
C/C++ Thread Safety Analysis
DeLesley Hutchins

Google Inc.
Email: delesley@google.com

Aaron Ballman
CERT/SEI

Email: aballman@cert.org

Dean Sutherland
Email: dfsuther@cs.cmu.edu

Abstract—Writing multithreaded programs is hard. Static
analysis tools can help developers by allowing threading policies
to be formally specified and mechanically checked. They essen-
tially provide a static type system for threads, and can detect
potential race conditions and deadlocks.

This paper describes Clang Thread Safety Analysis, a tool
which uses annotations to declare and enforce thread safety
policies in C and C++ programs. Clang is a production-quality
C++ compiler which is available on most platforms, and the
analysis can be enabled for any build with a simple warning
flag: −Wthread−safety.

The analysis is deployed on a large scale at Google, where
it has provided sufficient value in practice to drive widespread
voluntary adoption. Contrary to popular belief, the need for
annotations has not been a liability, and even confers some
benefits with respect to software evolution and maintenance.

I. INTRODUCTION

Writing multithreaded programs is hard, because developers
must consider the potential interactions between concurrently
executing threads. Experience has shown that developers need
help using concurrency correctly [1]. Many frameworks and
libraries impose thread-related policies on their clients, but
they often lack explicit documentation of those policies. Where
such policies are clearly documented, that documentation
frequently takes the form of explanatory prose rather than a
checkable specification.

Static analysis tools can help developers by allowing
threading policies to be formally specified and mechanically
checked. Examples of threading policies are: “the mutex mu
should always be locked before reading or writing variable
accountBalance” and “the draw() method should only be
invoked from the GUI thread.”

Formal specification of policies provides two main benefits.
First, the compiler can issue warnings on policy violations.
Finding potential bugs at compile time is much less expensive
in terms of engineer time than debugging failed unit tests, or
worse, having subtle threading bugs hit production.

Second, specifications serve as a form of machine-checked
documentation. Such documentation is especially important
for software libraries and APIs, because engineers need to
know the threading policy to correctly use them. Although
documentation can be put in comments, our experience shows
that comments quickly “rot” because they are not updated
when variables are renamed or code is refactored.

This paper describes thread safety analysis for Clang. The
analysis was originally implemented in GCC [2], but the GCC
version is no longer being maintained. Clang is a production-
quality C++ compiler, which is available on most platforms,

including MacOS, Linux, and Windows. The analysis is
currently implemented as a compiler warning. It has been
deployed on a large scale at Google; all C++ code at Google is
now compiled with thread safety analysis enabled by default.

II. OVERVIEW OF THE ANALYSIS

Thread safety analysis works very much like a type system
for multithreaded programs. It is based on theoretical work
on race-free type systems [3]. In addition to declaring the
type of data (int , float , etc.), the programmer may optionally
declare how access to that data is controlled in a multithreaded
environment.

Clang thread safety analysis uses annotations to declare
threading policies. The annotations can be written using either
GNU-style attributes (e.g., attribute ((...))) or C++11-
style attributes (e.g., [[...]]). For portability, the attributes are
typically hidden behind macros that are disabled when not
compiling with Clang. Examples in this paper assume the use
of macros; actual attribute names, along with a complete list
of all attributes, can be found in the Clang documentation [4].

Figure 1 demonstrates the basic concepts behind the
analysis, using the classic bank account example. The
GUARDED BY attribute declares that a thread must lock mu
before it can read or write to balance, thus ensuring that
the increment and decrement operations are atomic. Similarly,
REQUIRES declares that the calling thread must lock mu
before calling withdrawImpl. Because the caller is assumed to
have locked mu, it is safe to modify balance within the body
of the method.

In the example, the depositImpl() method lacks a REQUIRES
clause, so the analysis issues a warning. Thread safety analysis
is not interprocedural, so caller requirements must be explicitly
declared. There is also a warning in transferFrom(), because it
fails to lock b.mu even though it correctly locks this−>mu.
The analysis understands that these are two separate mutexes
in two different objects. Finally, there is a warning in the
withdraw() method, because it fails to unlock mu. Every lock
must have a corresponding unlock; the analysis detects both
double locks and double unlocks. A function may acquire
a lock without releasing it (or vice versa), but it must be
annotated to specify this behavior.

