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Abstract

The last two years have witnessed the introduction
and rapid expansion of products based upon large,
systematically-gathered, street-level image collections,
such as Google Street View, EveryScape, and Mapjack. In
the process of gathering images of public spaces, these
projects also capture license plates, faces, and other in-
formation considered sensitive from a privacy standpoint.
In this work, we present a system that addresses the chal-
lenge of automatically detecting and blurring faces and li-
cense plates for the purpose of privacy protection in Google
Street View. Though some in the field would claim face de-
tection is “solved”, we show that state-of-the-art face de-
tectors alone are not sufficient to achieve the recall desired
for large-scale privacy protection. In this paper we present
a system that combines a standard sliding-window detector
tuned for a high recall, low-precision operating point with a
fast post-processing stage that is able to remove additional
false positives by incorporating domain-specific informa-
tion not available to the sliding-window detector. Using a
completely automatic system, we are able to sufficiently blur
more than 89% of faces and 94 − 96% of license plates in
evaluation sets sampled from Google Street View imagery.

1. Introduction

In the last two years, there has been a rapid expansion
of systematically-gathered street-level imagery available on
the web. The largest and probably most well-known col-
lection to date is Google Street View1 [13]. Street View
launched as part of Google Maps in May 2007 and has ex-
panded rapidly since, at last count providing imagery from
twelve countries on four continents. Other smaller products
have found their niches around the world, including Map-

1http://maps.google.com/help/maps/streetview

jack2, Everyscape3, and Daum’s Road View4. What makes
these products truly unprecedented is the amount and den-
sity of consistent, geo-positioned imagery they make avail-
able to users. This combination of scale and accurate lo-
cation allows users to effectively search and find specific
points of interest, while also making it possible to virtually
wander through the street-level environment, thus enabling
a wide range of uses including real estate search, virtual
tourism, travel planning, enhanced driving directions, and
business search.

As these products expand, they become more useful, but
a major challenge has emerged in demonstrating that this
does not have to come at the price of individual privacy.
Primary among privacy concerns is the publication of po-
tentially personally-identifiable information such as a per-
son’s face or license plate captured as a side-effect of gath-
ering the target imagery. In this paper we address the chal-
lenge of automatically removing faces and license plates
from street-level imagery. This is a formidable challenge for
four main reasons. First, the scale is large, which requires
fully-automatic, optimized algorithms and a large amount
of computing resources. Second, there is little control over
the conditions of capture, and the appearance of objects can
vary widely: people with a variety of physical appearances
are captured close to the camera, in the distance, in shadow,
behind car windows, at a wide range of angles, at a variety
of scales, on cell phones, wearing hats and sunglasses, oc-
cluded, cut off at the edge of the image, and distorted by im-
age compression (Figure 4). In many of these cases it could
be argued that the person is still identifiable. License plates
are challenging due to the large variation in viewing angle,
shadows, occlusions, and the variation among plates within
and across geographic locations. Third, and most impor-
tantly, in order to protect individuals’ privacy at the moment
the imagery becomes public, the recall of faces and license

2http://www.mapjack.com
3http://www.everyscape.com
4http://local.daum.net/map
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Figure 1. The end product: a stitched, redacted panorama (at reduced resolution).

plates would ideally be 100%. This is beyond the reach of
state-of-the-art automatic methods, and as we show in this
paper, one of the best detectors in the world achieves less
than 78% on our in-the-wild face data set. So while face
detection is considered “solved” by some, we found out-of-
the-box face detectors alone to be surprisingly inadequate
for this problem. Lastly, we need to preserve the quality of
the images while still achieving high recall. This requires
us to control our false-positive rate and to obscure faces and
license plates in an manner unobtrusive enough so that a
viewer’s eye is not drawn to erroneously blurred regions.

