Idle Time Garbage Collection Scheduling

Ulan Degenbaev* Jochen Eisinger*

Manfred Ernst”

Ross Mcllroy” Hannes Payer*

Google Germany*, UK", USA*
{ulan,eisinger,ernstm,rmcilroy,hpayer } @google.com

Abstract

Efficient garbage collection is increasingly important in to-
day’s managed language runtime systems that demand low
latency, low memory consumption, and high throughput.
Garbage collection may pause the application for many mil-
liseconds to identify live memory, free unused memory, and
compact fragmented regions of memory, even when employ-
ing concurrent garbage collection. In animation-based ap-
plications that require 60 frames per second, these pause
times may be observable, degrading user experience. This
paper introduces idle time garbage collection scheduling to
increase the responsiveness of applications by hiding expen-
sive garbage collection operations inside of small, otherwise
unused idle portions of the application’s execution, result-
ing in smoother animations. Additionally we take advantage
of idleness to reduce memory consumption while allowing
higher memory use when high throughput is required. We
implemented idle time garbage collection scheduling in V8,
an open-source, production JavaScript virtual machine run-
ning within Chrome. We present performance results on var-
ious benchmarks running popular webpages and show that
idle time garbage collection scheduling can significantly im-
prove latency and memory consumption. Furthermore, we
introduce a new metric called frame time discrepancy to
quantify the quality of the user experience and precisely
measure the improvements that idle time garbage collection
scheduling provides for a WebGL-based game benchmark.
Idle time garbage collection scheduling is shipped and en-
abled by default in Chrome.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors - Memory management (garbage
collection); D4 [Process Management]: Scheduling

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
PLDI’16, June 13-17, 2016, Santa Barbara, CA, USA

ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908106

570

General Terms
Performance

Algorithms, Languages, Measurement,

Keywords Garbage Collection, Memory Management, Vir-
tual Machines, Scheduling, JavaScript, Web Applications,
Browser Technology

1.

Many modern language runtime systems such as Chrome’s
V8 JavaScript engine dynamically manage memory for run-
ning applications so that developers do not need to worry
about it themselves. The engine periodically passes over
the memory allocated to the application, determines live
memory, and frees dead memory. This process is known as
garbage collection.

Chrome strives to deliver a smooth user experience ren-
dering the display at 60 frames per second (FPS). Although
V8 already attempts to perform garbage collection both in-
crementally in small chunks and perform some operations
concurrently on multiple threads, larger garbage collection
operations can and do occur at unpredictable times — some-
times in the middle of an animation — pausing execution and
preventing Chrome from achieving the 60 FPS goal.

Chrome 41 includes a task scheduler for the Blink render-
ing engine which enables prioritization of latency-sensitive
tasks to ensure the browser remains responsive and snappy.
As well as being able to prioritize work, this task scheduler
has centralized knowledge of how busy the system is, what
tasks need to be performed, and how urgent each of these
tasks are. The scheduler can estimate when Chrome is likely
to be idle and approximately how long it expects to remain
idle.

An example of this occurs when Chrome is showing an
animation on a webpage. The animation will update the
screen at 60 FPS, giving Chrome around 16.6 ms of time
to perform the update. Chrome will start work on the next
frame as soon as the current frame has been displayed, per-
forming input, animation and frame rendering tasks for this
new frame. If Chrome completes all this work in less than
16.6 ms, then it has nothing else to do for the remaining time
until it must start rendering the next frame. Chrome’s sched-
uler enables V8 to take advantage of this idle time period by

Introduction

vsync vsync vsync
i | i
1 I 1
1 | 1
! Idle | Other | Idle !
:[Input I Draw][GC] Idle : Input Draw GC :
I 1 »l
Time

Figure 1: Idle times during rendering of an animation.

scheduling special idle tasks which run when Chrome would
otherwise be idle.

Idle tasks are given a deadline which is the scheduler’s
estimate of how long it expects to remain idle. In the anima-
tion example depicted in Figure 1, this is the time at which
the next frame should start being drawn. In other situations
(e.g., when no on-screen activity is happening) this could be
the time when the next pending task is scheduled to be run.
The deadline is used by the idle task to estimate how much
work it can do without causing jank! or delays in input re-
sponse.

There remain three key challenges for the garbage col-
lector to efficiently take advantage of idle tasks. First, which
garbage collection operation should be scheduled during idle
time? Second, how long will a given garbage collection op-
eration take? Third, when should a given garbage collection
operation be scheduled proactively? If the right garbage col-
lection operation is scheduled at the right time, garbage col-
lection interruptions may be hidden from latency-sensitive
tasks allowing 60 FPS.

Summary of Contributions
¢ An implementation of idle tasks in the Blink scheduler;

e A garbage collection performance profiler in V8 which
allows V8 to estimate duration of future garbage collec-
tion operations to schedule them during application idle
times based on various heuristics;

e Frame time discrepancy, a novel metric to quantify user
experience for animations;

e A set of novel real-world benchmarks together with a
thorough evaluation.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce Chrome and its task scheduling, describe
how garbage collection works in the V8 JavaScript virtual
machine, and discuss Chrome’s benchmarking framework
Telemetry. Section 3 discusses metrics to quantify user expe-
rience and introduces frame time discrepancy, a novel met-
ric to quantify jank for animation-based applications. Sec-
tion 4 introduces idle tasks and describes the algorithm used
by the Blink scheduler to estimate periods where Chrome
is likely to remain idle, such that idle tasks can execute

! Latency introduced by e.g. the garbage collector causing observable spo-
radic animation artifacts due to dropped frames. Also referred to as jitter or
hiccups.

571

without introducing jank. Section 5 introduces idle time
garbage collection scheduling with its heuristics to reduce
jank and memory consumption. Section 6 discusses related
work. Section 7 demonstrates that idle time garbage collec-
tion scheduling can reduce garbage collection latency and
memory consumption on various real-world webpages fol-
lowed by conclusions in Section 8.

2. Background

In this section we introduce all the necessary ingredients
for idle time garbage collection scheduling. We give a brief
overview about rendering of webpages in Chrome, task
scheduling in the Blink scheduler, V8 garbage collection,
and the Telemetry benchmarking framework.

21

Webpages are rendered by Chrome in a multi-step process.
After being parsed, the page’s HTML, JavaScript and CSS
files are used to build up a Document Object Model (DOM)
tree. This DOM tree represents the internal structure of the
page and can be manipulated by the page via JavaScript in
order to change the visible content of the webpage dynam-
ically. Chrome uses this DOM tree to build an internal ren-
der tree, representing the operations required to display the
page elements on screen during rendering. If the page mod-
ifies its DOM tree, Chrome performs a re-layout operation
to discover how the render tree should be modified in order
to reflect these changes. If a modification to the render tree
causes a change to the content displayed on screen, or the
user performs a scroll which changes what content is dis-
played, Chrome’s compositor will draw a new frame to the
display.

Chrome’s compositor is multi-threaded, with the main
thread (where JavaScript functions are executed) responsi-
ble for maintaining the DOM and renderer tree, and the
compositor thread responsible for drawing the render tree
to screen. When the compositor decides to draw a frame, it
signals to the main thread that it is beginning a new frame.
When the main thread receives this signal, it performs any
JavaScript operations required for the new frame (e.g., run-
ning requestAnimationFrame callbacks as well as batching
up input operations and calling any registered JavaScript in-
put handlers). It then updates the render tree in response to
any changes performed to the DOM tree. Once the render
tree is updated, the main thread will acknowledge that it has
committed its processing for the frame, and the compositor
thread will draw the frame to the display.

Certain operations which do not involve JavaScript call-
backs (e.g. scrolling) can happen entirely on the compositor
thread, thereby avoiding being bottlenecked by other opera-
tions happening on the main thread. However, many anima-
tions require interaction with the main thread and thus can
be delayed if the main thread is busy, for example, due to a
garbage collection operation by V8.