A. Running the Analysis

To run the analysis, first download and install Clang [5].
Then, compile with the −Wthread−safety flag:

clang −c −Wthread−sa fe t y example . cpp

#include ” mutex . h ”

class BankAcct {
Mutex mu;
i n t balance GUARDED BY(mu) ;

void depos i t Imp l (i n t amount) {
/ / WARNING! Must lock mu.
balance += amount ;

}

void withdrawImpl (i n t amount) REQUIRES(mu) {
/ / OK. C a l l e r must have locked mu.
balance −= amount ;

}

public :
void withdraw (i n t amount) {

mu. lock () ;
/ / OK. We ’ ve locked mu.
withdrawImpl (amount) ;
/ / WARNING! Fa i led to unlock mu.

}

void t ransferFrom (BankAcct& b , i n t amount) {
mu. lock () ;
/ / WARNING! Must lock b .mu.
b . wi thdrawImpl (amount) ;
/ / OK. depos i t Imp l () has no requirements .
depos i t Imp l (amount) ;
mu. unlock () ;

}
} ;

Fig. 1. Thread Safety Annotations

Note that this example assumes the presence of a suitably
annotated mutex.h [4] that declares which methods perform
locking and unlocking.

B. Thread Roles

Thread safety analysis was originally designed to enforce
locking policies such as the one previously described, but locks
are not the only way to ensure safety. Another common pattern
in many systems is to assign different roles to different threads,
such as “worker thread” or “GUI thread” [6].

The same concepts used for mutexes and locking can also
be used for thread roles, as shown in Figure 2. Here, a
widget library has two threads, one to handle user input, like
mouse clicks, and one to handle rendering. It also enforces a
constraint: the draw() method should only be invoked only by
the GUI thread. The analysis will warn if draw() is invoked
directly from onClick().

The rest of this paper will focus discussion on mutexes in
the interest of brevity, but there are analogous examples for
thread roles.

III. BASIC CONCEPTS

Clang thread safety analysis is based on a calculus of
capabilities [7] [8]. To read or write to a particular location in
memory, a thread must have the capability, or permission, to
do so. A capability can be thought of as an unforgeable key,

#include ” ThreadRole . h ”

ThreadRole Input Thread ;
ThreadRole GUI Thread ;

class Widget {
public :

v i r t u a l void onCl ick () REQUIRES(Input Thread) ;
v i r t u a l void draw () REQUIRES(GUI Thread) ;

} ;

class Button : public Widget {
public :

void onCl ick () ove r r i de {
depressed = true ;
draw () ; / / WARNING!

}
} ;

Fig. 2. Thread Roles

or token, which the thread must present to perform the read
or write.

Capabilities can be either unique or shared. A unique
capability cannot be copied, so only one thread can hold
the capability at any one time. A shared capability may
have multiple copies that are shared among multiple threads.
Uniqueness is enforced by a linear type system [9].

The analysis enforces a single-writer/multiple-reader disci-
pline. Writing to a guarded location requires a unique capa-
bility, and reading from a guarded location requires either a
unique or a shared capability. In other words, many threads can
read from a location at the same time because they can share
the capability, but only one thread can write to it. Moreover, a
thread cannot write to a memory location at the same time that
another thread is reading from it, because a capability cannot
be both shared and unique at the same time.

This discipline ensures that programs are free of data
races, where a data race is defined as a situation that occurs
when multiple threads attempt to access the same location in
memory at the same time, and at least one of the accesses
is a write [10]. Because write operations require a unique
capability, no other thread can access the memory location
at that time.

A. Background: Uniqueness and Linear Logic

Linear logic is a formal theory for reasoning about re-
sources; it can be used to express logical statements like: “You
cannot have your cake and eat it too” [9]. A unique, or linear,
variable must be used exactly once; it cannot be duplicated
(used multiple times) or forgotten (not used).

