND operator returns a set of ` points along
with their similarity to the cluster.

Although these are the most similar ` documents to the
center, a single document d may be in the top-` lists for a
number of different centroids. Thus we have to maintain
the id of the centroid that is closest to d. We proceed by
using an assignment table A which is a map with the docu-
ment id, DID, as the key and whose payload contains the id
of the most similar center and the corresponding similarity.
Each point returned by the WAND operator is then checked
against this table. If it is already in the table with a similar-
ity larger than the one returned for the current cluster, the
result is ignored. Otherwise it is added to the table with the
new similarity, potentially replacing an existing entry asso-
ciated with a previously evaluated centroid. The assignment
table is reset at the beginning of each iteration.

Using the assignment table within WAND
Instead of using the assignment table A to post-process
the results returned by WAND, we may instead modify the
WAND algorithm to use the table A directly. The corre-
sponding similarity value in A then serves as a lower bound
on the similarity a point must achieve in order to be returned
by WAND. TWe omit the full specification of this algorithm
for brevity.

Warm start of thresholds
The WAND algorithm works by comparing the partial score
of documents to the score of the `-th best result. In the
naive implementation as in Algorithm 2, this threshold, θ is
initialized to 0 at every iteration. This has the effect that
the first ` documents are always fully evaluated, since their
similarity is guaranteed to be at least 0.

We can improve the performance by keeping track of inter-
mediate information across the k-means iterations. Specifi-
cally, for each cluster ci we remember the threshold, θti , used
by WAND when executed with cti as the query at time t (this
is identical to the similarity to the `-th closest point consid-
ered by WAND). Let σt

i denote the similarity between the
center of cluster i at time t and that at time t−1. Then if we
set the threshold in the following iteration to θt+1

i = θti−σi
t,

we can guarantee that all of the points returned by WAND

in iteration t would also qualify for iteration t+1. (A similar
approach was used by Elkin [14] to reduce the number of
distance computations performed by k-means.) This follows
by the fact that 1 − cossim forms a metric, thus for any
point d:

cossim(d, ct+1
i ) ≥ cossim(d, cti)− cossim(ct+1

i , cti)

≥ θti − σt
i = θt+1

i

In practice, we find that setting θt+1
i = θit works equally well

and is more efficient, since we can forgo the computation of
σt
i .

Expanded use of the assignment table
By pushing the assignment table into the WAND subrou-
tine, the caller only has access to the final Di documents re-
turned. However, during the course of computing the top-`
documents most similar to ci, the full similarity is computed
for many more documents. There are two reasons why this
similarity may not be preserved. First, a document may be
reassigned to an even closer center in the assignment table,
A. However, it could also be the case that a document d lies
in the Voronoi cell of a particular centroid ci (that is it is
closer to ci than to any other centroid), but it is not one of
the top-` documents closest documents. If such a document
d has a low DID then it will be fully scored, and temporar-
ily placed on the heap in WAND, only to be replaced by an
even closer document later on.

As we show below, this situation is far from rare, and
remembering the assignment and similarity information for
such documents allows the algorithm designer to set a lower
threshold ` to achieve the same effect. Therefore it pays
to remember this information and incorporate it when com-
puting the centroids. The final version of the wand-k-means

algorithm, shown in Algorithm 3

3.2 Analysis
The key idea behind the algorithms presented thus far is to

consider only the `-closest points to the cluster center when
executing the assignment phase of k-means. To find the `
closest points, the WAND algorithm gains added efficiency
by giving up on the distance computation as soon as one
can safely conclude that the point is further away than the
desired threshold. Nevertheless, during the typical course of
its operation, the exact distance is computed for more than
` points. We formally analyze the number of such points
and show it to be significantly higher than `.

Consider a point set D = {d1, d2, . . . , dn}, a center c and
let the elements of D be examined in a random order. The
question we consider is how many elements of D are ever
included in the top-` list. Call such an element d ∈ D fully-
examined.

