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Abstract

Matrix factorization (MF) is one of the most popular techniques for product recom-
mendation, but is known to suffer from serious cold-start problems. Item cold-start
problems are particularly acute in settings such as Tweet recommendation where
new items arrive continuously. In this paper, we present a meta-learning strategy
to address item cold-start when new items arrive continuously. We propose two
deep neural network architectures that implement our meta-learning strategy. The
first architecture learns a linear classifier whose weights are determined by the item
history while the second architecture learns a neural network whose biases are
instead adjusted. We evaluate our techniques on the real-world problem of Tweet
recommendation. On production data at Twitter, we demonstrate that our proposed
techniques significantly beat the MF baseline and also outperform production
models for Tweet recommendation.

1 Introduction

The problem of recommending items to users — whether in the form of products, Tweets, or ads —
is a ubiquitous one. Recommendation algorithms in each of these settings seek to identify patterns
of individual user interest and use these patterns to recommend items. Matrix factorization (MF)
techniques [19], have been shown to work extremely well in settings where many users rate the same
items. MF works by learning separate vector embeddings (in the form of lookup tables) for each
user and each item. However, these techniques are well known for facing serious challenges when
making cold-start recommendations, i.e. when having to deal with a new user or item for which a
vector embedding hasn’t been learned. Cold-start problems related to items (as opposed to users) are
particularly acute in settings where new items arrive continuously. A prime example of this scenario
is Tweet recommendation in the Twitter Home Timeline [1]. Hundreds of millions of Tweets are sent
on Twitter everyday. To ensure freshness of content, the Twitter timeline must continually rank the
latest Tweets and recommend relevant Tweets to each user. In the absence of user-item rating data
for the millions of new Tweets, traditional matrix factorization approaches that depend on ratings
cannot be used. Similar challenges related to item cold-start arise when making recommendations for
news [20], other types of social media, and streaming data applications.

In this paper, we consider the problem of item cold-start (ICS) recommendation, focusing specifically
on providing recommendations when new items arrive continuously. Various techniques [3, 14, 27, 17]
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have been proposed in the literature to extend MF (traditional and probabilistic) to address cold-start
problems. Majority of these extensions for item cold-start involve the incorporation of item-specific
features based on item description, content, or intrinsic value. From these, a model is prescribed
that can parametrically (as opposed to a lookup table) infer a vector embedding for that item. Such
item embeddings can then be compared with the embeddings from the user lookup table to perform
recommendation of new items to these users.

However, in a setting where new items arrive continuously, we posit that relying on user embeddings
trained offline into a lookup table is sub-optimal. Indeed, this approach cannot capture substantial
variations in user interests occurring on short timescales, a common phenomenon with continuously
produced content. This problem is only partially addressed when user embeddings are retrained
periodically or incrementally adjusted online.

Alternatively, recommendations could be made by performing content-based filtering [21], where
we compare each new item to other items the user has rated in the recent past. However, a pure
content-based filtering approach does not let us share and transfer information between users. Instead,
we would like a method that performs akin to content filtering using a user’s item history, but shares
information across users through some form of transfer learning between recommendation tasks
across users. In other words, we would like to learn a common procedure that takes as input a set of
items from any user’s history and produces a scoring function that can be applied to new test items
and indicate how likely this user is to prefer that item.

In this formulation, we notice that the recommendation problem is equivalent to a meta-learning
problem [28] where the objective is to learn a learning algorithm that can take as input a (small) set
of labeled examples (a user’s history) and will output a model (scoring function) that can be applied
to new examples (new items). In meta-learning, training takes place in an episodic manner, where a
training set is presented along with a test example that must be correctly labeled. In our setting, an
episode is equivalent to presenting a set of historical items (and ratings) for a particular user along
with test items that must be correctly rated for that user.

The meta-learning perspective is appealing for a few reasons. First, we are no longer tied to the
MF model where a rating is usually the inner product of the user and item embeddings; instead, we
can explore a variety of ways to combine user and item information. Second, it enables us to take
advantage of deep neural networks to learn non-linear embeddings. And third, it specifies an effective
way to perform transfer learning across users (by means of shared parameters), thus enabling us to
cope with limited amount of data per user.

A key part of designing a meta-learning algorithm is the specification of how a model is produced
for different tasks. In this work, we propose and evaluate two strategies for conditioning the model
based on task. The first, called linear weight adaptation, is a light-weight method that builds a linear
classifier and adapts weights of the classifier based on the task information. The second, called
non-linear bias adaptation, builds a neural network classifier that uses task information to adapt the
biases of the neural network while sharing weights across all tasks.