In order to address these challenges we combine exist-
ing computer vision and machine learning techniques in a
way specially suited to our domain and to faces (Section 3)
and license plates (Section 4). For faces, we first trained
and tuned a fast integral image-based sliding window face
detector to achieve a high-recall, low-precision operating
point (see Section 3.2.1). From the detected boxes, we
compute sets of features specialized to our setting, and pass
those feature vectors through a neural network-based post-
processor that is tuned to remove as many false positives
as possible while keeping almost all the true positives (Sec-
tion 3.2.2). For license plate detection, we applied the same
basic components, with a few modifications, which we dis-
cuss in Section 4.2. To produce the final panorama, we blur
the detected boxes and publish the imagery in Street View
(Section 5).

The goal of this paper is to describe in detail the system
for detecting and blurring faces and license plates in Google
Street View imagery, and to provide qualitative and quanti-
tative results demonstrating our performance on a large data
set from around the world. We face a challenge in this work
in that, for the sake of protecting privacy, we cannot pub-
lish raw images that contain non-redacted faces or license
plates. The purpose of this paper is not to explore in depth
alternate design options, so in order to provide a forum for
other academic work within this setting, we are releasing a
special data set in conjunction with this paper, and report
our performance separately on that data set (Section 3.1).

Figure 2. A diagram show-
ing the car-mounted camera
rosette and the positions of
the 8 radially-arranged cam-
eras. Fish-eye camera not
shown.

Also, in order to provide a context for our face detection
performance, we compare to a small set of state-of-the-art
industrial and academic face detectors, though this is not
intended as a critical evaluation of those detectors as they
have not been tuned or trained for our setting.

2. Image Capture

The imagery with which we are working was collected
from a moving vehicle using a custom camera system
mounted on a rig on the roof of the car. The rig consists
of nine 5-megapixel cameras arranged into a rosette, with
eight of the cameras aimed roughly parallel to the ground
in a radial configuration at an even spacing and one fish-eye
lens pointed upwards (Figure 2). For purposes of this work
we ignore the upward-facing camera because any faces that
may be captured will be too low-resolution to be identifi-
able. The cameras are synchronized, and the set of images
taken from the nine cameras at a given time step can be
stitched together to form a panorama (Figure 1). In the
rest of the paper we will only work with images that came
from the individual cameras before they are stitched into a
panorama (Figure 3). We will refer to the individual images
as “camera images” and the set of images that are taken to-
gether as a “panorama set”. We can assume that identical
car and camera configurations are used to capture imagery
gathered in different geographic regions and across time.



Figure 3. A Campus Face Set image from camera 2, at reduced
resolution, with a full-resolution inset.

3. Faces
3.1. Evaluation data sets

We present face detection results on two hand-labeled
evaluation data sets. We built the first of the face data
sets from 29,106 camera images sampled from three ma-
jor world cities (one each from the United States, northern
Europe, and southern Europe) on 162 different days. The
faces in each camera image were marked by a person who
we instructed to label only faces of real people that they
judged to be possibly identifiable, and not to mark faces on
billboards or other signs. This data set, which we refer to as
the “Cities Face Set” contains 1,614 labeled faces.

Due to the same privacy concerns we are aiming to ad-
dress, we cannot release the Cities Face Set in its unblurred
form or publish examples without redaction. For this rea-
son, a second data set was created for academic purposes5.
We refer to this set as the “Campus Face Set”, and it con-
sists of 19,187 images with 15,075 faces of consenting in-
dividuals in 2,176 of the images (Figure 3). This data set
is somewhat artificial in that the participants knew the vehi-
cle would be driving by, so the large majority of people are
looking at the camera, thus skewing the set toward frontal
face views, which are typically easier to detect. Nonethe-
less, this set still presents a challenge and has a much higher
face density.

3.2. Algorithms and system

The face detection system is built from a primary high-
recall sliding-window detector, a secondary high-precision,

5To obtain a copy of the data set for academic use, please send an e-mail
to iccv2009_face_data@google.com.