Webpage Rendering

2.2 Task Scheduling

Chrome employs a task scheduler [26] on the main thread
in order to reduce the likelihood of frame updates being
delayed by long running operations on the main thread.
Tasks are posted to type-specific queues such as queues
for compositing operations, input handling tasks, JavaScript
timer execution tasks, and page loading tasks. Tasks on the
same queue are run in the same order as they were posted,
to maintain task ordering semantics required by Chrome,
however tasks posted on different queues are free to be
reordered by the scheduler.

The scheduler dynamically re-prioritizes the task queues
based on signals it receives from a variety of other compo-
nents of Chrome and various heuristics aimed at estimating
user intent. For example, while the page is loading, tasks on
the loading task queue, such as HTML parsing or network
requests, are given priority. Alternatively, if a touch event is
detected, the scheduler will prioritize compositing and input
tasks for a period of 100ms, on the assumption that a follow-
up input events is likely to occur within this time interval as
the user interacts with the webpage by scrolling, tapping or
clicking.

The scheduler’s combined knowledge of task queue oc-
cupancy and signals from other components of Chrome en-
ables it to estimate when it is idle and how long it is likely
to remain idle. This knowledge is used by the scheduler to
schedule low-priority tasks which are only run when there
is nothing more important to do. These low-priority tasks,
hereafter called idle tasks, are put on a queue which is only
run when all other queues are empty, and executed for a lim-
ited time to ensure latency sensitive tasks are not impacted
by their execution.

Section 4 provides more details on our approach to sched-
ule idle tasks, and Section 5 details how idle tasks are em-
ployed by V8’s garbage collector to reduce user-perceived
jank.

2.3 V8 Garbage Collection

V8 is an industrial-strength virtual machine for JavaScript
that can be embedded into a C/C++ application through a
set of programmable APIs. V8 is most prominently used by
both the Chrome and Opera web browsers and the server-
side node.js framework [33].

V8 wuses a generational garbage collector with the
JavaScript heap split into a small young generation (up to
16M) for newly allocated objects and a large old genera-
tion (up to 1.4G) for long living objects. Since most objects
typically die young in regular webpages [1], this genera-
tional strategy enables the garbage collector to perform regu-
lar, short garbage collections in the small young generation,
without having to trace objects in the large old generation.
Moreover, when V8 detects that the generational hypothesis
does not hold for some allocation sites, it performs dynamic

572

allocation-site-based pretenuring [14] to allocate long living
objects directly in the old generation.

Both, the young and old generations are organized in
pages of 1M in size, which allows efficient heap growing
and shrinking strategies. Objects larger than 600K are allo-
cated on separate, arbitrary size pages which are considered
to be part of the old generation. The old generation also in-
cludes the code space with all executable code objects and
the map space with the evolved hidden classes [18]. Note
that allocations from JavaScript do not require synchroniza-
tion since JavaScript is single-threaded and each JavaScript
context gets its own private heap.

The young generation uses a semi-space allocation strat-
egy, where new objects are initially allocated in the young
generation’s active semi-space using bump-pointer alloca-
tion, which can be inlined in generated code [13]. Once a
semi-space becomes full, a scavenge operation will trace
through the live objects and move them to the other semi-
space. We refer to such a semi-space scavenge as a minor
garbage collection. Objects which have been moved already
once in the young generation are promoted to the old gener-
ation. After the live objects have been moved, the new semi-
space becomes active and any remaining dead objects in the
old semi-space are discarded without iterating over them.

The duration of a minor garbage collection therefore de-
pends on the size of live objects in the young generation. A
scavenge will be fast (<1 ms) when most of the objects be-
come unreachable in the young generation. However, if most
objects survive a scavenge, the duration of the scavenge may
be significantly longer.

The old generation uses bump pointer allocation on the
fast path, which can be inlined in generated code, for pre-
tenured allocations. Segregated free-lists are used to refill the
bump-pointer. A major garbage collection of the whole heap
is performed when the size of live objects in the old genera-
tion grows beyond a heuristically-derived limit. The old gen-
eration uses a mark-sweep-compact collector with several
optimizations to improve latency and memory consumption.
Marking latency depends on the number of live objects that
have to be marked, with marking of the whole heap poten-
tially taking more than 100 ms for large webpages. In order
to avoid pausing the main thread for such long periods, V8
marks live objects incrementally in many small steps, with
the aim to keep each marking step below 5 ms in duration.
A Dijkstra-style write barrier is used to maintain a tricolor
marking scheme.

After marking, the free memory is made available for
the application again by sweeping the whole old generation
memory. This task is performed concurrently by dedicated
sweeper threads. The main thread only contributes to sweep-
ing if the sweeper threads are not making progress. After-
wards, we perform a young generation evacuation, since we
mark through the young generation and have liveness in-
formation. Similarly to a minor collection, live objects are

moved to the other semi-space or, in the case of already
copied live objects, are moved to the old generation. Then
memory compaction is performed to reduce memory frag-
mentation in the old generation. Finally, the object point-
ers to moved objects in the remembered sets are updated se-
quentially.

The duration of a major collection is essentially linear
in the used heap size. V8 tries to keep these pauses short
(<6 ms) to ensure smooth animations [20].

24

Telemetry is Chrome’s performance testing framework,
which enables the creation of benchmarks which automat-
ically perform various configurable actions on a set of web-
pages and report a variety of performance metrics. The
Telemetry framework is designed to run on all platforms that
Chrome supports, and to not require a special build. Instead,
Telemetry benchmarks can be run on any Chrome binary.
Therefore, Telemetry was designed to run with minimal (ide-
ally no) performance impact on the browser itself. Internally,
Telemetry relies on manual instrumentation of Chrome’s and
V8’s source to gather relevant events. It uses the remote in-
spector protocol of Chrome’s built-in developer tools to re-
trieve this tracing information and control the browser dur-
ing the benchmark. A Telemetry benchmark consists of a
page set which is a collection of HTML, JavaScript, and CSS
files that were captured from a real browsing session, a set
of browser options, and a so-called measurement. Page sets
can have actions associated with them that are executed dur-
ing the benchmark, such as clicking on a certain element,
or performing a swipe gesture. A measurement evaluates
Chrome’s performance on the given page set. It defines the
classes of traces to collect, and how to aggregate these traces
into measurable performance metrics.

In the context of this paper, a page set is a selection of
popular webpages with an optional configurable scroll ges-
ture or a WebGL benchmark without any particular actions.
The respective measurement evaluates how much jank was
observed on the page, how long the individual garbage col-
lection tasks were, and whether or not they fell inside idle pe-
riods. The experiments presented in Section 7 are performed
using the Telemetry framework.

Measuring Performance using Telemetry

3. Discrepancy as a Metric for Frame Rate
Regularity

The quality of the user experience for animation-based ap-
plications depends not only on the average frame rate, but
also on its regularity. A variety of metrics have been pro-
posed in the past to quantify this phenomenon, also referred
to as jank, judder, or jitter. For example: measuring how of-
ten the frame rate has changed, calculating the variance of
the frame durations, or simply using the largest frame dura-
tion. Although those metrics do provide useful information,
they all fail to measure certain types of irregularities. Met-

573

rics that are based on the distribution of frame durations such
as variance or largest frame duration cannot take the tempo-
ral order of frames into account. For example, they cannot
distinguish between the case where two dropped frames are
close together and the case where they are further apart. The
former case is arguably worse.