Thus our contributions are: (1) we introduce a new hybrid recommendation method for the item
cold-start setting that is motivated by limitations in current MF extensions for ICS; (2) we introduce
a meta-learning formulation of the recommendation problem and elaborate why a meta-learning
perspective is justified in this setting; (3) we propose two key architectures for meta-learning in
this recommendation context; and (4) we evaluate our techniques on a production Twitter dataset
and demonstrate that they outperform an approach based on lookup table embeddings as well as
state-of-the-art industrial models.

2 Problem Formulation

Similar to other large-scale recommender systems that must address the ICS problem [6], we view
recommendation as a binary classification problem as opposed to a regression problem. Specifically,
for an item ti and user uj , the outcome eij ∈ {0, 1} indicates whether the user engaged with the
item. Engagement can correspond to different actions in different settings. For example, in video
recommendation, engagement can be defined as a user viewing the video; in ad-click prediction,
engagement can be defined as clicking on an ad; and on Twitter, engagement can be an action related
to a Tweet such as liking, Retweeting or replying. Our goal in this context is to predict the probability
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that uj will engage with ti:
Pr(eij=1|ti, uj) . (1)

Once the engagement probability has been computed, it can be combined with other signals to
produce a ranked list of recommended items.

As discussed in Section 1, in casting recommendations as a form of meta-learning, we view the
problem of making predictions for one user as an individual task or episode. Let Tj be the set
of items to which a user uj has been exposed (e.g. Tweets recommended to uj). We represent
each user in terms of their item history, i.e., the set of items to which they have been exposed and
their engagement for each of these items. Specifically, user uj is represented by their item history
Vj = {(tm, emj)} : tm ∈ Tj . Note that we limit item history to only those items that were seen
before ti.

We then model the probability of Eq. 1 as the output of a model f(ti; θ) where the parameters θ are
produced from the item history Vj of user uj :

Pr(eij=1|ti, uj) = f(ti;H(Vj)) (2)

Thus meta-learning consists of learning the function H(Vj) that takes history Vj and produces
parameters of the model f(ti; θ).

In this paper, we propose two neural network architectures for learning H(Vj), depicted in Fig. 1.
The first approach, called Linear Weight Adaptation (LWA) and shown in Fig. 1a, assumes f(ti; θ)
is a linear classifier on top of non-linear representations of items and uses the user history to adapt
classifier weights. The second approach, called Non-Linear Bias Adaptation (NLBA) and shown in
Fig. 1b, assumes f(ti; θ) to be a neural network classifier on top of item representations and uses the
user history to adapt the biases of the units in the classifier.

In the following subsections, we describe the two architectures and differences in how they model the
classification of a new item ti from its representation F(ti).

3 Proposed Architectures

As shown in Fig. 1, both architectures we propose take as input (a) the items to which a user has
been exposed along with the rating (i.e. class) assigned to each item by this user (positive, i.e., 1, or
negative, i.e., 0), and (b) a test item for which we seek to predict a rating. Each of our architectures in
turn consists of two sub-networks. The first sub-network learns a common representation of items
(historical and new), which we note F(t). In our implementation, item representations F(t) are
learned by a deep feed-forward neural network. We then compute a single representative per class by
applying an aggregating function G to the representations of items tm ∈ Tj from each class. A simple
example of G is the unweighted mean, while more complicated functions may order items by recency
and learn to weigh individual embeddings differently. Thus, the class representative embedding for
class c ∈ {0, 1} can be expressed as shown below.

Rc
j = G({F(tm)} : tm ∈ Tj ∧ (emj = c)) (3)

Once we have obtained class representatives, the second sub-network applies the LWA and NLBA
approaches to adapt the learned model based on item histories.

3.1 Linear Classifier with Task-dependent weights

Our first approach to conditioning predictions on users’ item histories has parallels to latent factor
models and is appealing due to its simplicity: we learn a linear classifier (for new items) whose
weights are determined by the user’s history Vj .