A unique object is produced at one point in the program,
and then later consumed. Functions that use the object without
consuming it must be written using a hand-off protocol. The
caller hands the object to the function, thus relinquishing
control of it; the function hands the object back to the caller
when it returns.

For example, if std :: stringstream were a linear type, stream
programs would be written as follows:

std : : s t r i ngs t ream ss ; / / produce ss
auto& ss2 = ss << ” He l lo ” ; / / consume ss
auto& ss3 = ss2 << ” World . ” ; / / consume ss2
return ss3 . s t r () ; / / consume ss3

Notice that each stream variable is used exactly once. A
linear type system is unaware that ss and ss2 refer to the same
stream; the calls to << conceptually consume one stream and
produce another with a different name. Attempting to use ss
a second time would be flagged as a use-after-consume error.
Failure to call ss3.str () before returning would also be an
error because ss3 would then be unused.

B. Naming of Capabilities

Passing unique capabilities explicitly, following the pattern
described previously, would be needlessly tedious, because
every read or write operation would introduce a new name.
Instead, Clang thread safety analysis tracks capabilities as
unnamed objects that are passed implicitly. The resulting type
system is formally equivalent to linear logic but is easier to
use in practical programming.

Each capability is associated with a named C++ object,
which identifies the capability and provides operations to
produce and consume it. The C++ object itself is not unique.
For example, if mu is a mutex, mu.lock() produces a unique,
but unnamed, capability of type Cap<mu> (a dependent type).
Similarly, mu.unlock() consumes an implicit parameter of type
Cap<mu>. Operations that read or write to data that is
guarded by mu follow a hand-off protocol: they consume an
implicit parameter of type Cap<mu> and produce an implicit
result of type Cap<mu>.

C. Erasure Semantics

Because capabilities are implicit and are used only for type-
checking purposes, they have no run time effect. As a result,
capabilities can be fully erased from an annotated program,
yielding an unannoted program with identical behavior.

In Clang, this erasure property is expressed in two ways.
First, recommended practice is to hide the annotations behind
macros, where they can be literally erased by redefining the
macros to be empty. However, literal erasure is unnecessary.
The analysis is entirely static and is implemented as a compile
time warning; it cannot affect Clang code generation in any
way.

IV. THREAD SAFETY ANNOTATIONS

This section provides a brief overview of the main annota-
tions that are supported by the analysis. The full list can be
found in the Clang documentation [4].

GUARDED BY(...) and PT GUARDED BY(...)

GUARDED BY is an attribute on a data member; it declares
that the data is protected by the given capability. Read oper-
ations on the data require at least a shared capability; write
operations require a unique capability.

PT GUARDED BY is similar but is intended for use on
pointers and smart pointers. There is no constraint on the data

member itself; rather, the data it points to is protected by the
given capability.

Mutex mu;
i n t ∗p2 PT GUARDED BY(mu) ;

void t e s t () {
∗p2 = 42; / / Warning !
p2 = new i n t ; / / OK (no GUARDED BY) .

}

REQUIRES(...) and REQUIRES SHARED(...)

REQUIRES is an attribute on functions; it declares that
the calling thread must have unique possession of the
given capability. More than one capability may be specified,
and a function may have multiple REQUIRES attributes.
REQUIRES SHARED is similar, but the specified capabilities
may be either shared or unique.

Formally, the REQUIRES clause states that a function takes
the given capability as an implicit argument and hands it back
to the caller when it returns, as an implicit result. Thus, the
caller must hold the capability on entry to the function and
will still hold it on exit.

Mutex mu;
i n t a GUARDED BY(mu) ;

void foo () REQUIRES(mu) {
a = 0; / / OK.

}

void t e s t () {
foo () ; / / Warning ! Requires mu.

}

ACQUIRE(...) and RELEASE(...)

