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ABSTRACT
The success of recommender systems often depends on their ability
to understand and make use of the context of the recommenda-
tion request. Significant research has focused on how time, loca-
tion, interfaces, and a plethora of other contextual features affect
recommendations. However, in using deep neural networks for
recommender systems, researchers often ignore these contexts or
incorporate them as ordinary features in the model.

In this paper, we study how to effectively treat contextual data in
neural recommender systems. We begin with an empirical analysis
of the conventional approach to context as features in feed-forward
recommenders and demonstrate that this approach is inefficient
in capturing common feature crosses. We apply this insight to de-
sign a state-of-the-art RNN recommender system. We first describe
our RNN-based recommender system in use at YouTube. Next, we
offer “Latent Cross,” an easy-to-use technique to incorporate con-
textual data in the RNN by embedding the context feature first and
then performing an element-wise product of the context embed-
ding with model’s hidden states. We demonstrate the improvement
in performance by using this Latent Cross technique in multiple
experimental settings.
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1 INTRODUCTION
Recommender systems have long been used for predicting what
content a user would enjoy. As online services like Facebook, Net-
flix, YouTube, and Twitch continue to grow, having a high quality
recommender system to help users sift through the expanding and
increasingly diverse content becomes ever-more important.

Much of the research in recommender systems has focused on
effective machine learning techniques — how to best learn from
users actions, e.g., clicks, purchases, watches, and ratings. In this
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Figure 1: Overall structure of our recommender system, in-
cluding “latent crosses” of context features throughout.

effort, there is a large body of research on collaborative filtering and
recommendation algorithms, including matrix factorization during
the Netflix Prize [24, 28, 30, 35], local focused models [5, 9, 31], and
more recently deep learning [11, 36].

In parallel, and increasingly prominently, there is an understand-
ing of the importance of modeling the context of a recommendation
– not just the user who is looking for a video to watch, but also
the time of day, the location, the user’s device, etc. Many of these
models have been proposed in the factorization setting, such as
with tensor factorization for location [17], unfolding tensors for
different types of user actions [46], or hand-crafted features about
the effect of time [29].

As deep learning has grown in prominence, how to incorporate
these contextual features in neural recommender systems has been
less directly explored. Previous work on deep neural network (DNN)
recommender systems has largely relied on modeling context as
direct features in the model or having a multi-task objective [11].
One notable exception is the use of recurrent neural networks
(RNNs) to model temporal patterns [25, 39, 43]. In this paper, we
bridge the contextual collaborative filtering literature and neural
recommender literature. We explore how to make use of contextual
data in deep neural recommenders (particularly in RNNmodels) and
demonstrate that prevailing techniques miss a significant amount
of the information in these features.

We explore the ability to make use of contextual data in an
RNN-based recommender system used at YouTube. As with most
production settings, we have a significant amount of contextual
data that is important to include: request and watch time, the type of
device, and the page on the website or mobile app. In this paper, first,
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we offer a theoretical interpretation of the limitations of modeling
context as direct features, particularly using feed-forward neural
networks as the example baseline DNN approach. We then offer
an easy-to-use technique to incorporate these features that results
in improved prediction accuracy, even within a more complicated
RNN model.

Our contributions are:
• First-Order Challenges:We demonstrate the challenges of
first-order neural networks to model low-rank relationships.

• Production Model: We describe how we have constructed
a large-scale RNN recommender system for YouTube.

• LatentCross:Weoffer a simple technique, called the "Latent
Cross", to include contextual features more expressively in
our model. Specifically, latent cross performs an element-
wise product between the context embedding and the neural
network hidden states.

• Empirical Results:We offer empirical results verifying that
our approach improves recommendation accuracy.

2 RELATEDWORK
We begin with a survey of the various related research. An overview
can be seen in Table 1.

Contextual Recommendation. A significant amount of research
has focused on using contextual data during recommendation. In
particular, certain types of contextual data have been explored in
depth, where as others have been treated abstractly. For exam-
ple, temporal dynamics in recommendation have been explored
widely [6]. During the Netflix Prize [4], Koren [29] discovered the
significant long-ranging temporal dynamics in the Netflix data set
and added temporal features to his Collaborative Filtering (CF)
model to account for these effects. Researchers have also explored
the how preferences evolve in shorter time-scales, e.g., sessions [39].
More general abstractions have been used to model preference evo-
lution for recommendation such as point processes [15] and recur-
rent neural networks [43]. Similarly, modeling user actions along
with geographical data has been widely explored with probabilistic
models [2, 8], matrix factorization [32], and tensor factorization [17].
A variety of methods have built on matrix and tensor factorization
for cross domain learning [45, 46]. Methods like factorization ma-
chines [34] and other contextual recommenders [22, 37, 48] have
provided generalizations of these collaborative filtering approaches.

