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Testing Scale at Google
● 4.2 million individual tests running continuously

○ Testing runs before and after code submission

● 150 million test executions / day (averaging 35 runs / test / day)
● Distributed using internal version of bazel.io to a large compute farm
● Almost all testing is automated - no time for Quality Assurance
● 13,000+ individual project teams - all submitting to one branch
● Drives continuous delivery for Google
● 99% of all test executions pass

http://bazel.io
https://www.youtube.com/watch?v=W71BTkUbdqE


Testing Culture @ Google
● ~10 Years of testing culture promoting hand-curated automated testing

○ Testing on the toilet and Google testing blog started in 2007
○ GTAC conference since 2006 to share best practices across the industry
○ Part of our new hire orientation program

● SETI role
○ Usually 1-2 SETI engineers / 8-10 person team
○ Develop test infrastructure to enable testing

● Engineers are expected to write automated tests for their submissions
● Limited experimentation with model-based / automated testing

○ Fuzzing, UI waltkthroughs, Mutation testing, etc.
○ Not a large fraction of overall testing

https://testing.googleblog.com/2007/01/introducing-testing-on-toilet.html
https://testing.googleblog.com/
https://testing.googleblog.com/2007/01/introducing-testing-on-toilet.html
https://developers.google.com/google-test-automation-conference/
https://developers.google.com/google-test-automation-conference/
https://testing.googleblog.com/2016/09/what-test-engineers-do-at-google.html
https://testing.googleblog.com/2016/09/what-test-engineers-do-at-google.html
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Presubmit Testing

● Uses fine-grained dependencies
● Uses same pool of compute resources
● Avoids breaking the build
● Captures contents of a change and tests in isolation

○ Tests against HEAD
● Integrates with 

○ submission tool - submit iff testing is green
○ Code Review Tool - results are posted to the review 



Example Presubmit Display



Postsubmit testing

● Continuously runs 4.2M tests as changes are submitted
○ A test is affected iff a file being changed is present in the transitive closure 

of the test dependencies. (Regression Test Selection)
○ Each test runs in 2 distinct flag combinations (on average)
○ Build and run tests concurrently on distributed backend. 
○ Runs as often as capacity allows

● Records the pass / fail result for each test in a database
○ Each run is uniquely identified by the test + flags + change
○ We have 2 years of results for all tests
○ And accurate information about what was changed

See: prior deck about Google CI System, See this paper about piper and CLs

http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
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Life of a Test Execution
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Goal is to minimize time between submission and test results 
provided to developer using minimum compute resources.

Test Results

Micro-schedulers



Micro-schedulers

● Selectively run any target at any CL
● Fill the gaps in the main scheduler

○ Missed targets
○ Not-yet-run targets

● Research hypotheses can be quickly tested 



Cuprit Finding - Transition to Fail
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Cuprit Finding - Transition to Fail
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A: Change 3 broke test A.



Other micro-schedulers

● Culprit finder
○ Ranked culprit finder
○ Flakiness culprit finder

● Breakage predictor
○ Hot spots seeker 
○ Brain-based predictor
○ Crowd sourcer 

● Fix detector
● Auto-rollback



Analysis of Test Results at Google

● Analysis of a large sample of tests (1 month) showed:
○ 84% of transitions from Pass -> Fail are from "flaky" tests
○ Only 1.23% of tests ever found a breakage
○ Frequently changed files more likely to cause a breakage
○ 3 or more developers changing a file is more likely to cause a breakage
○ Changes "closer" in the dependency graph more likely to cause a breakage
○ Certain people / automation more likely to cause breakages (oops!)
○ Certain languages more likely to cause breakages (sorry)

See: prior deck about Google CI System, See this paper about piper and CLs

http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext


Flaky Tests

● Test Flakiness is a huge problem
● Flakiness is a test that is observed to both Pass and Fail with the same code
● Almost 16% of our 4.2M tests have some level of flakiness
● Flaky failures frequently block and delay releases
● Developers ignore flaky tests when submitting - sometimes incorrectly
● We spend between 2 and 16% of our compute resources re-running flaky tests

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html


Flaky test impact on project health

Flakes

● Many tests need to be aggregated to qualify a project
● Probability of flake aggregates as well
● Flakes

○ Consume developer time investigating
○ Delay project releases
○ Waste compute resources re-running to confirm



Percentage of resources spent re-running flakes
% of testing compute hours spent on retrying flaky tests



Sources of Flakiness
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● Factors that cause flakes
■ Test case factors

● Waits for resource
● sleep()
● Webdriver test
● UI test

■ Code being tested
● Multi-threaded

■ Execution environment/flags
● Chrome
● Android

○ ...