Given the two class-representative embeddings R0
j , R

1
j described above, LWA provides the bias (first

term) and weights (second term) of a linear logistic regression classifier as follows:

[b, (w0R
0
j + w1R

1
j )] = H(Vj) (4)

where scalars b, w0, w1 are trainable parameters. More concretely, with f(ti; θ) being logistic
regression, Eq. 2 becomes:

Pr(eij=1|ti, uj) = σ(b+ F(ti) · (w0R
0
j + w1R

1
j )) (5)

3



{ }

{ }

F(t1)

F(t3)

F(t2)

F(t4)

positive class

negative class

{}
{}

F(t1)

F(t4)

positive class

negative class

F(t6)

F(t7)

F(t5)

User 1 User 2

G

G

G

G

F(t8)

(a) Linear Classifier with Weight Adaptation. Changes in the shading of each connection with the
output unit for two users illustrates that the weights of the classifier vary based on each user’s item
history. The output bias indicated by the shades of the circles however remains the same.

{ }

{ }

F(t1)

F(t3)

F(t2)

F(t4)

positive class

negative class

{}
{}

F(t1)

F(t4)

positive class

negative class

F(t6)

F(t7)

F(t5)

F(t8)

User 1 User 2

G

G

G

G

(b) Non-linear Classifier with Bias Adaptation. Changes in the shading of each unit between two
users illustrates that the biases of these units vary based on each user’s item history. The weights
however remain the same.

Figure 1: Proposed meta-learning architectures

While bias b of the classifier is constant across users, its weight vector varies with user-specific
item histories (i.e., based on the representative embeddings for classes). This means that different
dimensions of F(ti), such as properties of item ti, get weighted differently depending on the user.

While simple, the LWA method can be quite effective (see Section 5). Moreover, in some cases, it
may be preferred over more complex methods because it allows significant amount of computation
to be performed offline. For example, in Eq. 5, the only quantities that are unknown at prediction
time are F(ti). All the rest, including Rc

j , can be pre-computed, reducing the cost of prediction to
the computation of one dot product and one sigmoid.

3.2 Non-linear Classifier with Task-dependent Bias

Our first meta-learning strategy is simple and is reminiscent of MF with non-linear embeddings.
However, it limits the effect of task information, specifically R0

j and R1
j , on the final prediction.

Our second strategy, NLBA, learns a neural network classifier with H hidden-layers where the bias
(first term) and weights (second term) of the output, as well as the biases (third term) and weights
(fourth term) of all hidden layers are determined as follows:

[v0R0
j + v1R1

j ,w, {V0
lR

0
j +V1

lR
1
j}Hl=1, {Wl}Hl=1] = H(Vj) (6)
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Here, the vectors v0,v1,w and matrices {V0
l }Hl=1, {V1

l }Hl=1, {Wl}Hl=1 are all trainable parameters.
In contrast to LWA, all weights (output and hidden) in NLBA are constant across users, while the
biases of output and hidden units are adapted per user. One can think of this approach as learning a
shared pool of hidden units whose activation can be modulated depending on the user (e.g. a unit
could be entirely shot down for a user with a large negative bias).

Compared to LWA, NLBA produces a non-linear classifier of the item representations F(ti) and
can model complex interactions between classes and also between the classes and the test item. For
example, interactions allow NLBA to explore a different part of the classifier function space that is not
accessible to LWA (e.g., ratio of the kth dimension of the class representatives). We find empirically
that NLBA significantly improves model performance compared to LWA (Section 5).

Selecting Historical Impressions. A natural question with our meta-learning formulation is the
minimum item history size required to make accurate predictions. In general, item history size
depends on the problem and variability within items, and must be empirically determined. Often,
due to the long tail of users, item histories can be very large (e.g., consider a bot which likes every
item). Therefore, we recommend setting an upper limit on item history size. Further, for any user, the
number of items with positive engagement (eij=1) can be quite different from those with negative
engagement (eij=0). Therefore, in our experiments, we choose to independently sample histories for
the two classes up to a maximum size k for each class. Note that while this sampling strategy makes
the problem more tractable, this sampling throws off certain features (e.g. user click through rate)
that would benefit from having the true proportions of positive and negative engagements.