We propose a new metric to overcome these limitations.
It is based on the discrepancy of the sequence of frame
durations. Discrepancy is traditionally used to measure the
quality of samples for Monte Carlo integration. It quanti-
fies how much a sequence of numbers deviates from a uni-
formly distributed sequence. A sequence of numbers S =
{s1, $2, S3, . . .} is uniformly distributed on an interval [a, b],
if for any subinterval [c, d]:

. |Snﬂ[C,d” d—c
lim = ,
n—o0 n b—a
where S, = {s1,82,...,5,}. The discrepancy of the se-

quence is defined as:

[S.Ne,d]| d—c

b—a

D, = supa<c<d<b
n

S is uniformly distributed if lim,,_, o, D,, = 0.
In our case, S is the finite sequence of timestamps when
a frame was drawn. We do not use D,, directly, because its
value would improve if additional ‘good’ frames were added
to a given sequence. Instead, we calculate the absolute dis-
crepancy D,, = D,, - (b — a). It has the additional benefit of
having milliseconds as the unit, while the relative discrep-
ancy D, is unit-less. In some sense it measures the duration

of the worst irregularity in frame rate.

We also normalize the samples before calculating the

discrepancy. Consider the sequences A = {a1,as,...,a,}
and B = {by,bs,...,b,} with
i—1 i—1
g = —/—— bz = 2 B == 1, .,N.
“EN-T N

The discrepancy of A is %, twice the discrepancy of B.
In our case we do not want to distinguish between the
two cases, as our original domain of the timestamps is not
bounded (as it is for samples in Monte Carlo integration).
We map the timestamps linearly to the interval [0, 1] such
that the first value becomes ﬁ and the last value becomes
1- ﬁ Discrepancy is then calculated for this normalized
sequence.

The properties of the discrepancy metric are easiest un-
derstood by looking at the examples in Figure 2.

Each line represents a series of timestamps. Black dots
represent frames that were drawn, white dots represent
frames that were missed. The spacing between the dots is
1 VSYNC interval, which equals 16.6 ms for a 60 Hz re-
fresh rate. The discrepancies, expressed in VSYNC inter-
vals, are: D(S1) = 1, D(S2) = 2, D(S3) = 2, D(Sy) = 22,

S, 000900000009
S, &—0—0—90—90—90—90—0—0—90909
S; e—e—0—e—0—0—0—0—0—009
Sy ©——0—8—0—0—0—0—0—0—0—-19
S; —e—0—0—0—90—90—0—0—90—90—9

Figure 2: Discrepancy examples.

D(S5) = 3. For the perfect run Sy, the discrepancy is
equal to the spacing between the frames. If a single frame is
dropped (.S2), the discrepancy is the length of the largest gap
between frames. This does not change if an additional frame
is dropped far away from the first one (S3). Remember that
the discrepancy measures the worst case performance, not
the average. That is why we usually combine it with the
mean frame duration to distinguish a single dropped frame
from repeated frame drops (which is a worse experience).
For the sequence Sy, the discrepancy does increase, because
the two dropped frames are now close together; They are
treated as a single area of irregular frame rate. The value 29—5
is computed as follows: The largest discrepancy is between
the second and fourth frame. After normalization, these are
located at ¢ = %—i—% = %andd: %—i— 14150 = %.
One out of ten samples is located in the open interval (c, d).

The discrepancy then becomes (d — ¢) — 15 = 75 (Note

that b — a = 1 after normalization). Multi[iloying by the in-
verse scale factor of the normalization yields the absolute
discrepancy D(S;) % : % = %. The discrepancy of
S5 is even higher, because there is no good frame between
the dropped frames. D(S5) = 3, the length of the gap. Dis-
crepancy can be computed in O(N) time using a variant of
Kadane’s algorithm for the maximum subarray problem [8].

Frame time discrepancy works well for animations that
require a constant and steady frame rate. We will use a
WebGL-based game later in the experiments in Section 7
and show significant improvements on that metric. We will
also report improvements on the frames-per-second metric
but we will show that the improvement on that metric is less
obvious.

4. Idle Task Scheduling

As described in Section 2.2, Chrome’s scheduler enables the
scheduling of low-priority idle tasks during times when the
browser would be otherwise idle. In this section we describe

574

idle

frame start

no frames expected
frame done

disabled

Figure 3: Scheduler’s idle period states

how idle tasks are scheduled to ensure they do not impact
latency sensitive tasks on the same thread.

Idle tasks are posted on a queue which has lower priority
than all other queues in the scheduler. Tasks on this queue are
only eligible to be run during scheduler-defined idle periods.
An idle period is defined as the period of time between all
work being completed on the main thread to draw a given
frame and the time that the next frame is expected to start
being drawn.

During active animations or scrolling, the compositor will
signal the scheduler every time it starts to draw a frame.
This signal also provides the expected inter-frame interval
of future frames (e.g., if rendering at 60 FPS, the inter-frame
interval will be 16.6 ms). When the main thread finishes it’s
work for the current frame, the compositor will commit the
frame, and will again signal the scheduler. On this signal, the
scheduler checks the expected time of the next frame. If this
is in the future the scheduler starts an idle period which lasts
until the expected time of the next frame (see Figure 1).

If the compositor decides that it no longer needs to draw
frames (e.g, due to an animation or scrolling finishing) then
it informs the scheduler that no frames are expected. This
signal initiates a longer idle period, which lasts until either
the time of the next pending delayed task, or 50 ms in the
future, whichever is sooner. These longer idle periods are
capped at 50 ms to ensure that Chrome remains responsive
to unexpected user input, with 50 ms being chosen because
studies [28] suggest that a response to user input within
100 ms is perceived as instantaneous by users. Once this
longer idle period ends, a new idle period will be started im-
mediately if the browser remains idle. However if the com-
positor signals the start of a new frame, the scheduler ends
the current idle period, even if it has time remaining. Figure 3
shows a simplified state transition diagram of scheduler idle
periods.

When an idle period starts, idle tasks become eligible to
be run by the scheduler. In order to ensure that idle tasks
do not run out-with an idle period, the scheduler passes a
deadline to an idle task when it starts, which specifying the

end of the current idle period. Idle tasks are expected to
finish before this deadline, either by adapting the amount
of work they do to fit within this deadline, or, if the cannot
complete any useful work within the deadline, reposting
themselves to be executed during a future idle period. As
long as idle tasks finish before the deadline, they do not
cause jank in webpage rendering.

As well as being employed by V8’s garbage collector,
these idle task are exposed to the web platform via the
requestIdleCallback API [27].

S.

In this section we describe how V8 uses idle tasks to re-
duce latency and memory usage. V8 posts idle tasks to the
scheduler in order to perform both minor and major garbage
collection during idle time. A minor garbage collection can-
not be divided into smaller work chunks and must be ei-
ther performed completely or not performed at all. A major
garbage collection consists of three parts: start of incremen-
tal marking, several incremental marking steps, and final-
ization. These work chunks have different latency / memory
trade-offs when performed during idle time.

Although starting incremental marking is a low latency
operation, it leads to incremental steps and finalization that
can induce long pauses. Thus starting incremental marking
can hurt latency but is crucial for reducing memory usage.
Performing incremental marking steps and finalization dur-
ing idle time benefits both latency and memory usage.

The impact of minor garbage collections during idle time
depends on the scheduling heuristics and the lifetime of the
objects in the young generation. Performing minor garbage
collections during idle time usually improves latency and has
little effect on memory usage. However, proactive schedul-
ing can result in promotion of objects that would otherwise
die later in non-idle minor garbage collection. This would
increase old generation size and increase latency of major
garbage collections. Thus the heuristic for scheduling minor
garbage collections during idle time should balance between
starting garbage collection too early, which would unneces-
sarily promote objects, and too late, which would make the
young generation size too large to be collectable during reg-
ular idle times. The following subsections describe heuristics
for scheduling garbage collection work during idle time.