Figure 4. A sample of difficult ground-truth faces from the Campus
set that we consider “identifiable” (upscaled by 2×).
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Figure 5. Data flow diagram for the face detection system.

low-sensitivity detector, and a fast post-processing stage
that generates a feature vector from the detector outputs and
scores the box (Figure 5). Here we describe the components
of the system at a high level, and drill into the components
in more detail below.

The top left box in Figure 5 shows the output of the “pri-
mary” high-recall detector for part of a Campus Set image.
For a given image, we run the primary and secondary detec-
tors in parallel and store the outputs. In Section 3.2.1 below
we describe the detectors in more detail. Each box from
the primary detector is passed to the post-processor, where
a feature vector is created from the outputs of the detectors,
the index of the camera image in the rosette, and the pixels,
and the feature vector is passed through a neural network.
If the network output meets a given threshold, the box is
blurred in the final image. See Section 3.2.2 for details.

Our two-stage system is close in spirit to the 2006 paper
by Hoiem, et al. [4] that improved the performance of an
existing pedestrian detector by setting the threshold of the
SVM-based sliding window detector to increase the recall,
and then removing false positives with a Bayesian network
that incorporated 3D scene structure, estimated horizon, and
camera viewpoint. Our post-processor has the advantage of



being fast, which is possible in large part because we can
leverage the consistencies in our image set.

3.2.1 Primary and secondary face detectors

At first, we tried an early version of the face detector used
in Google Picasa. This detector is tuned for high precision,
but we found its recall to be too low for our application,
so we retrained and tuned the detector to increase the sen-
sitivity. This gave us two detectors at complementary op-
erating points: a high-recall primary detector, and a high-
precision, “low-sensitivity” secondary detector. Both use
the same features and algorithm. The Picasa detector has
since been retrained with additional data, and we upgraded
our secondary detector to the newer version (though not yet
our primary).

The detector uses a fast sliding-window approach over
a range of window sizes. It employs a linear combination
of a heterogeneous set of feature detectors, which are based
on families of features of varying complexity encompass-
ing (1) simple but fast features such as bit features, as well
as (2) more expensive but more informative features such
as Gabor wavelets. The detector is trained by minimizing
an objective function that employs a logistic loss term and
L1 regularization. The output is a score assigned to each
window in the range [0, 1]. When all scales are processed,
the remaining windows are filtered and merged according
to their scores and overlap across scales. We run three sep-
arate detectors using the same aspect ratio, covering profile
angles (pan or yaw) of 0-30, 30-60, and 60-90 degrees, and
the output scores for the different angles are combined. The
detector covers a tilt (pitch) angle of ±30 degrees.

We refine the face detection score further by adding a
module we call the landmarker which pinpoints facial fea-
ture locations within a face bounding box. Features ex-
tracted at those locations are then used to obtain a refined
score that indicates the probability of a face being present.

We made several adjustments to arrive at our high-recall
detector. First, we decreased the minimum box width from
20 pixels for the secondary detector to 12 pixels in the pri-
mary detector6. Second, we increased the contrast sen-
sitivity which helps us, for example, detect faces behind
glass. We also added about 200 faces gathered from low-
resolution street-level imagery to the training set, decreased
the stride of the sliding windows, and retrained with a target
recall-precision trade-off tuned heavily to favor recall.

Our detection algorithm belongs to a large family of slid-
ing window detectors, including such seminal detectors as
those by Rowley[11], Schneiderman and Kanade[12], and
Viola and Jones[14] and more recent detectors with very

6We determined, from a survey of our coworkers, that a 12-pixel-wide
box was the smallest box from our imagery in which a face is still iden-
tifiable. Both detectors use a maximum with of 1,000 pixels, which we
determined from our ground truth data to be sufficient to cover all faces.