4 Related Work

Algorithms for recommendation broadly fall into two categories: content-filtering and collaborative-
filtering. Content filtering [21] uses information about items (e.g. product categories, item content,
reviews, price) and users (e.g. age, gender, location) to match users to items. In contrast, collaborative
filtering [19, 23] uses past user-item ratings to predict future ratings. The most popular technique for
performing collaborative filtering is via latent factor models where items and users are represented
in a common latent space and ratings are computed as the inner product between the user and item
representations. Matrix factorization (MF) is the most popular instantiation of latent factor models
and has been used for large scale recommendations of products [19], movies [15]) and news [7]. A
significant problem with traditional MF approaches is that they suffer from cold-start problems, i.e.,
they cannot be applied to new items or users. In order to address the cold-start problem, work such
as [3, 14, 27, 17] has extended the MF model so that user- and item-specific terms can be included
in their respective representations. These methods are called hybrid methods. Given the power of
deep neural networks to learn representations of images and text, many of the new hybrid methods
such as [30] and [12] use deep neural networks to learn item representations. Deep learning models
based on ID embeddings (as opposed to content embeddings) have also been used for performing
large scale video recommendation in [6].

The work in [5, 30] operates in a problem setting similar to ours where new scientific articles must be
recommended to users based on other articles in their library. In these settings, users are represented
in terms of scientific papers in their “libraries”. Note that unlike our setting where we have positive as
well as negative information, there are no negative examples present in this setting. [9, 10] propose
RNN architecture for a similar problem, namely that of recommending items during short-lived web
sessions. [11] propose co-factorization machines to jointly model topics in Tweets while making
recommendations.

In this paper, we propose to view recommendations from a meta-learning perspective [28, 18].
Recently, meta-learning has been explored as a popular strategy for learning from a small number
of items (also called few-shot learning [16, 13]). Successful applications of meta-learning include
MatchingNets [29] in which an episodic scheme is used to train a meta-learner to classify images
given very few examples belonging to each classes. In particular, MatchingNets use LSTMs to learn
attention weights over all points in the support set and use a weighted sum to make predictions for
the test item. Similarly, in [24], the authors propose an LSTM-based meta-learner to learn another
learner that performs few-shot classification. [25] proposes a memory-augmented neural network
for meta-learning. The key idea is that the network can slowly learn useful representations of data
through weight updates while the external memory can cache new data for rapid learning. Most
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recently, [4] proposes to learn active learning algorithms via a technique based on MatchingNets.
While the above state-of-the-art meta-learning techniques are powerful and potentially useful for
recommendations, they do not scale to large datasets with hundreds of millions of examples.

Our approach of computing a mean representative per class is similar to [26] and [22] in terms
of learning class representative embeddings. Our work also has parallels to the recent work on
DeepSets [31] where the authors propose a general strategy for performing machine learning tasks
on sets. The authors propose to learn an embedding per item and then use a permutation invariant
operation, usually a sumpool or maxpool, to learn a single representation that is then passed to another
neural network for performing the final classification or regression. Our techniques differ in that
our input sets are not homogeneous as assumed in DeepSets and therefore we need to learn multiple
representatives, and unlike DeepSets, our network must work for variable size histories and therefore
a weighted sum is more effective than the unweighted sum.

5 Evaluation

5.1 Recommending Tweets on Twitter Home Timeline

We evaluated our proposed techniques on the real-world problem of Tweet recommendation. The
Twitter Home timeline is the primary means by which users on Twitter consume Tweets from their
networks [1]. 300+ million monthly active users on Twitter send hundreds of millions of Tweets per
day. Every time a user visits Twitter, the timeline ranking algorithm scores Tweets from the accounts
they follow and identifies the most relevant Tweets for that user. We model the timeline ranking
problem as one of engagement prediction as described in Section 2. Given a Tweet ti and a user
uj , the task is to predict the probability of uj engaging with ti, i.e., Pr(eij=1|ti, uj ; θ). Engagement
can be any action related to the Tweet such as Retweeting, liking or replying. For the purpose of
this paper, we will limit our analysis to prediction of one kind of engagement, namely that of liking
a Tweet. Because hundreds of millions of new Tweets arrive every day, as discussed in Section 1,
traditional matrix factorization schemes suffer from acute cold-start problems and cannot be used for
Tweet recommendation. In this work, we cast the problem in terms of meta-learning and adopt the
formulation developed in Eq. 2.

Dataset. We used production data regarding Tweet engagement to perform an offline evaluation of
our techniques. Specifically, the training data was generated as follows: for a particular day d, we
collect data for all Tweet impressions (i.e., Tweets shown to a user) generated during that day. Each
data point consists of a Tweet ti, the user uj to whom it was shown, and the engagement outcome eij .
We then join impression data with item histories (per user) that are computed using impressions from
the week prior to d. As discussed in Section 2, there are different strategies for selecting items to build
the item history. For this problem, we independently sample impressions with positive engagement
and negative engagement, up to a maximum of k engagements in each class. We experimented with
different values of k and chose the smallest one that did not produce a significant drop in performance.
After applying other typical filtering operations, our training dataset consists of hundreds of millions
of examples (i.e., ti, uj pairs) for day d. The test and validation sets were similarly constructed,
but for different days. For feature preprocessing, we scale and discretize continuous features and
one-hot-encode categorical features.