Idle Time Garbage Collection Scheduling

51

In order to implement idle time minor garbage collection we
need:

Minor Garbage Collection Idle Time Scheduling

1. apredicate that tells us whether to perform minor garbage
collection or not, given the idle task’s deadline and the
state of the new generation

2. a mechanism to post an idle task on the Blink scheduler
that performs a minor garbage collection at an appropri-
ate time

575

V8 performs idle time minor garbage collection only if its
estimated time fits within the given idle task’s deadline and
there are enough objects allocated in the young generation.
Let H be the total size in bytes of objects in the young gen-
eration, S be the average speed of previously observed mi-
nor garbage collection in bytes per second, T" be the cur-
rent idle task deadline in seconds, T be the average idle task
deadline in seconds. V8 performs minor garbage collection
if max(T-S—N, Hpin) < H<S-T,where N is the esti-
mated number of bytes that will be allocated before the next
idle task and H,,;, is the minimum young generation size
that warrants garbage collection. The - S — N < H con-
dition can be rewritten as T - S < H + N, which estimates
if the next idle time minor garbage collection would over-
run the average idle task deadline. If it does then V8 needs
to perform idle time minor garbage collection in the current
idle task.

In order to request idle time for minor garbage collection
from the Blink scheduler, V8 puts allocation bailout mark-
ers at every N bytes of the new generation. When an allo-
cation from the JavaScript code crosses an allocation bailout
marker, the allocation takes the slow path and invokes a V8
runtime function that posts an idle task to the Blink sched-
uler. We found that N = 512K B works well in practice, this
number is large enough that allocation bailouts do not re-
duce throughput and it is small enough that V8 has multiple
opportunities to post idle tasks.

5.2 Major Garbage Collection Idle Time Scheduling

In this subsection we deal with incremental marking steps
and finalization of major garbage collection during idle time
assuming that incremental marking is already started. We
postpone description of heuristics for starting incremental
marking until the next subsection.

As soon as incremental major garbage collection (idle
or non-idle) is started, V8 posts an idle task to the Blink
scheduler. The callback of the idle task performs incremen-
tal marking steps. The steps can be linearly scaled by the
number of bytes that should be marked. Based on the aver-
age measured marking speed, the idle task tries to fit as much
marking work as possible into the given idle time. Let ¢4,
be the deadline in seconds of the idle task, M be the mark-
ing speed in byte per second, then [t;4;. - M | bytes will be
marked in the idle task.

The idle task keeps reposting itself until the whole heap is
marked. After that V8 posts an idle task for finalizing major
garbage collection. The finalization is performed only if its
estimated time fits the allotted idle time. V8 estimates the
time using the measured speed of previous finalizations.

5.3 Memory Reducer

This section describes the memory reducer, a controller for
scheduling major garbage collections which tries to reclaim
memory for inactive webpages during idle time. Before we
go into details about starting major garbage collections dur-

H
eap Baseline ==**

Memory Reducer —

limat’

limit

size

Time

Figure 4: Effect of memory reducer on heap size of an
inactive webpage.

ing idle time, let us review how non-idle major garbage col-
lections are triggered in V8. Major garbage collections are
typically performed when the size of the heap reaches a
certain limit, configured by a heap growing strategy. This
limit is set at the end of the previous major garbage collec-
tion, based on the heap growing factor f and the total size
size of live objects in the old generation: limit’ = f - size.
The next major garbage collection is scheduled when the
bytes allocated since the last major garbage collection ex-
ceed limit’ — size.

That works well when webpages show a steady allocation
rate. However, if a webpage becomes idle and stops allocat-
ing just before hitting the allocation limit, there will be no
major garbage collection for the whole idle period. Interest-
ingly, this is an execution pattern that can be observed in
the wild. Many webpages exhibit a high allocation rate dur-
ing page load as they initialize their internal data structures.
Shortly after loading (a few seconds or minutes), the web-
page often becomes inactive, resulting in a decreased alloca-
tion rate and decreased execution of JavaScript code. Thus
the webpage will retain more memory than it actually needs
while it is inactive.

Figure 4 shows an example of major garbage collection
scheduling. The first garbage collection happens at time ¢
because the allocation limit is reached. V8 sets the next al-
location limit l#mit’ based on the heap size size. The subse-
quent garbage collections at time ¢5 and 3 are triggered by
the memory reducer. The dotted line shows what the heap
size would be without the memory reducer.

The memory reducer can start major garbage collection
before the allocation limit is reached. Since this can increase
latency, we developed heuristics that rely not only on the
idle time provided by the Blink scheduler between frames,
but also on whether the webpage is now inactive. We use
the JavaScript allocation rate and the rate of JavaScript calls
from the browser as signals for whether the webpage is

576

active, gc
g¢ active, gc
1mactive
c
e — (o) £ ()
] nactive
marking
gc
marking

Figure 5: Memory reducer states

active or not. When both rates drop below a predefined
threshold, we consider the webpage to be inactive.

Figure 5 shows the states and transitions of the memory
reducer. In the done state the controller waits for a signal
that there have been enough allocations performed to war-
rant a garbage collection. We use a non-idle major garbage
collection, triggered by the allocation limit as the signal to
transition to the wait; state. In the wazit; state the controller
waits for the webpage to become inactive. When that hap-
pens, the controller starts incremental marking and transi-
tions to the run; state, until the major garbage collection fin-
ishes. If heuristics indicate that an additional major garbage
collection is likely to reduce memory usage, then the con-
troller transitions to the wait;;; state. Otherwise, it moves
back to the initial done state.

To estimate if an additional garbage collection would free
more memory we consider:

e The difference between the committed and the used
memory after the garbage collection. If the difference is
large enough then another garbage collection can com-
pact the heap and release unused memory. The subse-
quent garbage collection scheduled by the memory re-
ducer will explicitly perform more memory compaction
to decrease fragmentation.

e Whether any weak references from Blink to V8 were
cleared during garbage collection or not. A cleared weak
reference can free objects in Blink, which in turn can re-
move strong references to the V8 heap. Multiple garbage
collections may be necessary to clean up the whole tran-
sitive closure of Blink and V8, whose objects are man-
aged by separate heaps.

A well-tuned threshold for the allocation rate is the cen-
tral part of the controller. Initially we used a fixed thresh-
old, which worked well for the powerful desktop and lap-
top computers on which we originally tuned the system, but
did not work for slower mobile devices. In order to adapt
to different hardware speeds, we now consider the allocation
rate relative to the measured major garbage collection speed:
u = g/(g+a), where g is the major garbage collection speed
and a is the allocation rate. This ratio p can be thought of as
the mutator utilization for the time window from now un-
til the next major garbage collection, under the assumption
that the current allocation rate stays constant and the heap is
currently empty:

Ty = limit/a
Tye = limit/g
t = T/ (Tu + Tye)
= (limit/a)/(limit /a + limit/g)
=9/(g+a)

This gives us the condition for inactive allocation rate: p >
Winactives Where [inactive 18 a fixed constant (0.993 in our
implementation).

(mutator time)
(GC time)

(mutator utilization)

5.4 Predecessors

The IdleNotification (bool high_priority)
API was already introduced in V8 in Chrome 4 to reduce
memory consumption. Chrome called this API after events
that may have produced a lot of garbage memory with a
given priority to immediatelly free up that memory, e.g.,
shortly after navigating from one page to another which in-
troduced user observable garbage collection jank for certain
page navigation events.

The first version of idle time garbage collection
scheduling shipped in Chrome 38, before the Blink task
scheduler was implemented. Back then, the composi-
tor, which has a notion of the time taken to prepare
frames, invoked V8 whenever it was done with process-
ing a single frame, passing the remaining frame time to
an IdleNotification(int idle_time_in_ms)
API. V8 had to compute if garbage collection was neces-
sary, if it would fit into the given idle time slot, and schedule
garbage collection operations accordingly.

This approach showed promising results but had a few
limitations. First, it did not allow idle times longer than
16.6 ms, since it was limited by the maximum frame time.
Second, it added additional overhead to frame rendering.
At the end of each rendered frame, V8 was always invoked
regardless of whether there was pending garbage collection
work. Third, the compositor had no global notion of idleness
in the system. It knows only the time left after rendering
a frame, but not whether other tasks have higher priority,
e.g. pending user input events. Missing such high priority
events may result in dropped frames if garbage collection is
performed erroneously during misclassified idle time.