Neural Recommender Systems. As neural networks have grown
in popularity for computer vision and natural language processing
(NLP) tasks, recommender systems researchers have begun apply-
ing DNNs to recommendation. Early iterations focused on directly
applying the collaborative filtering intuition to neural networks,
such as through an auto-encoder [36] or joint deep and CF models
[20]. More complex networks have been devised to incorporate
a wider variety of input features [11]. Cheng et al. [7] handles
this problem through a linear model to handle interactions among
contextual features, outside the DNN portion of the model.

There has been a recent growth in using recurrent neural net-
works for recommendation [21, 25, 39, 43]. [25, 43] include temporal
information as features and supervision in their models, and [41]
includes general context features. However, in both cases, these

features are concatenated with input, which we show provides lim-
ited benefit. Concurrent and independent research [49] improved
LSTMs by multiplicatively incorporating temporal information, but
did not generalize this to other context data.

Second-order Neural Networks. A major thrust of this paper is
the importance of multiplicative relations in neural recommenders.
These second-order units show up in a few places in neural net-
works. Recurrent units, e.g., LSTMs [23] and GRUs [10], are com-
mon second-order units with gatingmechanisms that use an element-
wise multiplication. A more complete tutorial on recurrent net-
works can be found in [18].

Additionally, softmax layers at the top of networks for classifica-
tion are explicitly bi-linear layers between the embedding produced
by the DNN and embeddings of the label classes. This technique
has been extended in multiple papers to include user-item bi-linear
layers on top of DNNs [20, 41, 43, 47].

Similar to the technique described in this paper is a body of work
on multiplicative models [27, 44]. These multiplicative structures
have most commonly been used in natural language processing as
in [14, 27]. The NLP approach was applied to personalized modeling
of reviews [40] (with a slightly different mathematical structure).
Recently, [25] uses the multiplicative technique not over contex-
tual data but directly over users, similar to a tensor factorization.
PNN [33] and NFM [19] push this idea to an extreme, taking mul-
tiplying all pairs of features at the input and either concatenating
or averaging the results before passing through a feed-forward
network. The intuition of these models is similar to ours, but differ
in that we focus on the relationship between contextual data and
user actions, our latent crossing mechanism can be and is applied
throughout the model, and we demonstrate the importance of these
interactions even within an RNN recommender system.

More complex model structures like attention models [3], mem-
ory networks [38], and meta-learning [42] also rely on second-order
relations and are increasingly popular. Attention models, for in-
stance, use attention vectors that modulate the hidden states with
a multiplication. However, these methods are significantly more
complex structurally and are generally found to be much more
difficult to train. In contrast, the latent cross technique proposed in
this paper we found to be easy to train and effective in practice.

3 MODELING PRELIMINARIES
We consider a recommender system in which wewe have a database
E of events e which are k-way tuples. We consider eℓ to refer to
the ℓth value in the tuple and eℓ̄ to refer to the other k − 1 values
in the tuple.

For example, the Netflix Prize setting would be described by tu-
ples e ≡ (i, j,R)where user i gave movie j a rating of R. We may also
have context such as time and device such that e ≡ (i, j, t ,d) where
user i watched video j at time t on device type d . Note, each value
can be either discrete categorical variables, as in there are N users
where i ∈ I, or continuous, e.g., t is a unix timestamp. Continuous
variables are not uncommonly discretized as a preprocessing step,
such as to convert t to only the day on which the event took place.

With this data, we can frame recommender systems as trying to
predict one value of the event given the others. For example, the
Netflix Prize said for a tuple e = (i, j,R), use (i, j) predict R. From a



Latent FM CF TF RRN YT NCF PNN Conext-RNN Time-LSTM
Cross RNN [22, 34] [29, 32, 48] [17, 37, 46] [21, 43] [11] [20] [19, 33] [41] [49]

Neural Network ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
Models Sequences ✓ × × × ✓ × × × ✓ ✓
Uses Context ✓ ✓ ✓ ✓ time ✓ × ✓ ✓ time
Multiplicative User/Item ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓
Multiplicative Context ✓ ✓ ✓ ✓ × × × ✓ × time

Table 1: Relationship with related recommenders: We bridge the intuition and insights from contextual collaborative filtering
with the power of recurrent recommender systems.