features face plates
left, top 2 2
width (right - left), height (bottom - top) 2 2
height / bottom 1 1
width ∗ height 1 1
camera index (categorical) 8 8
angle (categorical) 3 2
detector score 1 1
landmarker score 1
mean hue, saturation, value 3 3
secondary detector overlap -
average face color probability 1
car model agreement 2
conv. neural net output 1 1

Table 1. The features we use for post-processing with the num-
ber of elements in the feature vector for each in the right column.
Some features are “categorical” in that they are expanded into a
binary vector where just the entry in the position corresponding to
the active value is one. For example, if the box is from camera
zero and there are eight cameras, then the entries for the camera
index are {10000000}.

impressive performance, such as the Tsinghua University
detector[5]. Our system as a whole is not tied to the choice
of detector, but could be built upon any detector that can be
retrained to achieve a different recall/precision trade-off. In
Section 3.3 we compare the performance of our final system
to our base detector as well as the Tsinghua detector.

3.2.2 Post-processor

We perform post-processing using a neural network with
features derived from the box pixels and the detector outputs
(see Table 1). We did early experiments that showed that a
neural network with one or two hidden layers achieves bet-
ter results than logistic regression. The face post-processor
is a fully-connected neural network with a total of 58 nodes:
24 input, 2 output, and two hidden layers of 16 nodes each.
The final value from the neural network is read from the sec-
ond of the two output nodes. The features were designed to
capture information that was not available to the detectors.
Most of them are self-explanatory, but the secondary de-
tector overlap, the height-to-bottom ratio, the color model
probability, and the convolutional neural net output require
explanation.

The ratio of the box height to box bottom is intended to
capture whether the real-world size of the object indicated
by a candidate box is reasonable, given the examples seen
in the training set. This was inspired in part by the work
of [4] which infers the 3D height of objects from image
information in order to reject false positives from a high-
recall detector. In that work, they use v̂1

v̂1−v̂2
= yc

y to relate
the bottom edge of the object in the image (v̂1), the height
of the object in the image (v̂2 is the object’s top edge), the
camera height (yc), and the height in 3D of the plane at



Figure 6. Face color
model response. Low
probability is red, high
probability is green.
Note the high response
to face and hair pixels
but not the background.

the bottom of the object (y). If we can assume that our
camera height is always the same and that peoples’ heights
are consistent between our training and test sets, then we
can use the ratio v̂1

v̂1−v̂2
to implicitly capture the 3D height

of the object.
We use the boxes from the secondary detector to “over-

rule” the decision of the neural network. The boxes returned
from the secondary detector are almost always a subset of
the boxes from the high-recall primary detector (with some
minor differences due to final box merging), and the pre-
cision of the secondary detector is very good compared to
the precision of the primary detector plus post-processor,
so when a box is returned from that detector, we skip run-
ning the post-processor neural network and return a “per-
fect score” from the post-processor for the corresponding
primary box. This protects us from mistakes that the post-
processor might make on easily-identifiable faces due to a
lack of representation in the training set, such as rejecting
a face on a balcony because the height-to-bottom ratio lies
outside the range found in the training data. In Section 3.3,
we compare the recall-FPR curves for the primary and sec-
ondary detectors.

Included in our feature vector is an average face color
probability, computed for a candidate box from a per-pixel
face color probability measure. We built a 128-by-128-
bin color histogram in hue-saturation space from the pix-
els of primary detection boxes that overlap at least 10%
with a ground-truth face box. We did the same with de-
tection boxes that were not labeled as faces to create a color
histogram of non-face pixels. Note that we do not label
skin versus non-skin pixels, so our model learns all the col-
ors that occur within our detection boxes. At run-time,
we compute p(face|color) for each detected pixel using
the two histograms, and use the average for the box as a
post-processing feature (Figure 6). The use of skin color
in face detection has been widely explored in the literature
([3]); our approach is related to [7], and our choice of hue-
saturation space is supported by the findings in [6].