577

When the Blink task scheduler shipped in Chrome 41,
we moved the compositor-driven idle notification imple-
mentation over to the Blink scheduler. Whenever the Blink
task scheduler detected idleness in the system, it sched-
uled a V8 idle task which called the IdleNotification
API as soon as it was scheduled. The Blink scheduler en-
abled scheduling of idle tasks with deadlines longer than
16.6 ms, due to its global knowledge of whether frames
are expected, and what other tasks are scheduled to be
run. Moreover it has a global notion of task queue prior-
ity preventing lower priority idle tasks from interfering with
higher priority latency-critical tasks. However, the system
still used the push-based approach of proactively calling the
V8 IdleNotification API, meaning it still unneces-
sarily wasted CPU time in cases where V8 has no garbage
collection work pending.

The work presented in this paper shipped in Chrome 45.
In this version we moved to the pull model described in
Section 5, where V8 posts garbage collection idle tasks only
when necessary, reducing wasted CPU time. In addition, this
enabled implementation of the memory reducer algorithm
presented above.

6. Related Work

In this section we are relating our work to (1) systems that
take advantage of idle time to provide real-time guarantees
and (2) concurrent, parallel, and incremental garbage col-
lectors that reduce garbage collection work on the applica-
tion threads. A more extensive overview of different types of
garbage collectors can be found in [23].

6.1 Idle Time Garbage Collection

Henriksson [21] demonstrated a system where a garbage col-
lection task is scheduled as a special low priority task that
runs during idle time. In that system, real-time threads run
with the highest priority and are therefore never preempted.
However the garbage collection task has to be preemptable
to ensure schedulability. Making garbage collection oper-
ations preemptable may complicate the garbage collection
implementation and may degrade peak performance, due to
more expensive read or write barriers to support this feature.
Our approach allows scheduling of specific garbage collec-
tion operations which are selected based on online profil-
ing of garbage collection operations and application behav-
ior. V8 is not designed for hard real-time requirements, but
aims at providing high throughput as a high priority, while
taking advantage of idle time to avoid interruptions of the
garbage collector and reduce memory consumption when the
application becomes inactive. V8 does not support abortion
of garbage collection operations, but instead schedules and
scales them carefully.

The work of Henriksson was further refined in [30],
where garbage collection tasks are given a deadline and an
earliest deadline first scheduler [11] makes sure that none

of the tasks miss their deadline. However, finding the right
deadline for a garbage collection task may be challenging,
since, for many garbage collection operations, the workload
is unknown before starting (e.g. determining the transitive
closure of live objects).

Opportunistic garbage collection [35, 36] schedules
garbage collections explicitly after long computationally in-
tensive operations and if the user does not interact with the
program for a long time, i.e. several minutes are mentioned
in the paper. We think that adding a garbage collection pause
to a long computation pause makes user experience even
worse. When frames are missed in Chrome because of a
long computationally intensive JavaScript operation no idle
time is reported to V8 until frame deadlines are again met.
Scheduling garbage collections after long inactive periods to
improve user experience in upcoming user interactions is re-
lated to our memory reducing garbage collections, which we
use to reduce memory footprint.

In periodic garbage collection scheduling, garbage col-
lection is performed on a predefined periodic fixed schedule
for a predefined amount of time. The application threads are
stopped and the garbage collector thread is given the high-
est real-time priority. Metronome [3, 4] used this approach
to provide hard real-time guarantees in a Java virtual ma-
chine. Finding the right period and length is difficult but key
to provide hard real-time guarantees. TuningFork [5], a tool
designed for Metronome users, may help to find such tim-
ing parameters for an application based on offline profiling.
Depending on the application and its allocation rate, pro-
gram throughput may degrade significantly while providing
schedulability.

In hybrid garbage collection scheduling, garbage collec-
tion tasks are scheduled periodically and additionally takes
advantage of idle time when needed. Such a system was first
implemented in Metronome-TS [2] and showed significant
improvement over the regular Metronome system.

Kalibera et al. [24] discuss different approaches to
garbage collection scheduling on uniprocessor systems and
classifies them in three categories: slack-based [21], peri-
odic [3, 4], and hybrid [2]. The authors compare perfor-
mance and schedulability tests of different implementations
of these systems, where the garbage collector is run on a
separate thread to take advantage of the operating system
scheduler. They found that on average hybrid garbage col-
lection scheduling provides the best performance, but there
exist applications that favor a slack-based or periodic sys-
tem. Moreover, they found that read and write barriers used
in these systems introduce a significant performance over-
head and may degrade system throughput significantly.

6.2 Concurrent, Parallel, and Incremental Garbage
Collection

An orthogonal approach to avoid garbage collection pauses
while executing an application is achieved by making
garbage collection operations concurrent, parallel, or in-

578

cremental. Before we discuss different implementations of
these techniques let us first introduce their meaning. Concur-
rent garbage collection means that garbage collection work
is performed concurrently to the application threads on sep-
arate threads. Parallel garbage collection means that multi-
ple garbage collection threads split up the garbage collection
work among them. These threads can additionally run con-
current to the application, or pause the application threads
which then have to wait for the garbage collection threads to
finish. Incremental garbage collection means that the appli-
cation threads get interrupted periodically to perform small
garbage collection work items.

Real-time guarantees may be achieved with concurrent or
incremental garbage collection techniques, which typically
require read [6] or write [12] barriers to ensure a consistent
heap state. The implementation of such garbage collectors
may degrade application throughput due to expensive bar-
rier overhead, increase memory consumption while copying
concurrently [12], and increase code complexity of the vir-
tual machine.

The speed-up of parallel garbage collection is limited
by the number of CPUs available to the garbage collection
threads. The main challenge is to partition the work effi-
ciently using work stealing [16, 31], processor-centric [12]
or memory-centric [22] schemes. In [7], another parallel
garbage collector is introduced where only a small fraction
of the heap is processed at a given point in time. Large cyclic
data structures that span multiple heap fractions may cause
many extensive reference updates in such a garbage collector
which degrades performance.

Idle time garbage collection scheduling can be combined
with concurrent, parallel, and incremental garbage collec-
tion implementations. For example, V8 implements incre-
mental marking and concurrent sweeping, as discussed in
Section 2.3. Both operations are also performed during idle
time to ensure fast progress of these phases. Most impor-
tantly, costly memory compaction phases like young gen-
eration evacuation or old generation compaction can be ef-
ficiently hidden during idle times without introducing mem-
ory or barrier overheads. For a best effort system, where hard
real-time deadlines do not have to be met, idle time garbage
collection scheduling may be a simple, high throughput, and
low memory footprint alternative.

7. Experiments

We ran our experiments with Chrome version 48.0.2564.109
(February 2016) on a Linux workstation and an Android mo-
bile device. The Linux workstation contains two Intel Xeon
E5-2680 V2 deca-core 2.80 GHz CPUs and 64GB of main
memory. We used a Nexus 6P Android smartphone for mo-
bile experiments, which has 3GB of main memory and a
BIG.little configuration of a Quad-core 1.55 GHz Cortex-
AS53 and a Quad-core 2.0 GHz Cortex-A57. In order to eval-
uate the impact of running garbage collection during idle

15
14
13

Comparison to baseline (lower is better).

Figure 6: Frame time discrepancy, frame time, number of
frames missed due to garbage collection, and total garbage
collection time compared to the baseline on the oortonline.gl
benchmark.

times, we run popular latency critical and memory criti-
cal webpages. We used Chrome’s Telemetry performance
benchmarking framework to evaluate recorded samples of
real webpages. Telemetry provides various jank, memory,
and garbage collection related performance counters. Each
benchmark was run 20 times for each configuration to pro-
vide stable measurement results with low variance.