The ACQUIRE attribute annotates a function that produces
a unique capability (or capabilities), for example, by acquiring
it from some other thread. The caller must not-hold the given
capability on entry, and will hold the capability on exit.

RELEASE annotates a function that consumes a unique
capability, (e.g., by handing it off to some other thread). The
caller must hold the given capability on entry, and will not-
hold it on exit.

ACQUIRE SHARED and RELEASE SHARED are similar,
but produce and consume shared capabilities.

Formally, the ACQUIRE clause states that the function
produces and returns a unique capability as an implicit result;
RELEASE states that the function takes the capability as an
implicit argument and consumes it.

Attempts to acquire a capability that is already held or
to release a capability that is not held are diagnosed with a
compile time warning.

CAPABILITY(...)

The CAPABILITY attribute is placed on a struct, class or a
typedef; it specifies that objects of that type can be used to
identify a capability. For example, the threading libraries at
Google define the Mutex class as follows:

class CAPABILITY (” mutex ”) Mutex {
public :

void l ock () ACQUIRE(th is) ;
void readerLock () ACQUIRE SHARED(th is) ;
void unlock () RELEASE(th is) ;
void readerUnlock () RELEASE SHARED(th is) ;

} ;

Mutexes are ordinary C++ objects. However, each mutex
object has a capability associated with it; the lock () and
unlock() methods acquire and release that capability.

Note that Clang thread safety analysis makes no attempt
to verify the correctness of the underlying Mutex implemen-
tation. Rather, the annotations allow the interface of Mutex
to be expressed in terms of capabilities. We assume that the
underlying code implements that interface correctly, e.g., by
ensuring that only one thread can hold the mutex at any one
time.

TRY ACQUIRE(b, ...) and TRY ACQUIRE SHARED(b, ...)

These are attributes on a function or method that attempts
to acquire the given capability and returns a boolean value
indicating success or failure. The argument b must be true or
false, to specify which return value indicates success.

NO THREAD SAFETY ANALYSIS

NO THREAD SAFETY ANALYSIS is an attribute on func-
tions that turns off thread safety checking for the annotated
function. It provides a means for programmers to opt out
of the analysis for functions that either (a) are deliberately
thread-unsafe, or (b) are thread-safe, but too complicated for
the analysis to understand.

Negative Requirements

All of the previously described requirements discussed are
positive requirements, where a function requires that certain
capabilities be held on entry. However, the analysis can also
track negative requirements, where a function requires that a
capability be not-held on entry.

Positive requirements are used to prevent race conditions.
Negative requirements are used to prevent deadlock. Many mu-
tex implementations are not reentrant, because making them
reentrant entails a significant performance cost. Attempting
to acquire a non-reentrant mutex that is already held will
deadlock the program.

To avoid deadlock, acquiring a capability requires a proof
that the capability is not currently held. The analysis represents
this proof as a negative capability, which is expressed using
the ! negation operator:

Mutex mu;
i n t a GUARDED BY(mu) ;

void c l ea r () REQUIRES (!mu) {
mu. lock () ;
a = 0 ;
mu. unlock () ;

}

void rese t () {
mu. lock () ;
/ / Warning ! C a l l e r cannot hold ’mu ’ .
c l ea r () ;
mu. unlock () ;

}

Negative capabilities are tracked in much the same way as
positive capabilities, but there is a bit of extra subtlety.

Positive requirements are typically confined within the class
or the module in which they are declared. For example, if a
thread-safe class declares a private mutex, and does all locking
and unlocking of that mutex internally, then there is no reason
clients of the class need to know that the mutex exists.

Negative requirements lack this property. If a class declares
a private mutex mu, and locks mu internally, then clients
should theoretically have to provide proof that they have not
locked mu before calling any methods of the class. Moreover,
there is no way for a client function to prove that it does not
hold mu, except by adding REQUIRES(!mu) to the function
definition. As a result, negative requirements tend to propagate
throughout the code base, which breaks encapsulation.