We also include in the feature vector the output of a con-
volutional neural network that acts on the contents of the
candidate box. The box is converted to grayscale, rescaled
to 64-by-64, and converted to a feature vector with a floating
point value for each pixel. The network has 4,096 inputs,
uses local receptive fields and shared weights, and has two
convolutional layers and two sub-sampling layers. This ar-

chitecture is considered a deep architecture[1] and training
requires a special technique, constructive layer addition[9],
which is commonly used to train deep architectures.

Training data for the post-processors was generated by
first running the primary detector and secondary detectors,
generating the feature vectors as described above, and then
assigning a positive value to the example if and only if we
had a hand-marked ground-truth box that overlapped the de-
tected box by at least 10%. The target output nodes were
{0, 1} for positive examples and {1, 0} for negative exam-
ples. We used stochastic gradient descent to minimize a
cross entropy energy function[1] defined over all the boxes
in the training set. Weight decay was applied during training
for regularization[1]. In addition, we seek to maximize box
precision and recall on per-pixel basis, so the cross entropy
energy function was modified from its original form to re-
flect the area of each box. In this manner, a larger box con-
tributes more to the overall energy function than a smaller
box. This adjustment results in a better pixel FPR (pixel
false positive rate) but slightly worse box precision.

The training set used for the post-processor consists of
about 71,000 faces hand-labeled in images sampled from
a city not represented in our evaluation set. This set was
split into different subsets, which were used to train and
validate the components of the post-processor (face color
model, convolutional neural net, and post-processor neural
network).

3.3. Face results

We evaluate our performance using three metrics: (1)
automatically-generated per-box recall, (2) an exhaustive
hand-counted per-box recall, and (3) pixel false positive rate
(pixel FPR). For purposes of privacy protection, the hand-
counted per-box recall is the most important number. The
hand count is performed by looking at all the ground-truth
boxes, blurred as they will be in the final product, and count-
ing the number that are not “sufficiently blurred”, where
a sufficiently blurred face is one where the face has been
blurred enough to obscure the facial features (see Figure 7).
The hand count is necessary for an accurate number because
the ground truth boxes are often larger than the boxes from
the automatic system. The hand count is time-consuming,
however, so to generate recall-FPR curves and to do rela-
tive comparisons, we use an automatic box recall where a
ground-truth box is counted as recalled if the mask of de-
tection boxes that overlap it cover at least 50% of the box.
While privacy is the primary goal, we also must maintain
the quality of the imagery in the final product, which means
that we must consider the impact of our precision. We mea-
sure our precision using pixel FPR because it is the best
measure of unnecessary image degradation: it is the per-
centage of all pixels that have been blurred that lie outside
any ground truth box.
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Figure 8. Face results showing (a) comparison of our final system and our baseline with other detectors on the Cities Set, (b) same
comparison on the Campus Set, and (c) comparison between versions of our detector and the full system on the Cities Set. The circle
marker in (c) denotes the operating point of our system at our chosen threshold. The Tsinghua and OpenCV detectors are shown by single
points because the code provided does not produce a recall-precision curve. Recall that our system keeps boxes from the secondary detector
with a score of zero, so our curve does not extend into the lower-recall regime, though the performance overlaps strongly with the Picasa
detector, which is the same as our secondary, but run at a 12-pixel box width instead of 20.

Figure 7. Face and license plate boxes from our evaluation set,
blurred by our system with detection boxes added in red. These
examples illustrate that a detection box can cover a small area of
the ground-truth box, but we still “sufficiently blur” the face or
license plate. This causes the gap between our hand-counted re-
call and automatic recall, which is largest with EU license plates.
Faces upscaled by 1.5×.

On the Cities Data Set, we are able to achieve a hand-
counted recall of 89.0%, which we feel is a remarkable
achievement considering the very difficult faces we aim
to detect. On the Campus Face Set, which is an easier
set because it is biased toward frontal faces, we achieve a
hand-counted recall of 90.7%. Our ground-truth boxes were
selected using a conservative notion of identifiable which
causes our recall to be low. Identifiability exists on a con-
tinuum and is highly subjective; in Figure 9 we show our
recall at varying levels of identifiability.