Idle time garbage collection scheduling is enabled by de-
fault in Chrome. As a baseline we use Chrome started with
the command line flag ——disable-v8-idle-tasks to
turn off the idle task mechanism. When describing the per-
centage of idle garbage collection work, a result of 100%
represents that all garbage collection work done was done
during idle time.

Moreover we present results for frame rate, frame time
discrepancy, and total garbage collection time. To quantify
the impact of garbage collection on jank precisely we report
the number of frames missed due to garbage collection, i.e.,
all frames which would not have missed their deadline if
garbage collection would not have happened.

The PLDI’16 artifact evaluation committee declared the
experiments presented below reproducible. A detailed de-
scription of how to run the experiments and obtain the pre-
sented results can be found in the artifact [15].

7.1 OortOnline.gl

OortOnline.gl is an online WebGL [25] benchmark using the
Turbulenz [34] gaming engine that measures the rendering
performance of a web browser. The benchmark is started au-
tomatically after opening http.//oortonline.gl and clicking on
the start button. After that, four different scenes with anima-
tions are rendered. OortOnline.gl is GPU intensive bench-
mark which did not run correctly on the Nexus 6P due to
a GPU shader driver bug, therefore we ran all experiments

579

100

920

80

70

60

50

(higher is better)

40

30

20

Garbage collection work performed during idle time in percent.

7 T
é‘Sp,v Uy, Wi,)’a/,DO

Fa, by, Flc,

Figure 7: Percentage of garbage collection work performed
during idle time.

on a Linux Workstation. We ran OortOnline.gl in Teleme-
try, where the performance measurement is started right af-
ter loading the benchmark and performing an explicitly trig-
gered garbage collection to create a similar heap state for
both the baseline and idle time garbage collection schedul-
ing Chrome instances. The measurement is stopped after 30
seconds, shortly before the benchmark ends to avoid shut-
down artifacts.

The improvements from using idle time garbage collec-
tion scheduling are shown in Figure 6. Frame time discrep-
ancy reduces on average from 212 ms to 138 ms, which cor-
responds to 0.65 of the baseline. The average frame time of
the idle time version is 0.98 of the baseline, which translates
to an improvement from 17.92 ms to 17.6 ms. This is a sig-
nificant improvement, since most of the rendered frames do
not contain garbage collection events. The baseline version
misses on average 59.8 frames because of garbage collec-
tion work, while the idle time version misses 35.1 frames.
These results correlate with an average of 85% of garbage
collection work being scheduled during idle time, which sig-
nificantly reduced the amount of garbage collection work
performed during time critical phases. However, on aver-
age 11% of the garbage collection work scheduled during
idle time overshot its deadline. In these cases, our heuristics
did not correctly predict the garbage collection workload.
In total, idle time garbage collection scheduling increased
the total garbage collection time by 13% to 780 ms on av-
erage, due to scheduling garbage collection proactively and
making faster incremental marking progress with idle tasks.
Hence major garbage collections finish earlier which makes
it more likely that another major garbage collection will be
triggered during the execution time of the benchmark. Mem-
ory consumption reduced to 0.91 of the baseline at the end of
the benchmark, which corresponds to an improvement from
374M to 340M.

100

90

80

70

60

50

40

(higher is better)

30

Garbage collection work performed during idle time in percent.

[G G G
e 96 ¢, % ,, 0 »,
e, lus

G, G
0%, g1
ocs /m,

e
200 S@ar%
Seer%

Figure 8: Percentage of garbage collection work performed
during idle time.

7.2 Infinite Scrolling

Infinite scrolling is a technique that gives the user the illu-
sion that a webpage has infinite content. New content is cre-
ated on the fly while the user scrolls down on a webpage.
Scrolling such a webpage for several seconds typically cre-
ates a continuous stream of newly allocated objects which
may trigger several garbage collections. Such garbage col-
lection pauses, triggered while scrolling, may result in visi-
ble jank for the user.

We run six popular webpages in the infinite scrolling
benchmark: ESPN, Facebook, Flickr, Tumblr, Twitter, and
Yahoo. We created a replayable archive of these webpages
using Telemetry and instrumented it to trigger a manual
garbage collection after page load to create a similar heap
state for both the baseline and idle time garbage collection
scheduling Chrome instances. The measurement is started
after the manual garbage collection, while scrolling the web-
pages for up to 60 seconds. The scrolling speed is about 700
pixels per second.

Figure 7 shows the amount of garbage collection work
performed during idle time. The most garbage collection
work during idle time is performed running the ESPN web-
page. 99% of the garbage collection work is performed while
Chrome is idle. Garbage collection idle time scheduling has
the smallest effect on Flicker, which just allows 47% of its
garbage collection work being scheduled during idle time.
On average, about 70% of the total garbage collection of
this set of webpages is performed during idle time. 5% of the
scheduled garbage collection operations overshot the given
idle deadline. The baseline version misses on average 22.8
frames due to garbage collection work, while the idle time
version misses 12.7 frames, which translates to 0.55 of the
baseline. This however does not have impact on the frame
rate and the frame time discrepancy, with the average frame
times of 17.62 ms and the average frame time discrepancy
of 291 ms for both configurations. There are various reasons

580

why idle time garbage collection scheduling does not have
impact on these metrics. First, the number of frames missed
due to garbage collection is only 2.4% of all missed frames.
Some webpages like Twitter execute long running JavaScript
code on the main thread to build up the page incrementally,
which results in high frame time discrepancy regardless of
V8’s garbage collection events. Second, threaded-scrolling,
a technology used in Chrome where scrolling is performed
on a separate thread, compensates for some garbage collec-
tion pauses on the main thread. We investigated turning off
threaded-scrolling, however this configuration was unrealis-
tic and not representative of real-world use-cases. It resulted
in average frame times that were much longer than the de-
fault configuration due to scrolling blocked by drawing on
the main thread.

The total garbage collection time on the whole page set
is 1.23 of the baseline, due to scheduling garbage collec-
tion proactively and finishing major garbage collection ear-
lier, resulting in more major garbage collections. However,
performing more major garbage collections reduces mem-
ory consumption by 0.91 of the baseline. Most memory was
saved on Facebook where memory consumption decreased
to 57M on average, which corresponds to 0.81 of the base-
line.

In order to see how idle time garbage collection schedul-
ing performs on mobile devices, we run the mobile versions
of the webpages on Android Nexus 6P device. Overall about
39% of the total garbage collection work is performed dur-
ing idle time and 4% of the scheduled garbage collection
operations overshoot the given idle deadline. There is less
idle time compared to the desktop because the device is less
powerful. The percentage of idle time garbage collection is
highest on ESPN and Twitter (88%) and is smallest on Tum-
blr webpage (0.5%). There is no impact on frame times and
frames missed due to garbage collection.

7.3 Page Load with Scrolling

In the page load with scrolling benchmark we measure the
execution from the beginning of a page load until scrolling
down to the end of the page, i.e., up to five seconds. We
run six popular webpages: Gmail, Google Calendar, Google
Docs, Google Plus, Google Image Search, and Google
Search which were recorded using Telemetry. Note, that
none of these webpages implements infinite scrolling.
Figure 8 shows the result of this experiment on a Linux
Workstation. During page load time, all of the webpages
have no idle time. High throughput is important during page
load to display the webpage as fast as possible for the user.
After that, while scrolling, latency becomes higher priority
and idle times may become available. In Google Calendar
most of the garbage collection work is performed during
idle time, on average 44%. In Gmail on average just 20%
of the garbage collection work is performed during idle
time. Gmail performs many computations while scrolling,
and therefore does not have much idle time to spare at the

