
Dynamic Race Detection with LLVM Compiler

Compile-time instrumentation for ThreadSanitizer

Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and
Dmitriy Vyukov

OOO Google, 7 Balchug st., Moscow, 115035, Russia
{kcc,glider,timurrrr,dvyukov}@google.com

Abstract. Data races are among the most difficult to detect and costly
bugs. Race detection has been studied widely, but none of the existing
tools satisfies the requirements of high speed, detailed reports and wide
availability at the same time. We describe our attempt to create a tool
that works fast, has detailed and understandable reports and is available
on a variety of platforms. The race detector is based on our previous
work, ThreadSanitizer, and the instrumentation is done using the LLVM
compiler. We show that applying compiler instrumentation and sampling
reduces the slowdown to less than 1.5x, fast enough for interactive use.

1 Introduction

Recently the growth of CPU frequencies has transformed into the growth of the
number of cores per CPU. As a result, multithreaded code became more popular
on desktops, and concurrency bugs, especially data races, became more frequent.
The classical approach to dynamic race detection assumes that program code
is instrumented and program events are passed to an analysis algorithm [6, 10].
Some of the publicly available race detectors for native code [13, 5, 11] use run-

time instrumentation. There are also tools that use compiler instrumentation [8,
4, 1, 9], but none is publicly available on most popular operating systems.

In [11] we described ThreadSanitizer (TSan-Valgrind), a dynamic race de-
tector for native code based on run-time instrumentation. The tool has found
hundreds of harmful races in a number of C++ programs at Google, includ-
ing some in the Chromium browser [2]. Significant slowdown remains the largest
problem of ThreadSanitizer: for many tests we observed 5x–30x slowdown due to
the complex race detection algorithm; on heavy web applications the slowdowns
were even greater (50x and more) because of the underlying translation system
(Valgrind, [13])1. Another problem with Valgrind is that it serializes all threads;
with multicore machines this becomes a serious limitation. Finally, Valgrind is
not available on some platforms we are interested in (entirely unavailable on
Windows, hard to deploy on ChromiumOS).

In this paper we present TSan-LLVM, a dynamic race detector that uses
compile-time instrumentation based on a widely available LLVM compiler [7].

1 Mainly because Valgrind had to execute much single-threaded JavaScript code.



The new tool shares the race detection logic with ThreadSanitizer, but has
greater speed and better portability. Our work resembles LiteRace [8] (both
use compiler instrumentation and sampling, the performance figures are com-
parable), but the significant advantages of our tool are the more precise race
detection algorithm [11], the granularity of sampling and public availability. We
have also made an instrumentation plugin for GCC, but do not describe it here
due to the limited space.

2 Compiler instrumentation

The compiler instrumentation is implemented as a pass for the LLVM compiler.
The resulting object files are linked against our runtime library.

2.1 Runtime library

As opposed to a number of popular race detection algorithms [10, 13, 8], Thread-
Sanitizer [11] tracks both locksets and the happens-before relation. This allows
it to switch between the pure happens-before mode, which reports no false pos-
itives, but may miss bugs, and the hybrid mode, which finds more potential
races, but may give false reports. In both modes the tool reports the stacks of
all the accesses constituting the race, along with the locks taken and the origin
of memory involved. This is vital in order to give all the necessary information
to the tool users.

The algorithm is basically a state machine – it receives program events, up-
dates the internal state and, when appropriate, reports a potential race. The ma-
jor events handled by the state machine are: Read, Write (memory accesses);
Signal, Wait (happens-before events); Lock, Unlock (locking events).

RTL, or the runtime library, provides entry points for the instrumented code,
keeps all the information about the running program (e.g. the location and size
of thread stacks and thread-local storage) and generates the events by wrapping
the functions that are of interest for the race detector:

– libpthread synchronization primitives and thread manipulation routines;
– memory allocation routines (e.g. malloc()/free(), mmap(), new/delete);
– other functions that imply happens-before relations in the real world pro-

grams (atexit(), read()/write());
– dynamic annotations [11], which tell the detector about specific means of

synchronization.

2.2 Instrumentation

The instrumentation is done at the LLVM IR level, which gives a number of
advantages over the more high-level approaches [9].

For each translation unit the following steps are done:
Call stack instrumentation. In order to report nearly precise contexts for

all memory accesses that constitute a race, ThreadSanitizer has to maintain a



correct call stack for every thread at all times. We keep a per-thread stack with
a pointer to its top; at every function entry and exit the stack is changed, and
at every basic block start the top is updated2.

To keep the call stack consistent, the tool also needs to intercept setjmp()
and instrument the LLVM invoke instruction to roll back the stack pointer when
necessary. This is not done yet, because these features are rarely used at Google.

Memory access instrumentation. Each memory access event is a tuple
of 5 attributes: thread id, ADDR, PC, isWrite, size. The last three are statically
known. Memory accesses that happen in one basic block3 are grouped together;
for each block the compiler module creates a passport – an array of tuples rep-
resenting each memory access. Every memory access is instrumented with the
code that records the effective address of the access into a thread-local buffer.
The buffer contents are processed by ThreadSanitizer at the end of each block.

2.3 Sampling

In order to decrease the runtime overhead even more, we’ve experimented with
sampling the memory accesses. We exploit the cold-region hypothesis [8]: data
races are more likely to occur in cold regions of well-tested programs, because
the races in hot regions either have been already found and fixed or are benign.

The technique we use for sampling is quite similar to that suggested in Lite-
Race [8]: ThreadSanitizer adapts the thread-local sampling rate per code region
(basic block or superblock, as opposed to LiteRace, which tracks functions) such
that the sampling rate decreases logarithmically with the total number of exe-
cutions. Unlike in LiteRace, the instrumented code is always executed and the
memory access addresses are put into the buffer, which is then either processed
or just ignored depending on the value of the execution counter region. To save
memory, we do not keep this counter for each thread – instead we take the thread
id modulo 8 and keep only 8 pairs of counters for each region storing them such
that false sharing is minimized.