Exec
Env

Code 
Being 

Tested

Test
Case

Android

UI

Multi-threaded

See: https://pdfs.semanticscholar.org/02da/46889ee3c6bc44bfa0fc45071195781b99ce.pdf 

http://mir.cs.illinois.edu/farah/presentations/fse14_presentation.pdf
http://mir.cs.illinois.edu/farah/presentations/fse14_presentation.pdf
https://pdfs.semanticscholar.org/02da/46889ee3c6bc44bfa0fc45071195781b99ce.pdf


Flakes are Inevitable

● Continual rate of 1.5% of test executions reporting a "flaky" result
● Despite large effort to identify and remove flakiness

○ Targeted "fixits"
○ Continual pressure on flakes

● Observed insertion rate is about the same as fix rate

Conclusion: Testing systems must be able to deal with a certain level of flakiness.  
Preferably minimizing the cost to developers



● We re-run test failure transitions (10x) to verify flakiness
○ If we observe a pass the test was flaky
○ Keep a database and web UI for "known" flaky tests

Flaky Test Infrastructure



Google's Internal Development Systems

● Much of what Google uses internally is proprietary
● We have started open sourcing our tools starting with Bazel (bazel.io)
● Bazel is the same build tool that we use internally (with the Google proprietary 

parts removed)

http://bazel.io


An example bazel BUILD file
java/BUILD:

java_library(

    name = "mylib",

    srcs = ["my/webapp/TestServlet.java"],

    deps = [":javax.servlet.api"],

)

appengine_war(

    name = "myapp",

    jars = ["mylib"],

    resources = ["//dart:dart"],

    ...

)

dart/BUILD:

dart_library(

    name = "mylib",

    srcs = glob(["mylib/**/*.dart"]),

)

dart_library(

    name = "dart",

    deps = ["mylib"],

)

dart_test(

    name = "mydart_test",

    deps = ["dart", "mylib"]

    srcs = global(["mytests/**/*.dart"]),

)

rule's name

highly accurate
dependencies
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Tests appear with 
accurate dependencies

https://github.com/bazelbuild/rules_appengine#basic-example
https://github.com/bazelbuild/rules_appengine#basic-example
https://github.com/bazelbuild/rules_appengine#basic-example
https://github.com/dart_lang/rules_dart/tree/master/examples
https://github.com/dart_lang/rules_dart/tree/master/examples
https://github.com/dart_lang/rules_dart/tree/master/examples


Enabling Google-Scale Research in Academia

● Most academic work tests hypotheses in open source projects
○ Limited codebase
○ No historical Pass / Fail results
○ Old projects with low churn rate / relevance

● What we are doing about it
○ Sponsor researchers to come in - student interns and visiting faculty
○ Test hypotheses against Google code base at scale
○ Full access to historic Pass / Fail data helps to test hypotheses 
○ Publish results and relevant data sets
○ Creating API frameworks and extensibility  (like micro-schedulers) to ease experimentation



Academic Research in Software Testing @ Google

● Join us for an internship or the Visiting Faculty Program!
○ Test hypotheses against real data at scale
○ Publish relevant papers

■ With sanitized data sets!
○ Test ideas more quickly
○ Make data from Google scale application development more widely available

● Participate in our journal club
○ Review relevant papers monthly
○ Paper authors often join the discussion

● Apply for a Google Faculty Research Award

https://careers.google.com/students/engineering-and-technical-internships/
https://research.google.com/research-outreach.html#/research-outreach/faculty-engagement/visiting-faculty-program
https://cs.corp.google.com/codesearch/f/piper///depot/google3/experimental/culprit_finder/research-paper/0-paper.pdf
https://sites.google.com/site/gjournalclub/
https://research.google.com/research-outreach.html#/research-outreach/faculty-engagement/faculty-research-awards


Q&A

For more information:

● Google Testing Blog on CI system
● Youtube Video of Previous Talk on CI at Google

● Flaky Tests and How We Mitigate Them

● Why Google Stores Billions of Lines of Code in a Single Repo
● GTAC 2016 Flaky Tests Presentation
● (ICSE 2017) "Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In 

Continuous Integration at Google Scale" by Celal Ziftci and Jim Reardon
● (ICSE 2017) “Taming Google-Scale Continuous Testing,” by Atif Memon, Zebao Gao, Bao Nguyen, 

Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=KH2_sB1A6lA&feature=youtube_gdata_player
https://www.youtube.com/watch?v=KH2_sB1A6lA&feature=youtube_gdata_player
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://research.google.com/pubs/pub45794.html
https://research.google.com/pubs/pub45794.html
https://research.google.com/pubs/pub45794.html
https://drive.google.com/open?id=0Bx-FLr0Egz9zYXJfMEZ6NERTbkU