Symbol Description
e Tuple of k values describing an observed event
eℓ Element ℓ in the tuple
E Set of all observed events

ui , vj Trainable embeddings of user i and item j
Xi All events for user i
Xi,t All events for user i before time t
e(τ ) Event at step τ in a particular sequence
⟨·⟩ k-way inner product
∗ Element-wise product
f (·) An arbitrary neural network

Table 2: Notation

machine learning perspective, we can split our tuple e into features
x and label y such that x = (i, j) and label y = R.

We could further re-frame the recommendation problem as pre-
dicting which video a user will watch at a given time by defining
x = (i, t) and y = j. Note, again, depending on if the label is cate-
gorical random value, e.g., video ID, or real value, e.g., rating, the
machine learning problem is either a classification or regression
problem, respectively.

In factorization models, all input values are considered to be
discrete, and are embedded and multiplied. When we “embed” a
discrete value, we learn a dense latent representation, e.g., user
i is described by dense latent vector ui and item j is described
by dense latent vector vj . In matrix factorization models, predic-
tions are generally based on ui · vj . In tensor factorization mod-
els, predictions are based on

∑
r ui,rvj,rwt,r , wherewt would be

a dense vector embedding of time or some other contextual fea-
ture. See factorization machines [34] for a clean and clear abstrac-
tion for these types of models. For notational simplicity we will
consider ⟨·⟩ to represent a multi-dimensional inner-product, i.e.,
⟨ui ,vj ,wt ⟩ =

∑
r ui,rvj,rwt,r .

Neural networks typically also embed discrete inputs. That is,
given an input (i, j) the input to the network will be x = [ui ;vj ]
where ui and vj are concatenated and as before are parameters
that are trainable (in the case of neural networks, through back-
propagation). Thus, we consider neural networks of the form eℓ =
f (eℓ̄), where the network takes all but one value of the tuple as
the input and we train f to predict the last value of the tuple. We
will later expand this definition to allow the model to take rele-
vant previous events also as inputs to the network, as in sequence
models.

4 MOTIVATION: CHALLENGES IN
FIRST-ORDER DNN

In order to understand how neural recommenders make use of
concatenated features, we begin by inspecting the typical building
blocks of these networks. As alluded to above, neural networks,
especially feed-forward DNNs, are often built on first-order opera-
tions. More precisely stated, neural networks often rely on matrix-
vector products of the formWh whereW is a learned weight matrix
and h is an input (either an input to the network, or the output of a
previous layer). In feed-forward networks, fully-connected layers
are generally of the form:

hτ = д(Wτhτ−1 + bτ ) (1)

where д is an element-wise operation such as a sigmoid or ReLU,
hτ−1 is the output of the last layer, and Wτ and bτ are learned
parameters. We consider this to be a first-order cell in that hτ−1,
which is a k-dimensional vector, only has its different values added
together, with weights based onW , but never multiplied together.

Although neural networks with layers like these have been
shown to be able to approximate any function, their core compu-
tation is structurally significantly different from the past intuition
on collaborative filtering. As described above, matrix factorization
models take the general form ui · vj , resulting in the model learn-
ing low-rank relationships between the different types of inputs,
i.e., between users, items, time, etc. Given that low-rank models
have been successful in recommender systems, we ask the follow-
ing question: How well can neural networks with first-order cells
model low-rank relations?

4.1 Modeling Low-Rank Relations
To test whether first-order neural networks can model low-rank
relations, we generate synthetic low-rank data and study how well
different size neural networks can fit that data. To be more precise,
we consider an m-mode tensor where each dimension is of size
N . For themN discrete features we generate random vectors ui of
length r using a simple equation:

ui ∼ N

(
0,

1
r1/2m I

)
(2)

The result is that our data is a rank r matrix or tensor with approx-
imately the same scale (with mean of 0, and an empirical variance
close to 1). As an example, withm = 3, we can use these embeddings
to represent events of the form (i, j, t , ⟨ui ,uj ,ut ⟩).