We use the automatic box recall and FPR to compare
different versions of our own detector and to provide some
context for our performance by comparing to the Tsinghua
University detector[5], the detector used in Google’s Picasa,
and the OpenCV detector7. It is important to emphasize that
those comparisons do not serve to show that our detector is
superior in general; those detectors do not have available
to them the signals that we leverage to achieve our perfor-
mance, and in fact, we could base our system on any of
those detectors. We ran the Picasa, OpenCV, and Tsinghua
detectors with their default settings, except to set the min-

7http://opencv.willowgarage.com
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Figure 9. Over 20 of our fellow engineers rated the identifiability
of the faces we did not sufficiently blur in the Campus Set on a
scale from zero to four, where zero is almost unidentifiable and
four is easily identifiable. The authors did not participate. We
gathered three scores for each face and took the mean to get an
identifiability score for each face. We show two randomly-selected
faces from each level above (at half-resolution to save space and
preserve relative size). A plurality (42%) of the missed faces were
rated as a one, with 32% rated as a two. Most of the ratings were
within one level of the mean, indicating a high level of agreement,
with the most disagreement on faces in [1, 3]. Above we show a
graph of what our hand-counted recall would be if we took each
of the identifiability levels as our threshold for “identifiability”.

imum face size to the same size we use with our primary
detector (12-pixel box width). We also show comparisons
to our “baseline” detector, which is our primary detector
before it was retrained for high recall, but using a 12-pixel
minimum box width to allow for a fair comparison. In Fig-
ure 8(a) we show that on our Cities set, we dominate the
other detectors in the high recall regime. In 8(b) we show



the same results for the easier Campus set. In 8(c), we
show the relative performance of different versions of our
detector, including our baseline detector, our primary de-
tector without post-processing, our secondary detector, and
our full system.

In addition to having high recall and a relatively low
pixel FPR, our system is also fast. To process a 5-megapixel
image, our primary detector takes an average of 6-8s, our
secondary detector takes 1-2s, and the post-processor takes
on the order of 100ms, for a total of 7-10 seconds, depend-
ing upon the image. Compare this to about 30s for the
Tsinghua detector using the same minimum face size.

4. License plates
4.1. Evaluation data sets

We separate our license plate evaluation ground truth
into two sets, one for the United States and one for the
European Union. EU license plates are longer and thin-
ner than US license plates, thus changing the aspect ratio,
and EU plates are different than US plates in their font, text
size, and coloring. Most EU plates vary little in appearance
from one another, and while US license plates can vary be-
tween and within states, we have found it sufficient to use
a single detection system for all US plates. The US data
set includes 17,680 plates from 120,448 images sampled
from three metropolitan areas from different geographical
regions, and the EU set includes 12,768 plates from 40,295
images sampled from three EU countries on 168 different
driving days. For privacy reasons, we cannot release these
data sets and must redact any plates shown in the paper.

4.2. Algorithms and system

The license plate system has the same overall structure
as the face system and uses the same basic algorithms, with
these exceptions: (1) the feature set is reduced (Table 1),
(2) there is no secondary detector, and (3) instead of a color
model, it makes use of a simplified “car detector” to provide
context. We directly adapted the face detector from Section
3.2.1 to the task of license plate detection, and to our sur-
prise, it provided a high recall. The ground truth boxes are
rectilinear, and were drawn as tightly as possible around the
license plates such that all four corners of the plates were
touching some side of the box (see Figure 10). We do not
provide context outside the plate box to the license plate
detector because this would require the detector to general-
ize over the variation in cars in addition to the variation in
plates. Instead we leverage the surrounding context in our
post-processor.