To avoid such propagation, the analysis restricts the visibil-
ity of negative capabilities. The analyzer assumes that it holds
a negative capability for any object that is not defined within
the current lexical scope. The scope of a class member is
assumed to be its enclosing class, while the scope of a global
variable is the translation unit in which it is defined.

Unfortunately, this visibility-based assumption is unsound.
For example, a class with a private mutex may lock the mutex,
and then call some external routine, which calls a method in
the original class that attempts to lock the mutex a second
time. The analysis will generate a false negative in this case.

Based on our experience in deploying thread safety analysis
at Google, we believe this to be a minor problem. It is
relatively easy to avoid this situation by following good
software design principles and maintaining proper separation
of concerns. Moreover, when compiled in debug mode, the
Google mutex implementation does a run time check to see
if the mutex is already held, so this particular error can be
caught by unit tests at run time.

V. IMPLEMENTATION

The Clang C++ compiler provides a sophisticated infras-
tructure for implementing warnings and static analysis. Clang
initially parses a C++ input file to an abstract syntax tree
(AST), which is an accurate representation of the original
source code, down to the location of parentheses. In contrast,
many compilers, including GCC, lower to an intermediate
language during parsing. The accuracy of the AST makes it
easier to emit quality diagnostics, but complicates the analysis
in other respects.

The Clang semantic analyzer (Sema) decorates the AST
with semantic information. Name lookup, function overload-
ing, operator overloading, template instantiation, and type
checking are all performed by Sema when constructing the
AST. Clang inserts special AST nodes for implicit C++ oper-
ations, such as automatic casts, LValue-to-RValue conversions,

implicit destructor calls, and so on, so the AST provides an
accurate model of C++ program semantics.

Finally, the Clang analysis infrastructure constructs a control
flow graph (CFG) for each function in the AST. This is not a
lowering step; each statement in the CFG points back to the
AST node that created it. The CFG is shared infrastructure;
the thread safety analysis is only one of its many clients.

A. Analysis Algorithm

The thread safety analysis algorithm is flow-sensitive, but
not path-sensitive. It starts by performing a topological sort of
the CFG, and identifying back edges. It then walks the CFG in
topological order, and computes the set of capabilities that are
known to be held, or known not to be held, at every program
point.

When the analyzer encounters a call to a function that
is annotated with ACQUIRE, it adds a capability to the set;
when it encounters a call to a function that is annotated with
RELEASE, it removes it from the set. Similarly, it looks for
REQUIRES attributes on function calls, and GUARDED BY
on loads or stores to variables. It checks that the appropriate
capability is in the current set, and issues a warning if it is
not.

When the analyzer encounters a join point in the CFG,
it checks to confirm that every predecessor basic block has
the same set of capabilities on exit. Back edges are handled
similarly: a loop must have the same set of capabilities on
entry to and exit from the loop.

Because the analysis is not path-sensitive, it cannot handle
control-flow situations in which a mutex might or might not
be held, depending on which branch was taken. For example:

void foo () {
i f (b) mutex . lock () ;
/ / Warning : b may or may not be held here .
doSomething () ;
i f (b) mutex . unlock () ;

}

void l o c k A l l () {
/ / Warning : c a p a b i l i t y sets do not match
/ / a t s t a r t and end of loop .
for (unsigned i =0; i < n ; ++ i)

mutexArray [i] . l ock () ;
}

Although this seems like a serious limitation, we have found
that conditionally held locks are relatively unimportant in prac-
tical programming. Reading or writing to a guarded location
in memory requires that the mutex be held unconditionally, so
attempting to track locks that might be held has little benefit in
practice, and usually indicates overly complex or poor-quality
code.

Requiring that capability sets be the same at join points
also speeds up the algorithm considerably. The analyzer need
not iterate to a fixpoint; thus it traverses every statement in
the program exactly once. Consequently, the computational
complexity of the analysis is O(n) with respect to code size.
The compile time overhead of the warning is minimal.