S 160} Baseline 1 T 160} Baseline 1 T 160} Baseline
s Memory Reducer - s M Reducer - s Memory Reducer -
2 400 y | 2 40l lemory Reducer | 80l lemory Reducer
© 1201 1 © 1201 1 © 1201
3 3 3
=100+ R =100+ R = 100
o o o
= 80f x-x, b = 80r i S 80}
5wl g g
g 60 I/ 'X“-X»--xwx\ i g 60 1 g 60 P
S 40¢ > 40y 4 S 401/
S S S /
£ 20F B £ 204 £ 20¢
[} [} [}
2 o 2 o Z 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time. seconds Time. seconds Time. seconds
(a) ESPN (b) Facebook (c) Flickr
5 A " Baseline | 5 160[‘ ‘ ~Baseline] 5 160 | | __ Baseline
T Xxx Memory Reducer-+¢-- . 3 140l Memory Reducer - | g 140l Memory Reducer -
5 120¢ % 4 © 120+ 4 © 120 X
H e = 2
=100 R 2100 1 & 100}
o o o X
= 8ot 1 = 80t 1 = 80
g g g VIV
2 60+ 4 2 60+ 4 Q 60+ [alians SEVIRVERVAY
3 3 XX 2
2 40t — ST SN E——] 2 4of
<1 <1 5 K e R KoK I eI Yo Yo Herr e o
£ 201 1 £ 201 1 £ 201
[} [} [}
= 0 L L L L = O L L L L = 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time. seconds Time. seconds Time. seconds
(d) GMail (e) Google Calendar (f) Google Docs
B 160F ‘ ‘ ‘ Baseline — 3 160f ‘ ‘ ‘ Baseline — @ 160f ‘ ‘ ‘ Baseline
© Memory Reducer -~ @ Memory Reducer -~ @ Memory Reducer -
2 140+ — 2 140+ — Q1401
o 120+ R o 120+ R o 120+
3 3 3
2 1 2100} 1 2100t
o o o
= e e Ko e Ko K = 80t q = 80
@ @ ¢ AKX
2] 2 60f 1 2 eof
g ol g g
3 404 1 2 A0fx 1 > 407
= S S X3
g 20+ R % 20 1 g 20r
= 0 L L L L = O L L L L = 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time. seconds Time. seconds Time. seconds
(g) Google Plus (h) Google Image Search (i) Google Web Search
g 160 | ‘ ‘ ‘ Baseline 1 T 160} ‘ ‘ ‘ Baseline 1 T 160} ‘ ‘ ‘ Baseline
© Memory Reducer - k5 Memory Reducer - k5 Memory Reducer -
S 140}] 2 140}] S 140
o 120+ 1 o 120+ 1 o 120+
8 3 3
=100+ R = 100+ R = 100
o o 28]
= 80f 1 = 80f 1 =
(0] RO (o] (o) -
2 60 K 1 2 e0f 1 2 A
g g g
> 40¥ . 3 > 40 FEeR . > e
S S Yo z
£ 20r B £ 204 B £ 20F
[} [} [}
2) Z 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time. seconds Time. seconds Time. seconds
(j) Tumblr (k) Twitter (1) Yahoo

Figure 9: Memory reducer memory usage in comparison to the baseline running idle webpages.

end of each frame. On average 8% of garbage collection
operations overshot the idle time limit. The total garbage
collection time is 1.24% of the baseline. Again, proactively
scheduling garbage collection and finishing major garbage
collection earlier is the root cause of the increase. Memory
consumption over the whole page set is 0.75 of the baseline.

Note that, in comparison to the infinite scrolling bench-
marks discussed in Section 7.2 the ratio of garbage col-

581

lection during idle time is significantly smaller, because
many garbage collection operations happen during page load
where no idle time exists. The number of frames missed due
to garbage collection is 4 for both configurations. Idle time
garbage collection has also no measurable impact on frame
times (23 ms), and on frame time discrepancy (1048 ms).
This suggests that the frame times are dominated by non-
garbage collection pauses.

On Android Nexus 6P only 10% of the total garbage col-
lection work is scheduled during idle time over all webpages.
About 2% of the scheduled garbage collection operations
overshoot the given idle deadline. The percentage of idle
time garbage collection is highest on Google Image Search
and GMail (14%) and is smallest on Google Plus webpage
(4%). There is no impact on frame times and frames missed
due to garbage collection.

7.4

In the memory benchmark we measure memory con-
sumption of V8 on idle webpages. We load all the
webpages used in the previous two benchmarks on a
Linux Workstation and leave them open for 100 sec-
onds without any user interaction. As a baseline we
run V8 with the memory reducer component disabled
(-js—-flags=-—-nomemory-reducer), but keep idle
task and enabled. Thus the baseline never starts an idle ma-
jor garbage collection, but it still uses idle tasks to perform
minor garbage collections and incremental marking steps for
non-idle major garbage collections.

Figure 9 shows how V8 memory usages changes over
time for each webpage. The memory usage is sampled every
five seconds. In the first few seconds both versions use the
same amount of memory as the webpages load and allocate
with high rate. After a while the webpages become idle since
there no user interaction. Once the memory reducer detects
that the webpage is idle, it starts a major garbage collection.
At that point the graphs for the baseline and the memory
reducer diverge. Note that without the memory reducer, we
observed that for many webpages a major garbage collection
was triggered only after several hours. Over all webpages
the final average memory usage is 0.64 of the baseline. The
impact is highest on Google Web Search with the memory
usage 0.34 of the baseline and is lowest on Google Plus with
the memory usage 0.83 of the baseline.

Memory

7.5 Throughput

We measure the impact of idle time garbage collection
scheduling on throughput by running the popular JavaScript
benchmarks Octane [19], Kraken [29], Speedometer [10],
and Jetstream [9]. These benchmarks, except the Splay-
Latency and MandreelLatency benchmark of Octane, care
about fast execution. Long pauses introduced by the vir-
tual machine are not relevant. The benchmark scores on
all four benchmarks remain unchanged with and without
idle garbage collection scheduling. We see that as a pos-
itive result, since we designed idle time garbage collec-
tion scheduling to reduce latency and memory consumption,
while maintaining high throughput. Idle time garbage col-
lection scheduling does not improve SplayLatency and Man-
rdreelLatency because there is no idle time when executing
these benchmarks.

582

8. Conclusions

In this paper we introduced idle time garbage collection
scheduling, a garbage collection optimization which in-
creases the responsiveness of applications and reduces mem-
ory consumption when a website is inactive by making use
of known idle periods to hide garbage collection work in
otherwise idle application time. We introduced a new met-
ric, called frame time discrepancy to better quantify user ex-
perience in animations and demonstrated performance im-
provements on that metric in the WebGL based game bench-
mark oortonline.gl. We showed that for many popular web-
pages garbage collection operations can be successfully hid-
den during idle time, without impacting peak performance.
We demonstrated that garbage collection scheduled during
idle times can significantly reduce memory consumption on
inactive webpages. Idle time garbage collection scheduling
is implemented and shipped in V8 and Chrome since version
38.

We believe that idle time garbage collection scheduling
should also work for other virtual machines using garbage
collection in a setting where the virtual machine is aware of
screen rendering, e.g. the ART virtual machine [17]. Simi-
larly, idle time garbage collection scheduling could be ben-
eficial on virtual machines which are not constantly under
100% CPU load. Concretely, we think that server applica-
tions like node.js [32] that are built on top of V8 could take
advantage of the idle garbage collection API and schedule
garbage collections when they are idle, such as while wait-
ing on network requests.

References

[1] M. Aigner, T. Hiitter, C. M. Kirsch, A. Miller, H. Payer,
and M. Preishuber. ACDC-JS: Explorative Benchmarking of
Javascript Memory Management. In Proceedings of the 10th
ACM Symposium on Dynamic Languages, DLS 14, pages
67-78, New York, NY, USA, 2014. ACM.

[2] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron,
C. Gracie, B. McCloskey, A. Micic, and R. Sciampacone. Tax-
and-spend: Democratic Scheduling for Real-time Garbage
Collection. In Proceedings of the 8th ACM International Con-
ference on Embedded Software, EMSOFT °08, pages 245-
254. ACM, 2008.