Baseline Models. We implemented different architectural variations of the two meta-learning
approaches proposed in Section 2. Along with comparisons within architectures, we compare our
models against three external models: (a) first, an industrial baseline (PROD-BASE) not using
meta-learning; (b) the industrial baseline augmented with a latent factor model for users (MF); and
(c) the state-of-the-art production model for engagement prediction (PROD-BEST).

PROD-BASE is a deep feed-forward neural network that uses information pertaining only to the
current Tweet in order to predict engagement. This information includes features of the current Tweet
ti (e.g. its recency, whether it contains a photo, number of likes), features about the user uj (e.g. how
heavily the user uses Twitter, their network), and the Tweet’s author (e.g. strength of connection
between the user and author, past interactions). Note that this network uses no historical information
about the user. This baseline learns a combined item-user embedding (due to user features present in
the input) and performs classification based on this embedding. While relatively simple, this model
presents a very strong baseline due to the presence of high-quality features.
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Model AUROC AUROC
(w/CTR)

MF (shallow) +0.22% +1.32%
MF (deep) +0.55% +1.87%

PROD-BEST +2.54% +2.54%
LWA +1.76% +2.43%
LWA∗ +1.98% +2.31%

Table 1: Performance with LWA

Model AUROC AUROC
(w/CTR)

MF (shallow) +0.22% +1.32%
MF (shallow) +0.55% +1.87%
PROD-BEST +2.54% +2.54%

NLBA +2.65% +2.76%
Table 2: Performance with NBLA

To mimic latent factor models in cold-start settings, in the second baseline, MF we augmented PROD-
BASE to learn a latent-space representations of users based on ratings. MF uses an independently
learned user representation and a current Tweet representation whose inner product is used to make
the classification. We evaluate two versions of MF, one that uses a shallow network (1 layer) for
learning the representations and another than uses a deep network (5 layers) to learn representations.
PROD-BEST is the production model for engagement prediction based on deep neural networks.
PROD-BEST uses features not only for the current Tweet but historical features as described in [8].
PROD-BEST is a highly tuned model and represents the state-of-art in Tweet engagement prediction.

Experimental Setup. All models were implemented in the Twitter Deep Learning platform [2].
Models were trained to minimize cross-entropy loss and SGD was used for optimization. We use
AUROC as the evaluation metric in our experiments. All performance numbers denote percent
AUROC improvement relative to the production baseline model, PROD-BASE. For every model,
we performed hyperparameter tuning on a validation set using random search and report results for
the best performing model.

5.2 Results

Linear Classifier with Weight Adaptation. We evaluated two key instantiations of the LWA
approach. First, we test the basic architecture described in Section 3.1 where we calculate one
representative embedding from the positive and negative class, and take a linear combination of the
dot products of the new item with the respective embeddings. We note this architecture LWA (refer
Fig. 1.a). When learning class representatives, we use a deep feed-forward neural network (F in
Fig. 1.a) to first compute embeddings and then use a weighted average to learn class representatives
(G in Fig. 1.a). We also evaluate a model variation where we augment LWA with a network that uses
only the new item embedding to produce a prediction that is then combined with the prediction of
LWA to produce the final probability. The intuition behind this model, called LWA∗, is that the linear
weight adaptation approach works well when there are non-zero items in the two engagement classes.
In cases where one of the classes is empty, the model can fall back on the current item to predict
engagement. We show the performance of all LWA variants in Table 1.

Note that for all models, we also test a variant where we explicitly pass a user-specific click-through-
rate (CTR) to the model. The reason is that the CTR provides a strong prior on the probability
p(eij = 1) but cannot be easily learned from our architectures because the ratio of positive to negative
engagements in the item history is not proportional to the CTR. User-specific CTR can be thought of
as being part of the bias term from Eq. 2.