We try to fit models of different sizes using this data. In particu-
lar, we consider a model with the discrete features embedded and
concatenated as inputs. The model has one hidden layer with ReLU



Hidden Layer r = 1,m = 2 r = 1,m = 3 r = 2,m = 3
1 0.42601 0.27952 0.287817
2 0.601657 0.57222 0.472421
5 0.997436 0.854734 0.717233
10 0.999805 0.973214 0.805508
20 0.999938 0.996618 0.980821
30 0.999983 0.99931 0.975782
50 0.999993 0.999738 0.997821
100 0.999997 0.999928 0.99943

Table 3: Pearson correlation for different width models
when fitting low-rank data.

activation, as is common in neural recommender systems, followed
by a final linear layer. The model is programmed in TensorFlow
[1], trained with mean squared error loss (MSE) using the Adagrad
optimizer [16], and trained to convergence. We measure and report
the model’s accuracy by the Pearson correlation (R) between the
training data and the model’s predictions. We use the Pearson cor-
relation so that it is invariant to slight differences in variance of the
data. We report the accuracy against the training data because we
are testing how well these model structures fit low-rank patterns
(i.e., not even whether they can generalize from it).

To model low-rank relations, we want to see how well the model
can approximate individual multiplications, representing interac-
tion between variables. All data is generated with N = 100. With
m = 2, we examine how large the hidden layer must be to multiply
two scalars, and withm = 3 we examine how large the hidden layer
must be to multiply three scalars. We use r ∈ {1, 2} to see how size
of the model grows as more multiplications are needed. We embed
each discrete feature as a 20-dimensional vector, much larger than r
(but we found the model’s accuracy to be independent of this size).
We test with hidden layers ∈ {1, 2, 5, 10, 20, 30, 50}.

Empirical Findings. As can be seen in Table 3 and Figure 2, we
find that the model continually approximates the data better as
hidden layer size grows. Given the intuition that the network is
approximating the multiplication, a wider network should give
a better approximation. Second, we observe that, as we increase
the rank r of the data from 1 to 2, we see the hidden layer size
approximately doubles to get the same accuracy. This too matches
our intuition, as increasing r means there are more interactions to
add—something the network can easily do exactly.

More interestingly, we find that even for r = 1 and m = 2, it
takes a hidden layer of size 5 to get a “high” accuracy estimate.
Considering collaborative filtering models will often discover rank
200 relations [28], this intuitively suggests that real world models
would require very wide layers for a single two-way relation to be
learned.

Additionally, we find that modeling more than 2-way relations
increases the difficulty of approximating the relation. That is, when
we go from m = 2 to m = 3 we find that the model goes from
needing a width 5 hidden layer to a width 20 hidden layer to get an
MSE of approximately 0.005 or a Pearson correlation of 0.99.

In summary, we observe that ReLU layers can approximate mul-
tiplicative interactions (crosses) but are quite inefficient in doing so.
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Figure 2: ReLU layers can learn to approximate low-rank re-
lations, but are inefficient in doing so.

This motivates the need for models that can more easily express,
and deal with, multiplicative relations.We now turn our attention to
using an RNN as a baseline; this is a stronger baseline in that it can
better express multiplicative relations compared to feed-forward
DNNs.

5 YOUTUBE’S RECURRENT RECOMMENDER
With the above analysis as motivation, we now describe the im-
provements to YouTube’s RNN recommender system. RNNs are
notable as a baseline model because they are already second-order
neural networks, significantly more complex than the first-order
models explored above, and are at the cutting edge of dynamic
recommender systems.

We begin with an overview of the RNN recommender we built
for YouTube and then in Section 6 describe how we improve it to
better make use of contextual data.

5.1 Formal Description
In our setting, we observe events of the form user i has watched
video j (uploaded by userψ (j)) at time t . (We will later introduce
additional contextual features.) In order to model the evolution of
user preferences and behavior, we use a recurrent neural network
(RNN) model, where the input to the model is the set of events for
user Xi = {e = (i, j,ψ (j), t) ∈ E|e0 = i}. We will use Xi,t to denote
all watches before t for user Xi :

Xi,t = {e = (i, j, t) ∈ E|e0 = i ∧ e3 < t} ⊂ Xi . (3)

Themodel is trained to produce sequential prediction Pr(j |i, t ,Xi,t ),
i.e., the video j that user i will watch at a given time t based on all
watches before t . For the sake of simplicity, we will use e(τ ) to de-
note the τ th event in the sequence, x (τ ) to denote the transformed
input for e(τ ), and y(τ ) to denote the label trying to be predicted
for the τ th event. In the example above, if e(τ ) = (i, j,ψ (j), t) and
e(τ+1) = (i, j ′,ψ (j ′), t ′) then the input x (τ ) = [vj ;uψ (j);wt ], which
is used to predict y(τ+1) = j ′, where vj is the video embedding,
uψ (j) is the uploader embedding, andwt is the context embedding.