Lemma 3. If D is examined in a random order, the ex-
pected number of fully examined points is `(1+log n

`
)+o( `

n
).

Proof. A point di ∈ D is fully examined if and only if it
is one of the `-closest points to c among those in {d1, d2, . . . , di}.
Let Yi be an indicator variable which is set to 1 if the point
in position i is fully examined and 0 otherwise and let pi de-
note the probability that yi is set to 1. Then the expected
number of fully examined points is

∑
i E[Yi] =

∑
i pi.
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Algorithm 3 wand-k-means

1: wand-k-means:
2: Input: D = Set of documents, k
3: Output: Centroids, C = {c1, . . . , ck}
4: φ =∞
5: C ← InitializeCentroids
6: θ[1..k] ← 0
7: repeat
8: φ∗ ← φ, φ← 0, A← ∅
9: for all ci ∈ C do {Find Nearby Documents}

10: 〈A, θi〉 ← WAND(ci, i, A, `, θi)
11: end for
12: for 1 ≤ i ≤ k do {Compute Assignment}
13: Ci ← {d ∈ D : A[d].clust = i}
14: end for
15: for 1 ≤ i ≤ k do {Recompute Centers}
16: ci ← 1

|Ci|
∑

d∈Ci
d

17: for all d ∈ Ci do {Update Cost Function}
18: φ← φ+A[d].sim
19: end for
20: end for
21: until φ = φ∗

22: return C = {c1, . . . , ck}

1: WAND
2: Input: query q, cluster id i, table A, `, threshold θi
3: Output: updated table A
4: for all i ∈ q do
5: Cursors[i].init
6: end for
7: H ← Heap of size `
8: while true do
9: θi ← max(θi,min(H))

10: 〈d, sim〉 ←WAND-Next(Cursors, θi)
11: if d == null then
12: return A
13: end if
14: if (A[d] == null or A[d].sim < sim) then
15: A[d].sim← sim, A[d].clust← i
16: H.add(sim)
17: end if
18: end while

Since the first ` points are always examined, for 1 ≤ i ≤ `
we have pi = 1. Now consider a point in position j > `, it
will be fully examined only if it is one of the ` closest points
among those in positions 1, 2, . . . , j. Since we assumed that
the elements arrived in random order, pj = `

j
.

Therefore,

n∑
i=1

pi = `+

n∑
i=`+1

pi = `+

n∑
i=`+1

`

i
= `(1 +Hn −H`)

= `(1 + logn− log `+ o(
1

n
))

= `(1 + log
n

`
) + o(

`

n
)

In practice the order of the documents in D is not random,
but we can use the intuition given by the Lemma to show
that even when looking for the ` closest points, the algorithm
will compute the distances to far more than ` points, which
in turn allows us to use WAND with a smaller value of `,
improving its performance.

3.2.1 Convergence
The original k-means algorithm increases the overall sim-

ilarity in every step—both when assigning each point to
its most similar center, and when recomputing the centers.
Therefore, it is well known that it will converge to a locally
optimum solution, although such convergence may take an
exponential number of steps [34]. Since the wand-k-means

algorithm potentially examines only the closest ` points in
each iteration, the same analysis no longer holds. To ensure
convergence, we compute the cost of assigning all of the
points every 50 iterations, and stop if no progress is made
on this objective. As we will show, in practice the algorithm
keeps all of the convergence properties of k-means: it con-
verges to a locally optimum solution after just a handful of
iteration, see Section 4 for more details.

3.3 Sparsification
The majority of time in any implementation of the k-

means algorithm is spend computing the cosine similarity
between two points. As we saw in the previous section, we
can leverage the infrastructure initially designed for nearest
neighbor retrieval to improve the speed of k-means. The
inverted index data structure that we use for nearest neigh-
bor retrieval is especially efficient in the case that the query
itself is sparse, i.e. contains few non-zero entries.