Because plates captured at an angle result in ground truth
boxes that are more square and because they have a charac-
teristic pattern in the corners, we use two channels in the
detector for frontal and slanted plates, each with one aspect

ratio. To prepare for training, we hand-separated the plates
with the aid of a simple classifier. Otherwise, the algorithm
and training for the license plate detector follows the same
methodology as in 3.2.1. We trained separated detectors for
US and EU plates to accommodate the different aspect ratio.

The post-processor neural network has a total of 24 in-
put nodes, two fully-connected hidden layers of 16 nodes
each, and two output nodes. Again we use the output of a
convolutional neural network as input to the post-processor
neural network, and use the same 64-by-64 pixel box size,
architecture, and methodology as with faces (Section 3.2.2).

We also provide to the post-processor network two fea-
tures from a sliding window-based car detector, which acts
as a “context” signal for license plates. Figure 11 shows the
output of the car detector for one image. The car detector
uses a variety of features, including (1) Haar features com-
puted over pixel intensity, Harris corner responses, and gra-
dient responses, and (2) gradient and intensity histograms
computed over the full box. The car boxes used as training
data are automatically generated by selecting an expanded
image region around the ground-truth license plate boxes
(Figure 11). The outputs of the detector are not merged, pro-
viding multiple overlapping car box candidates. To generate
the post-processor context features, we compute an ideal car
box for the license plate according to the same proportions
used in training, and find the “best” detected car box, which
is the the one that best overlaps the ideal car box. The two
features provided to the post-processor are (1) the overlap
(intersection over union) of the ideal and best detected car
boxes, and (2) the detection score of the best box.

We used about 10,000 hand-marked boxes to train the
detectors, about 36,000 boxes to train the car context detec-
tors, and about 18,900 boxes to train the post-processors.
The training data was sampled from US and EU major
metropolitan areas which are not represented in our eval-
uation set.

Figure 10. Examples of how ground-truth license plates were
marked by humans (in white). Image hand-redacted.

There has been less work in the academic literature on
license plate detection than on faces. Porikli and Kocak [10]
train a covariance descriptor-based neural network classifier
for license plates; and Dlagnekov [2] applied the Viola and
Jones’s method directly to license plate detection. There has
also been work incorporating local context for detection, for
example the work of Kruppa et al. [8] that uses an upper-



Figure 11. Left: the geometry of a context box relative to a ground-
truth or detected US license plate. Right: example car detector
output.
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Figure 12. License plate results for the US (left) and EU (right).
The circle shows our system’s operating point, chosen using a
held-out validation set.

body classifier to improve face detection.

4.3. License plate results

We use the same evaluation methodology as for faces,
but for plates, we consider a license plate “identifiable” if
three or more characters of the plate number are legible and
consider it “sufficiently blurred” if we blur it such that it
is no longer identifiable. Our hand-counted recall at our
chosen operating point is 96.5% for US and 93.6% for EU.

With license plates, there is a wider gap between the
hand-counted and automatic recall because even fewer pix-
els need to be detected in order to sufficiently blur a plate
(Figure 7), especially for EU plates. For this reason we
use an automatic box recall threshold of 0.3, though the
automatic recall still significantly under counts our perfor-
mance. In Figure 12 we show a comparison between our fi-
nal system, our detectors before post-processing, and a ver-
sion of our system without the car context features.

5. Publication
Using the final boxes, we redact the camera images,

which are stitched to give the panorama. We need a redac-
tion method that: (1) is irreversible, (2) is not too strange-
looking on faces, (3) hides some of our many false posi-
tives, and (4) makes it obvious to the public that redaction

has occurred. (Note that the fourth requirement eliminates
algorithms that cleanly swap faces or facial features.) We
chose to apply a combination of noise and aggressive Gaus-
sian blur that we alpha-blend smoothly with the background
starting at the edge of the box.

Lastly, while this system is state-of-the-art, the privacy
protections in Google Street View don’t end here. Our users
help us to continually narrow the gap between our automatic
performance and 100% recall by reporting unblurred faces
and license plates which we then blur in the live product.
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