When predicting y(τ ), we of course cannot use the label of the
corresponding event e(τ ) as an input, but we can use context from
e(τ ), which we will denote by c(τ ), e.g., c(τ ) = [wt ].

5.2 Structure of the Baseline RNN Model
A diagram of our RNN model can be seen in Figure 1, and described
below. Recurrent neural networks model a sequence of actions.
With each event e(τ ), themodel takes a step forward, processingx (τ )

and updating a hidden state vector z(τ−1). To be more precise, each
event is first processed by a neural network h(τ )0 = fi (x

(τ )). In our
setting, this will either be an identity function or fully-connected
ReLU layers.

The recurrent part of the network is a function h
(τ )
1 , z

(τ ) =

fr (h
(τ )
0 , z

(τ−1)). That is, we use a recurrent cell, such as an LSTM [23]
or GRU [10], that takes as an input the state from the previous step
and the transformed input fi (x (τ )).

To predict y(τ ), we use fo (h
(τ−1)
1 , c(τ )), which is another train-

able neural network that produces a probability distribution over
possible values of y(τ ). In our setting, this network takes the output
of the RNN as its input and context of the upcoming prediction,
and finally ends with a softmax layer over all videos. This network
can include multiple fully-connected layers.

5.3 Context Features
Core to the success of this model is the incorporation of contextual
data beyond just the sequence of videos watched. We discuss below
how we utilize these features.

TimeDelta. In our system, incorporating time effectively was
highly valuable to the accuracy of our RNN. Historically, time
context has been incorporated into collaborative filtering models
in a variety of ways. Here we use an approach we call timedelta:

∆t (τ ) = log
(
t (τ+1) − t (τ )

)
(4)

That is, when considering event e(τ ) we consider how long until the
next event or prediction to be made. This is essentially equivalent
to time representation described in [25] and [49].

Software Client. YouTube videos can be watched on a variety of
devices: in browser, iOS, Android, Roku, Chromecast, etc. Treating
these contexts as equivalent misses relevant correlations. For ex-
ample, users are probably less likely to watch a full-length feature
film on their phone than through a Roku device. Similarly, short
videos like trailers may be relatively more likely to be watched
on a phone. Modeling the software client, and in particular how it
interacts with the watch decisions, is important.

Page. We also record where a watch initiated from in our system.
For example, we distinguish between watches that starts from the
homepage (i.e. Home Page Watches) and watches that initiate as
recommended follow-up watches once a user is already watching a
video (i.e. Watch Next Watches). This is important as watches from
the homepage may be more open to new content, whereas watches
following a previous watch may be due to users wanting to dig into
a topic more deeply.

Pre- and Post-Fusion. We can use these context features, which
we collectively refer to as c(τ ), as direct inputs in two ways. As
can be seen in Figure 1, we can include context as an input at the
bottom of the network, or concatenated with the output of the
RNN cell. We refer to the inclusion of context features before the
RNN as pre-fusion, and the inclusion of context features after the
RNN cell as post-fusion [12]. Although possibly a subtle point, this
decision can have a significant effect on the RNN. In particular, by
including a feature through pre-fusion, that feature will affect the
prediction through how it modifies the state of the RNN. However,
by including a feature through post-fusion, that feature can more
directly have an effect on the prediction at that step.

To manage this, when predicting y(τ ), we generally use c(τ ) as
a post-fusion feature, and use c(τ−1) as a pre-fusion feature. This
means that c(τ−1) will effect the RNN state but c(τ ) will be used
for predicting y(τ ). Subsequently, at the next step when predicting
y(τ+1), c(τ ) will now be a pre-fusion feature effecting the state of
the RNN from that time forward.