[3] D. FE. Bacon, P. Cheng, and V. T. Rajan. A Real-time Garbage
Collector with Low Overhead and Consistent Utilization. In
Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL °03, pages
285-298. ACM, 2003.

[4] D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling Fragmen-
tation and Space Consumption in the Metronome, a Real-time
Garbage Collector for Java. In Proceedings of the 2003 ACM

SIGPLAN Conference on Language, Compiler, and Tool for
Embedded Systems, LCTES ’03, pages 81-92. ACM, 2003.

[5] D. F. Bacon, P. Cheng, and D. Grove. TuningFork: A Plat-
form for Visualization and Analysis of Complex Real-time
Systems. In Companion to the 22nd ACM SIGPLAN Confer-

ence on Object-oriented Programming Systems and Applica-
tions Companion, OOPSLA 07, pages 854-855. ACM, 2007.

[6] H. G. Baker, Jr. List Processing in Real Time on a Serial
Computer. Commun. ACM, 21(4):280-294, Apr. 1978.

[7] O. Ben-Yitzhak, I. Goft, E. K. Kolodner, K. Kuiper, and
V. Leikehman. An Algorithm for Parallel Incremental Com-
paction. In Proceedings of the 3rd International Symposium
on Memory Management, ISMM ’02, pages 100-105. ACM,
2002.

[8] J. Bentley. Programming Pearls: Algorithm Design Tech-
niques. Commun. ACM, 27(9):865-873, Sept. 1984.

[9] Browserbench. Jetstream. http://browserbench.
org/JetStream,. Accessed: 2016-03-15.

[10] Browserbench. Speedometer. http://browserbench.
org/Speedometer, . Accessed: 2016-03-15.

[11] G. Buttazzo. Red: Robust earliest deadline scheduling. In
Proceedings of the 3rd International Workshop on Responsive
Computing Systems, pages 100-111, 1993.

P. Cheng and G. E. Blelloch. A Parallel, Real-time Garbage
Collector. In Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Implementation,
PLDI *01, pages 125-136. ACM, 2001.

D. Clifford, H. Payer, M. Starzinger, and B. L. Titzer. Al-
location Folding Based on Dominance. In Proceedings of
the 2014 International Symposium on Memory Management,
ISMM ’14, pages 15-24. ACM, 2014.

D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. Memento
Mori: Dynamic Allocation-site-based Optimizations. In Pro-
ceedings of the 2015 International Symposium on Memory
Management, ISMM 15, pages 105-117. ACM, 2015.

[15] U. Degenbaeyv, J. Eisinger, M. Ernst, R. Mcllroy, and H. Payer.
PLDI’16 Artifact: Idle Time Garbage Collection Scheduling.
https://goo.gl/Axvigs.

Accessed: 2016-04-10.

[16] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel
Garbage Collection for Shared Memory Multiprocessors. In
Proceedings of the Ist Java Virtual Machine Research and
Technology Symposium, April 23-24, 2001, Monterey, CA,
USA. USENIX, 2001.

[17] Google Inc. Android Runtime (ART).
http://source.android.com/devices/tech/
dalvik/index.html,. Accessed: 2016-03-15.

[18] Google Inc. V8 Design. https://code.google.com/
p/v8/design, . Accessed: 2016-03-15.

[19] Google Inc. Octane. https://developers.google.
com/octane, . Accessed: 2016-03-15.

[20] Google Inc. The RAIL performance model.
http://developers.google.com/web/tools/
chrome—-devtools/profile/evaluate-
performance/rail,. Accessed: 2016-03-15.

[12]

[13]

[14]

583

[21] Henriksson. Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Lund University, July 1998.

[22] A.Imai and E. Tick. Evaluation of Parallel Copying Garbage
Collection on a Shared-Memory Multiprocessor. Transactions
on Parallel and Distributed Systems, 4(9):1030-1040, 1993.

[23] R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. CRC
Applied Algorithms and Data Structures. Chapman & Hall,
Jan. 2012.

[24] T. Kalibera, F. Pizlo, A. L. Hosking, and J. Vitek. Scheduling
Real-time Garbage Collection on Uniprocessors. ACM Trans.
Comput. Syst., 29(3):8:1-8:29, Aug. 2011.

[25] Khronos Group. WebGL. http://www.khronos.org/
webgl. Accessed: 2016-03-15.

[26] S. Kyostila and R. MclIlroy. Scheduling Tasks Intelligently
for Optimized Performance.
http://blog.chromium.org/2015/04/
scheduling-tasks—-intelligently-for_30.
html. Accessed: 2016-03-15.

[27] R. Mcllroy. Cooperative scheduling of background tasks.
http://w3c.github.io/requestidlecallback.
Accessed: 2016-03-15.

[28] R. Miller. Response time in man-computer conversational
transactions. In Proceedings of the Fall Joint Computer Con-
ference, 1968.

[29] Mozilla Foundation. Kraken Benchmark.
http://krakenbenchmark.mozilla.org.
Accessed: 2016-03-15.

[30] S. G. Robertz and R. Henriksson. Time-triggered Garbage
Collection: Robust and Adaptive Real-time GC Scheduling
for Embedded Systems. In Proceedings of the 2003 ACM
SIGPLAN Conference on Language, Compiler, and Tool for
Embedded Systems, LCTES ’03, pages 93-102. ACM, 2003.

[31] E. Siebert. Concurrent, Parallel, Real-time Garbage-
collection. In Proceedings of the 2010 International Sym-
posium on Memory Management, ISMM 10, pages 11-20.
ACM, 2010.

[32] The Node.js Developers. Node.js.
org/. Accessed: 2016-03-15.

[33] S. Tilkov and S. Vinoski. Node.Js: Using JavaScript to Build
High-Performance Network Programs. [EEE Internet Com-
puting, 14(6):80-83, Nov. 2010.

[34] Turbulenz Limited. Turbulenz Engine.
http://biz.turbulenz.com. Accessed: 2016-03-15.

[35] P. R. Wilson. Opportunistic Garbage Collection. SIGPLAN
Not., 23(12):98-102, Dec. 1988.

[36] P. R. Wilson and T. G. Moher. Design of the Opportunistic
Garbage Collector. In Conference Proceedings on Object-

oriented Programming Systems, Languages and Applications,
OOPSLA 89, pages 23-35. ACM, 1989.

http://nodejs.

http://browserbench.org/JetStream
http://browserbench.org/JetStream
http://browserbench.org/Speedometer
http://browserbench.org/Speedometer
https://goo.gl/AxvigS
http://source.android.com/devices/tech/dalvik/index.html
http://source.android.com/devices/tech/dalvik/index.html
https://code.google.com/p/v8/design
https://code.google.com/p/v8/design
https://developers.google.com/octane
https://developers.google.com/octane
http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://www.khronos.org/webgl
http://www.khronos.org/webgl
http://blog.chromium.org/2015/04/scheduling-tasks-intelligently-for_30.html
http://blog.chromium.org/2015/04/scheduling-tasks-intelligently-for_30.html
http://blog.chromium.org/2015/04/scheduling-tasks-intelligently-for_30.html
http://w3c.github.io/requestidlecallback
http://krakenbenchmark.mozilla.org
http://nodejs.org/
http://nodejs.org/
http://biz.turbulenz.com

	Introduction
	Background
	Webpage Rendering
	Task Scheduling
	V8 Garbage Collection
	Measuring Performance using Telemetry

	Discrepancy as a Metric for Frame Rate Regularity
	Idle Task Scheduling
	Idle Time Garbage Collection Scheduling
	Minor Garbage Collection Idle Time Scheduling
	Major Garbage Collection Idle Time Scheduling
	Memory Reducer
	Predecessors

	Related Work
	Idle Time Garbage Collection
	Concurrent, Parallel, and Incremental Garbage Collection

	Experiments
	OortOnline.gl
	Infinite Scrolling
	Page Load with Scrolling
	Memory
	Throughput

	Conclusions