In the applications we consider, the points (or documents)
lie in a very high dimensional space: for example, the datasets
in our experiments consist of 26 million and 7 million fea-
tures respectively. Although an individual document typi-
cally has a small number of features (we find the average
number of features per document to be around 100), the
number of features in the cluster center ci tends to be very
large, since the cluster center almost surely has a non-zero
value for every feature present in the individual documents.
As an additional optimization, we consider sparsifying each
cluster center after computing it, effectively only keeping the
top p features with the highest absolute value. A similar
performance improvement was previously suggested in [30],
the combination of sparse clusters with inverted indexing
further improves the performance gained by this approach.

4. EXPERIMENTAL EVALUATION
In this Section we present the results of the empirical eval-

uation of the algorithms on two real-world datasets. We be-
gin by describing the datasets, and then evaluate the effect
of each of the parameters.

We use two datasets from a real world textual advertising
system. In Dataset 1, each point (item) represents a textual
ad (encompassing both sponsored search and content match)
from a production version of a large internet search engine in
2008. The point features are extracted from the combination
of the ad creative (the body, title, display url) and the list
of keywords that the advertisers have associated with the
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ad. Clustering of similar ads is used in a variety of textual
advertising tasks, for example to predict the clickthrough
rate of previously unseen ads. Dataset 2 is composed of
web search queries that are expanded with features of the
web search results returned by a search engine. It is well
known that the brevity of the queries poses a challenge in
query analysis and it is beneficial to expand them. Such
an approach has been shown to work well for classification
[11]. The queries in Dataset 2 were chosen by a stratified
sampling of web queries by volume. The main statistics of
the two datasets are provided in Table 1.

Dataset 1 Dataset 2

Number of Documents 974,738 933,761
Number of Features 26,013,163 7,126,669
Average Features per Document 95.6 98.9

Table 1: Dataset statistics.

4.0.1 Initialization
There are two initialization tasks that must be performed

before running the wand-k-means algorithm, building the in-
dex and selecting the initial centers. Building the index took
approximately 54 minutes on both of the datasets above.
In order to make for a fair comparison between methods,
we computed an initial seed set for both datasets and then
used the same initial seeds in all of the algorithms and base-
lines. We used k-means++ [5] as the initialization method,
as it has been proven to perform significantly better than
a simple random assignment both in theory and in prac-
tice. We chose to cluster the data into k = 1000 clusters for
the majority of the experiments. We report on scalability
experiments separately in Section 4.4.

4.1 Number of documents retrieved
The overall results are shown in Table 2, where we eval-

uate all the average similarity, ψ for all of the methods at
iteration 13. The average similarity is computed after as-
signing all of the documents to their nearest center. As we
can see, decreasing ` has a negligible effect on the final clus-
tering similarity, but tremendously speeds up the iteration
time. The effect of using all of the documents fully exam-
ined by WAND is apparent as well, even the setting of ` = 1
performs very well, owning to the fact that many more doc-
uments are examined during the WAND iteration.

In addition, smaller values of ` allow wand-k-means to
converge to a slightly better optimum than the vanilla k-

means method. We conjecture that this is due to the fact
that outliers are automatically detected and ignored during
the execution of the algorithm (since they are not part of
the top ` elements).

By changing the value of ` we do not affect the rate of
convergence to the final solution. In Figure 1(a) we plot the
average similarity as a function of the number of iterations.
Here, we only compute the similarity for those documents
that are assigned to some cluster at each iteration, but as we
will see later (Section 4.2) the total number of unassigned
documents is rather small. The rate of convergence to a
solution does not change as a function of `, and examining
fewer points has no detrimental effects on the quality of the
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Figure 3: The number of unassigned documents in

Dataset 1 as a function of the number of iterations for

different values of `.

clustering. In Figure 1(b) we plot the average time per itera-
tion. It is clear that by reducing the value of ` we reduce the
per iteration running time of k-means more than five-fold.