We find that the simplest classifier adaptation model, LWA, already improves upon the production
baseline (PROD-BASE) by >1.5 percent. Adding the bias in the form of CTR, improves the
AUROC even further. Because learning a good class representative embedding is key for our meta-
learning approaches, we performed experiments varying only the architectures used to learn class
representative embeddings (i.e., architectures for F ,G in Fig. 1a). The top-level classifier was kept
constant at LWA but we varied the aggregation function and depth of the feed forward network used
to learn F . Results of this experimentation are shown in Table 3. We find that deep networks work
better than shallow networks but a model with 9 hidden layers performs worse than a 5 layer network,
possibly due to over-fitting. We also find that weighted combinations of embeddings (when items are
sorted by time) perform significantly better than simple averages. A likely reason for the effectiveness
of weighted combinations is that item histories can be variable sized; therefore, weighing non-zero
entries higher produces better representatives.

Non-Linear Classifier with Bias Adaptation. As with LWA, we evaluated different variations of
the non-linear bias adaptation approach. Results of this evaluation are shown in Table 2. We use a
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Hidden AVG Weighted
Layers AVG

1 +1.8% +2.31%
5 +2.20% +2.42%
9 +2.09% +1.65%

Table 3: Learning a representative per class

Engagements AUROC
Used

POS/NEG +2.54%
POS-ONLY +1.76%
NEG-ONLY +1.87%

Table 4: Effect of different engagements

weighted mean for computing class representatives in NLBA. We see that this network immediately
beats PROD-BASE by a large margin. Moreover, it also readily beats the state-of-the-art model,
PROD-BEST. Augmenting NLBA with user-specific CTR further allows the network to cleanly beat
the highly optimized PROD-BEST.

For NLBA architectures, we also evaluated the impact on model AUROC when examples of only
one class (eij=0 or 1) are present in the item history. These architectures replicate the strategy of
only using one class of items to make predictions. These numbers approximate the gain that could be
achieved by using a DeepSets [31]-like approach. The results of this evaluation are shown in Table 4.
As expected, we find that dropping either type of engagement reduces performance significantly.

Summary of Results. We find that both our proposed approaches improve on the baseline production
model (PROD-BASE) by up to 2.76% and NLBA readily beats the state-of-the-art production model
(PROD-BEST). As discussed in Sec. 3.2, we find that NLBA clearly outperforms LWA because of the
non-linear classifier and access to a larger space of functions. A breakdown of NLBA performance
by overall user engagement identifies that NLBA shows large gains for highly engaged users. For
both techniques, although the improvements in AUROC may appear small numerically, they have
large product impact because they translate to significantly higher number of engagements. This gain
is particularly noteworthy when compared to the highly optimized and tuned PROD-BEST model.

6 Discussion

In this paper, we proposed to view recommendations from a meta-learning perspective and proposed
two architectures for building meta-learning models for recommendation. While our techniques
show clear wins over state-of-the-art models, there are several avenues for improving the model and
operationalizing it. First, our model does not explicitly model the time-varying aspect of engagements.
While weighting impressions differently is a way of modeling time dependencies (e.g., more recent
impressions get more weight) scalable versions of sequence models such as [29, 10] could be
used to explicitly model time dynamics. Second, while we chose a balanced sampling strategy for
producing item histories, we believe that different strategies may be more appropriate in different
recommendation settings, and thus merit further exploration. Third, producing and storing item
histories for every user can be expensive with respect to computational as well as storage cost.
Therefore, we can explore the computation of representative embeddings in an online fashion such
that at any given time, the system tracks the k most representative embeddings. Finally, we believe
that there is room for future work exploring effective visualizations of learned embeddings when
input items are not easy to interpret (i.e., beyond images and text).

7 Conclusions

In this paper, we study the recommendation problem when new items arrive continuously. We propose
to view item cold-start through the lens of meta-learning where making recommendations for one user
is considered to be one task and our goal is to learn across many such tasks. We formally define the
meta-learning problem and propose two distinct approaches to condition the recommendation model
on the task. The linear weight adaptation approach adapts weights of a linear classifier depending on
task information while the non-linear bias adaptation approach learns task specific item representations
and adapts biases of a neural network based on task information. We perform an empirical evaluation
of our techniques on the Tweet recommendation problem. On production Twitter data, we show
that our meta-learning approaches comfortably beat the state-of-the-art production models for Tweet
recommendation. We show that the non-linear bias adaptation approach outperforms the linear weight
adaptation approach. We thus demonstrate that recommendation through meta-learning is effective
for item cold-start recommendations and may be extended to other recommendation settings as well.
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