5.4 Implementation & Training
Ourmodel is implemented in TensorFlow [1] and trained over many
distributed workers and parameter servers. The training uses one
of the available back-propagated mini-batch stochastic gradient
descent algorithms, either Adagrad [16] or ADAM [26]. During
training we use as supervision the 100 most recent watches during
the period (t0 − 7 days, t0], where t0 is the time of training. This
generally prioritizes recent watches because the behavior is more
similar to the prediction taskwhen the learnedmodel will be applied
to live traffic.

Due to the large number of videos available, we limit our set of
possible videos to predict as well as the number of uploaders of
those videos that we model. In the experiments below, these sets
range in size from 500,000 to 2,000,000. The softmax layer, which
covers this set of candidate videos, is trained using sampled softmax
with 20,000 negative samples per batch. We use the predictions of
this sampled softmax in the cross entropy loss against all labels.

6 CONTEXT MODELINGWITH THE LATENT
CROSS

As should be clear in the above description of our baseline model,
the use of contextual features is typically done as concatenated
inputs to simple fully-connected layers. However, as we explained
in Section 4, neural networks are inefficient in modeling the inter-
actions between concatenated input features. Here we propose a
simple alternative.

6.1 Single Feature
We begin with the case where we have a single context feature
that we want to include. For sake of clarity, we will use time as an
example context feature. Rather than incorporating the feature as
another input concatenated with the other relevant features, we
perform an element-wise product in the middle of the network.
That is, we perform:

h
(τ )
0 = (1 +wt ) ∗ h

(τ )
0 (5)



where we initialize wt by a 0-mean Gaussian (note, w = 0 is an
identity). This can be interpreted as the context providing a mask
or attention mechanism over the hidden state. However, it also
enables low-rank relations between the input previous watch and
the time. Note, we can also apply this operation after the RNN:

h
(τ )
1 = (1 +wt ) ∗ h

(τ )
1 . (6)

The technique offered in [27] can be viewed as a special case
where multiplicative relations are included at the very top of the
network along with the softmax function to improve NLP tasks. In
that case, this operation can be perceived as a tensor factorization
where the embedding for one modality is produced by a neural
network.

6.2 Using Multiple Features
In many cases we have more than one contextual feature that we
want to include. When including multiple contextual features, say
time t and device d , we perform:

h(τ ) = (1 +wt +wd ) ∗ h
(τ ) (7)

We use this form for a few different reasons: (1) By initializing both
wt andwd by 0-mean Gaussians, the multiplicative term has a mean
of 1 and thus can similarly act as a mask/attention mechanism over
the hidden state. (2) By adding these terms together we can capture
2-way relations between the hidden state and each context feature.
This follows the perspective taken in the design of factorization
machines [34]. (3) Using a simple additive function is easy to train.
A more complex function like wt ∗ wd ∗ h(τ ) will increase the
non-convexity significantly with each additional contextual feature.
Similarly we found learning a function f ([wt ;wd ]) to be more
difficult to train and to give worse results. An overview of including
these features in a model can be seen in Figure 1.

Efficiency. We note that one significant benefit of using latent
crosses is their simplicity and computational efficiency. With N
context features and d-dimensional embeddings, the latent cross
can be computed in O(Nd) and does not increase the width of the
subsequent layers.

7 EXPERIMENTS
We perform two sets of experiments. The first is on a restricted
dataset where time is the only contextual feature, and we compare
several model families. In the second set of experiments we use our
production model and explore the relative improvements based on
how we incorporate context features.

7.1 Comparative Analysis
7.1.1 Setup. We begin with an explanation of our experimental

setup.

Dataset and Metrics. We use a dataset with sequences of watches
for hundreds of millions users. The users are split into training,
validation and test sets, with both validation and test sets having
tens of millions of users. Watches are restricted to a set of 500,000
popular videos, and all users have at least 50 watches in their se-
quence. The sequence is given by a list of watched videos and the
timestamp of each watch.

Method Precision@1 MAP@20
RNN with ∆t Latent Cross 0.1621 0.0828
RRN (Concatenated ∆t ) 0.1465 0.0753
RNN (Plain, no time) 0.1345 0.0724
Bag Of Words 0.1250 0.0707
Bag of Words with time 0.1550 0.0794
Paragraph Vectors 0.1123 0.0642
Cowatch 0.1204 0.0621

Table 4: Results for Comparative Study: RNN with a latent
cross performs the best.