4.2 Outliers
We further explore the trade-off between the setting of the

parameter ` and the number of documents marked as unas-
signed by the algorithm. Recall, the unassigned documents
are those that do not appear in the top-` list any cluster
center during the execution of WAND. We plot the num-
ber of unassigned documents as a function of the iteration
in Figure 3. There are two interesting observations. First,
as expected, reducing ` allows wand-k-means to label more
points as outliers, and the algorithm does take advantage of
this new freedom. Moreover, the set of outliers remains very
small, even the 6,500 outliers at ` = 1, represent less than
1% of the overall dataset.

4.3 Sparsification
In this section we investigate the effect of the sparsifi-

cation parameter p on the algorithm’s performance. We
present the overall results, showing the average similarity
of all documents at the end of iteration 13 in Table 3. Note
that, while generally decreasing p slowly decreases the qual-
ity of the clustering, high values of p perform much better
than having no sparsification at all. Again, we conjecture
that this is because sparsification allows the algorithm to
focus its performance on the critical features and ignore the
contributions of outliers to the centroids.

The effect of p on the running time is even larger than that
obtained by restricting `. By insisting that the centroid have
at most 500 non-zero features reduces the running time by a
factor of 7 for dataset 1, and over a factor of 60 for dataset
2. The performance increase is much bigger for dataset 2,
because the average similarity is low, and thus WAND is less
effective at pruning out far away documents.

To study the effect of sparsification on convergence, we
again plot the per iteration quality and running time in Fig-
ure 2(a) and 2(b) respectively. (Here too we only compute
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System ` Dataset 1 Similarity Dataset 1 Time Dataset 2 Similarity Dataset 2 Time

k-means — 0.7804 445.05 0.2856 705.21

wand-k-means 100 0.7810 83.54 0.2858 324.78
wand-k-means 10 0.7811 75.88 0.2856 243.9
wand-k-means 1 0.7813 61.17 0.2709 100.84

Table 2: The average point to centroid similarity at iteration 13 and average iteration time (in minutes) as
a function of `
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Figure 1: Evaluation of wand-k-means on Data 1 as function of different values of `: (a) The average point to
centroid similarity at each iteration (b) The running time per iteration.
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Figure 2: Evaluation of wand-k-means on Dataset 1 as a function of different values of p: (a) The average point to

centroid similarity at each iteration (b) The running time per iteration. Note that we de not display the running time

of k-means in part (b) since it is over 50 times slower.

the similarity for those documents that are assigned to some
cluster at each iteration.) Note that we removed the run-
ning time of k-means from Figure 2(b) since it is almost two
orders of magnitude worse than all of the other methods.

4.4 Number of Clusters
Next we investigate the performance of the algorithm as

we increase the number of clusters, k beyond to 3,000 and
6,000.
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System p ` Dataset 1 Similarity Dataset 1 Time ` Dataset 2 Similarity Dataset 2 Time

k-means — — 0.7804 445.05 — 0.2858 705.21
wand-k-means — 1 0.7813 61.17 10 0.2856 243.91

wand-k-means 500 1 0.7817 8.83 10 0.2704 4.00
wand-k-means 200 1 0.7814 6.18 10 0.2855 2.97
wand-k-means 100 1 0.7814 4.72 10 0.2853 1.94
wand-k-means 50 1 0.7803 3.90 10 0.2844 1.39

Table 3: Average point to centroid similarity and iteration time (minutes) at iteration 13 as a function of p .

We observe the same qualitative behavior: the average
similarity of wand-k-means is indistinguishable from k-means,
while the running time is faster by an order of magnitude.

5. RELATED WORK
Clustering. The k-means clustering algorithm remains

a very popular method of clustering over 50 years after its
initial introduction by Lloyd [24]. Its popularity is partly
due to the simplicity of the algorithm and its effectiveness
in practice. Although it can take an exponential number of
steps to converge to a local optimum [34], in all practical sit-
uations it converges after 20-50 iterations (a fact confirmed
by the experiments in Section 4). The latter has been par-
tially explained using smoothed analysis [3, 5] to show that
worst case instances are unlikely to happen.