2.4 Limitations and further improvements

The compiler-based instrumentation has some disadvantages over the run-time
instrumentation: the races in the code which was not re-compiled with the race
detection enabled (system libraries, JIT-ed code) will be missed, the tool usage is
less convenient since it requires a custom build4. As we show in the next section,
the benefit of much higher speed outweighs these limitations for our use cases.

Much could be done to decrease the overhead even further by reducing the
number of instrumented memory accesses without loosing races. A promising
direction is to use compiler’s static analysis to skip accesses that never escape the
current thread. Another optimization is to instrument only one of the accesses
to the same memory location on the same path.

2 Optimizations may apply, e.g. leaf functions do not need to maintain the call stack.
3 We also extend this approach to handle larger acyclic regions of code (superblocks).
4 Valgrind-based tools also usually require a custom build to avoid false positives.



3 Results

To estimate the performance of our tool, we ran it on two Chromium tests and a
synthetic microbenchmark. We’ve already used TSan-Valgrind to test Chromium
(see [11]) and were able to compare the results and assess the benefits of the
compile-time instrumentation approach for a real-word application. Cross fuzz
[3] is a cross-document DOM binding fuzzer that is known to stress the browser
and reveal complex bugs, including races. Net unittests [2] is a set of nearly 2000
test cases that test various networking features and create many threads. The
third test we ran just calls a simple non-inlined function5 many times:

void IncrementMe(int *x) { (*x)++; }

One variant of the test is single-threaded, the other variant spawns 4 threads
that access separate memory regions.

The measurements were done on an HP Z600 machine with 2 quad-core Intel
Xeon E5620 CPUs (with hyper-threading enabled) and 12G RAM.

Table 1 contains execution times for uninstrumented binaries run natively
and under TSan-Valgrind compared to the instrumented binaries tested in two
modes: with full memory access analysis (TSan-LLVM, sampling disabled) and
with race detection disabled (TSan-LLVM-null, an empty stub is called at the
end of each block, therefore a highly sampled run is slightly faster). We’ve also
measured run times under Intel Inspector XE [5], Memcheck6 and Helgrind ver-
sion 3.6.1 [13].

Table 1. TSan-LLVM compared to other tools. Time in seconds.

tool cross fuzz net unittests synthetic, 1 thread synthetic, 4 threads

native run 71.6 87 0.9 0.9

Memcheck 1275 991 33 133

Inspector XE failed 1064 130 480

Helgrind failed 2529 40 154

TSan-Valgrind 325.2 592 49 191

TSan-LLVM 190.9 206 15.5 17

TSan-LLVM-null 78.6 119 2 2.1

The comparison shows that TSan-LLVM outperforms TSan-Valgrind by 1.7x–
2.5x on the big tests. The tool did not instrument libc and other system libraries,
but we estimate their performance impact to be within 2%–3%.

Table 2 shows how the performance depends on the sampling parameter (a
number k which, if greater than 0, means that sampling starts after 232−k execu-
tions of a block). Using the sampling value of 20 is 1.5x–2x faster than without

5 Part of racecheck unittest [12], a test suite for data race detectors. TSan-Valgrind
passes all of them, TSan-LLVM passes those that do not require instrumenting libc.

6 Memcheck, the Valgrind memory error detector, does different kind of instrumenta-
tion and can not ignore JavaScript, but its figures may still serve as a data point.



sampling on the chosen benchmarks. In this mode the slowdown compared to
the native run is less than 1.5x, and the tool is still capable of finding a number
of known races. Better analysis of sampling vs. accuracy is still to be done.

Table 2. TSan-LLVM performance with various sampling values.

test name sampling parameter (0–31) 0 10 20 30

cross fuzz
time, sec 190.9 142.3 94.5 78.1

accesses analyzed, % 100.0 77.8 16.2 3.6

net unittests
time, sec 206 190 134 117

accesses analyzed, % 100.0 33.7 14.1 13.4

4 Conclusions

We present a dynamic race detector based on low-level compiler instrumenta-
tion. This detector has a large speed advantage (1.7x–2.5x on the real-world
applications) over our previous Valgrind-based tool, and a slowdown factor of
2.5x (less than 1.5x, if used with sampling), which is fast enough to run interac-
tive UI tests on the instrumented Chromium browser and find otherwise hidden
bugs in it. The achieved speedup could be improved even further if additional
compile-time static analysis is employed.

References

1. Sun Studio, http://developers.sun.com/sunstudio
2. Chromium browser, http://dev.chromium.org
3. Cross Fuzz, http://lcamtuf.coredump.cx/cross fuzz
4. Duggal, A.: Stopping Data Races Using Redflag. Master’s thesis, Stony Brook

University (May 2010), technical Report FSL-10-02
5. Intel Inspector XE, http://software.intel.com/en/articles/intel-parallel-studio-xe
6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM (1978)
7. The LLVM Compiler Infrastructure, http://llvm.org
8. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for

lightweight data-race detection. In: PLDI (2009)
9. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multi-

threaded c++ programs. In: PPoPP ’03. pp. 179–190. ACM (2003)
10. Savage, S., Burrows, M., et al.: Eraser: a dynamic data race detector for multi-

threaded programs. ACM TOCS 15(4), 391–411 (1997)
11. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.

WBIA (2009)
12. ThreadSanitizer project: documentation, source code, dynamic annotations, unit

tests, http://code.google.com/p/data-race-test
13. Valgrind, Helgrind., http://www.valgrind.org