The task is to predict the last 5 watches in the user’s sequence.
To measure this, we use Mean-Average-Precision-at-k (MAP@k)
for k = 1 and k = 20 on the test set.

Model. For this set of experiments we use an RNN with an LSTM
recurrent unit. We have no ReLU cells before or after the recur-
rent unit, and use a pre-determined hierarchical softmax (HSM)
to predict the videos. Here, we use all but the first watch in the
sequence as supervision during training. The model is trained using
back-propagation with ADAM [26].

Since time is the only contextual feature in this data set, we
use the video embedding vj as the input and perform the latent
cross with the timedelta value w∆t such that the LSTM is given
vj ∗w∆t . This is an example of a pre-fusion cross. We will call this
RNNLatentCross.

Baselines. We compare the RNNLatentCross model described
above to highly tuned models of alternative forms:

• RRN: Use [vj ;w∆t ] as the input to the RNN; similar to [43]
and [41].

• RNN: RNN directly over vj (without time); similar to [21].
• BOW: Bag of words model over the set of videos in the user’s
history and user demographics.

• BOW+Time: 3-layer feed-forward model taking as input a
concatenation of a bag-of-watches, each of the last three
videos watched, ∆t , and the time of the week of the request.
The model is trained with a softmax over the 50 videos most
co-watched with the last watch.

• Paragraph Vector (PV): Use [13] to learn unsupervised em-
beddings of each user (based on user demographics and
previous watches). Use the learned embeddings as well as
an embedding of the last watch as input to a 1-layer feed
forward classifier trained with sampled softmax.

• Cowatch: Predict the most common co-watched videos based
on the last watch in the sequence.

Unless otherwise specified, all models have a hierarchical softmax.
All models and their hyperparameters are tuned over the course of
a modeling competition. Note, only BagOfWords and Paragraph
Vector make use of user demographic data.

7.1.2 Results. We report our results for this experiment in Table
4. As can be seen there, our model, using the RNN with ∆t having
a latent cross with the watch, gives the best result for both Pre-
cision@1 and MAP@20. Possibly even more interestingly, is the
relative performance of the models. We observe in both the bag of



words models and the RNN models the critical importance of mod-
eling time. Further, observe that the improvement from performing
a latent cross instead of just concatenating ∆t is greater than the
improvement from including ∆t as an input feature at all.

7.2 YouTube’s Model
Second, we study multiple variants of our production model against
a larger, more unrestricted dataset.

7.2.1 Setup. Here, we use a production dataset of user watches,
which is less restrictive than the above setting. Our sequences are
composed of the video that was watched and who created the video
(uploader). We use a larger vocabulary on the order of millions of
recently popular uploaded videos and uploaders.

We split the dataset into a training and test set based jointly on
users and time. First, we split users into two sets: 90% of our users
are in our training set and 10% in our test set. Second, to split by
time, we select a time cut-off t0 and during training only consider
watches from before t0. During testing, we consider watches from
after t0 + 4 hours. Similarly, the vocabulary of videos is based on
data from before t0.

Our model consists of embedding and concatenating all of the
features defined above as inputs, followed by a 256-dimensional
ReLU layer, a 256-dimensional GRU cell, and then another 256-
dimensional ReLU layer, before being fed into the softmax layer. As
described previously, we use the 100 most recent watches during
the period (t0 − 7 days, t0] as supervision. Here, we train using the
Adagrad optimizer [16] over many workers and parameter servers.

To test ourmodel, we againmeasure themean-average-precision-
at-k . For watches that are not in our vocabulary, we always mark
the prediction as incorrect. The evaluation MAP@k scores reported
here are measured using approximately 45,000 watches.

7.2.2 The Value of Page as Context. We begin analyzing the
accuracy improvements by incorporating Page in different ways. In
particular, we compare not using Page, using Page as an input con-
catenated with the other inputs, and performing a post-fusion latent
cross with Page. (Note, when we include page as a concatenated
feature, it is concatenated during both pre-fusion and post-fusion.)

As can be seen in Figure 3, using Page with a latent cross offers
the best accuracy. Additionally, we see that using both the latent
cross and the concatenated input offers no additional improvement
in accuracy, suggesting that the latent cross is sufficient to capture
the relevant information that would be obtained through using the
feature as a direct input.