Although simple, the algorithm has a running time of
O(nkd) per iteration, which can become large as either the
number of points, clusters, or the dimensionality of the dataset
increases. The running time is dominated by the computa-
tion of the nearest cluster center to every point, a process
taking O(kd) time per point. Previous work, [14, 20] used
the fact that both points and clusters lie in a metric space to
reduce the number of such computations. Other authors [28,
29] showed how to use kd-trees and other data structures to
greatly speed up the algorithm in low dimensional situations.

Since the difficulty lies in finding the nearest cluster for
each of the data points, we can instead look for nearest
neighbor search methods. The question of finding a nearest
neighbor has a long and storied history. Recently, locality
sensitive hashing, LSH [2] has gained in popularity. For the
specific case of document retrieval, inverted indices [6] are
the state of the art. We note that a straightforward appli-
cation of both of these approaches would require rebuilding
the data structure and querying it n times during every it-
eration, thereby negating most, if not all, of the savings over
a straightforward naive implementation.

The well known data deluge lead several groups of re-
searchers to investigate the k-means algorithm in the regime
when the number of points, n is very large. Guha et al. [17]
show how to solve k-clustering problems in a data stream
setting where points arrive incrementally one at a time.
Their analysis for the related k-median problem was fur-
ther refined and improved by [13, 25] and most recently by
[10, 31]. However, all of these methods scale poorly with k,
which is the problem we tackle in this work.

As parallel algorithms have reemerged in their popularity
these methods were adapted to speeding up k-means as well,
[1, 7]. In fact the k-means method is implemented in Ma-
hout [16], a popular machine learning package for MapRe-

duce. The all point similarity algorithm proposed in [8] also
uses indexing but focuses on savings achieved by avoiding
the full index construction, rather than repeatedly using the
same index in multiple iterations.

Yet another approach has been suggested by Sculley [30],
who showed how to use a sample of the data to improve the
performance of the k-means algorithm. Similar approaches
were previously used by Jin et al. [19]. Unfortunately this,
and other subsampling methods break down when the av-
erage number of points per cluster is small, requiring large
sample sizes to ensure that no clusters are missed. Finally
our approach is related to subspace clustering [27] where the
data is clustered on a subspace of the dimensions with a goal
to shed noisy or unimportant dimensions. In our approach
we perform the dimension selection based on the centroids
and in an adaptive manner, while executing the clustering
approach. In our current work we are exploring more the
relationship between our approach and some of the reported
subspace clustering approaches.

Indexing. A recent survey and a comparative study of
in-memory Term at a time (TAAT) and document at a time
(DAAT) algorithms was reported in [15]. A large study of
known TAAT and DAAT algorithms was conducted by [22]
on the Terrier IR platform with disk-based postings lists
using TREC collections They found that in terms of the
number of scoring computations, the Moffat TAAT algo-
rithm [26] had the best performance, though it came at a
tradeoff of loss of precision compared to naive TAAT ap-
proaches and the TAAT and DAAT MAXSCORE algo-
rithms [33]. In this paper we did not evaluate approximate
algorithms such as Moffat TAAT [26]. We leave this study
as future work. Finally, a memory-efficient TAAT query
evaluation algorithm was proposed in [23].

6. CONCLUSION
In this work we showed that using centroids as queries into

a nearest neighbor data structure built on the data points
can be very effective in reducing the number of distance com-
putations needed by the k-means clustering method. Addi-
tionally, we showed that using the full information from the
WAND algorithm, and sparsifying the centroids further im-
proves performance. Our experimental evaluation over two
real world data sets shows that the approach proposed in
this paper is viable in practice, with up to a 20x reduction
in the computation time, especially for large values of k.
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