7.2.3 Total Improvement. Last, we test how adding latent crosses
on top of the full production model effects the accuracy. In this case,
with each watch the model knows the page, the device type, the
time, how long the video was watched for (watch time), how old the
watch is (watch age), and the uploader. In particular, our baseline
YouTube model uses the page, device, watch time, and timedelta
values as pre-fusion concatenated features, and also uses the page,
device, and watch age as post-fusion concatenated features.

We test including timedelta and page as pre-fusion latent crosses,
as well as device type and page as post-fusion latent crosses. As
can be seen in Figure 4, although all of these features were already
included through concatenation, including them as latent crosses

provides an improvement in accuracy over the baseline model. This
also demonstrates the ability for pre-fusion and post-fusion with
multiple features to work together and provide a strong accuracy
improvement.

8 DISCUSSION
We explore below a number of questions raised by this work and
implications for future work.

8.1 Discrete Relations in DNNs
While much of this paper has focused on enabling multiplicative
interactions between features, we found that neural networks can
also approximate discrete interactions, an area where factorization
models have more difficulty. As an example, in [46] the authors find
that modeling when user i performs action a on item j, ⟨u(i,a),vj ⟩
has better accuracy than ⟨ui ,vj ,wa⟩. However, discovering that
indexing users and actions together performs better is difficult,
requiring data insights.

Similar to the experiments in Section 4, we generate synthetic
data following the pattern Xi, j,a = ⟨u(i,a),vj ⟩ and test how well
different network architectures predict Xi, j,a given i , j and a are
only concatenated as independent inputs. We initialize u ∈ R10000

and v ∈ R100 as vectors, such that X is a rank-1 matrix. We follow
the same general experimental procedure as in Section 4, measuring
the Pearson correlation (R) for networks with varying number
of hidden layers and varying width to those hidden layers. (We
train these networks with a learning rate of 0.01, ten-times smaller
than the learning rate used above.) As a baseline, we also measure
the Pearson correlation for tensor factorization (⟨ui ,vj ,wa⟩) for
different ranks.

As can be seen in Figure 5, deep models, in some cases, attain
a reasonably high Pearson correlation, suggesting that they are
in fact able to approximate discrete crosses. Also interestingly,
learning these crosses requires deep networks with wide hidden
layers, particularly large for the size of the data. Additionally, we
find that these networks are difficult to train.

These numbers are interesting relative to the baseline tensor fac-
torization performance. We observe that the factorization models
can approximate the data reasonably well, but requires relatively
high rank. (Note, even if the underlying tensor is full rank, a fac-
torization of rank 100 would suffice to describe it.) However, even
at this high rank, the tensor factorization models require fewer
parameters than the DNNs and are easier to train. Therefore, as
with our results in Section 5, DNNs can approximate these patterns,
but doing so can be difficult, and including low-rank interactions
can help in providing easy-to-train approximations.

8.2 Second-Order DNNs
A natural question to ask when reading this paper is why not
try much wider layers, make the model deeper, or more second-
order units, like GRUs and LSTMs? All of these are reasonable
modeling decisions, but in our experience make training of the
model significantly more difficult. One of the strengths of this
approach is that it is easy to implement and train, while still offering
clear performance improvements, evenwhen applied in conjunction
with other second-order units like LSTMs and GRUs.
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Figure 3: Accuracy from using page as either input or a latent cross feature (reported over training steps).
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Figure 4: Accuracy from using all latent cross features against a baseline of using all possible concatenated input features.
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Figure 5: Sufficiently large DNNs can learn to approximate
discrete interactions.

The growing trend throughout deep learning appears to be using
more second-order interactions. For example, this is common in
attention models and memory networks, as list above. While these

are even more difficult to train, we believe this work shows the
promise in that direction for neural recommender systems.

9 CONCLUSION
In this paper we have explored how to incorporate contextual data
in a production recurrent recommender system at YouTube. In
particular, this paper makes following contributions:

• Challenges of First-Order DNNs:We found feed-forward
neural networks to be inefficient in modeling multiplicative
relations (crosses) between features.

• Production Model:We offer a detailed description of our
RNN-based recommender system used at YouTube.

• Latent Cross:We offer a simple technique for learning mul-
tiplicative relations in DNNs, including RNNs.

• Empirical Results: We demonstrate in multiple settings
and with different context features that latent crosses im-
prove recommendation accuracy, even on top of complex,
state-of-the-art RNN recommenders.
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