B. Intermediate Representation

Each capability is associated with a C++ object. C++ objects
are run time entities, that are identified by C++ expressions.
The same object may be identified by different expressions in
different scopes. For example:

class Foo {
Mutex mu;
bool compare (const Foo& other)

REQUIRES(this−>mu, o ther .mu) ;
}

void bar () {
Foo a ;
Foo ∗b ;
. . .
a .mu. lock () ;
b−>mu. lock () ;
/ / REQUIRES (&a)−>mu, (∗b) .mu
a . compare (∗b) ;
. . .

}

Clang thread safety analysis is dependently typed: note that
the REQUIRES clause depends on both this and other, which
are parameters to compare. The analyzer performs variable
substitution to obtain the appropriate expressions within bar();
it substitutes &a for this and ∗b for other.

Recall, however, that the Clang AST does not lower C++
expressions to an intermediate language; rather, it stores them
in a format that accurately represents the original source code.
Consequently, (&a)−>mu and a.mu are different expressions.

A dependent type system must be able to compare expres-
sions for semantic (not syntactic) equality. The analyzer im-
plements a simple compiler intermediate representation (IR),
and lowers Clang expressions to the IR for comparison. It
also converts the Clang CFG into single static assignment
(SSA) form so that the analyzer will not be confused by local
variables that take on different values in different places.

C. Limitations

Clang thread safety analysis has a number of limitations.
The three major ones are:

No attributes on types. Thread safety attributes are at-
tached to declarations rather than types. For example, it
is not possible to write vector<int GUARDED BY(mu)>, or
(int GUARDED BY(mu))[10]. If attributes could be attached
to types, PT GUARDED BY would be unnecessary.

Attaching attributes to types would result in a better and
more accurate analysis. However, it was deemed infeasible
for C++ because it would require invasive changes to the C++
type system that could potentially affect core C++ semantics
in subtle ways, such as template instantiation and function
overloading.

No dependent type parameters. Race-free type systems as
described in the literature often allow classes to be parameter-
ized by the objects that are responsible for controlling access.
[11] [3] For example, assume a Graph class has a list of nodes,
and a single mutex that protects all of them. In this case, the

Node class should technically be parameterized by the graph
object that guards it (similar to inner classes in Java), but that
relationship cannot be easily expressed with attributes.

No alias analysis. C++ programs typically make heavy use
of pointer aliasing; we currently lack an alias analysis. This
can occasionally cause false positives, such as when a program
locks a mutex using one alias, but the GUARDED BY attribute
refers to the same mutex using a different alias.

VI. EXPERIMENTAL RESULTS AND CONCLUSION

Clang thread safety analysis is currently deployed on a wide
scale at Google. The analysis is turned on by default, across
the company, for every C++ build. Over 20,000 C++ files
are currently annotated, with more than 140,000 annotations,
and those numbers are increasing every day. The annotated
code spans a wide range of projects, including many of
Google’s core services. Use of the annotations at Google is
entirely voluntary, so the high level of adoption suggests that
engineering teams at Google have found the annotations to be
useful.

Because race conditions are insidious, Google uses both
static analysis and dynamic analysis tools such as Thread
Sanitizer [12]. We have found that these tools complement
each other. Dynamic analysis operates without annotations and
thus can be applied more widely. However, dynamic analysis
can only detect race conditions in the subset of program
executions that occur in test code. As a result, effective
dynamic analysis requires good test coverage, and cannot
report potential bugs until test time. Static analysis is less
flexible, but covers all possible program executions; it also
reports errors earlier, at compile time.

Although the need for handwritten annotations may appear
to be a disadvantage, we have found that the annotations
confer significant benefits with respect to software evolution
and maintenance. Thread safety annotations are widely used
in Google’s core libraries and APIs. Annotating libraries has
proven to be particularly important, because the annotations
serve as a form of machine-checked documentation. The
developers of a library and the clients of that library are usually
different engineering teams. As a result, the client teams often
do not fully understand the locking protocol employed by the
library. Other documentation is usually out of date or non-
existent, so it is easy to make mistakes. By using annotations,
the locking protocol becomes part of the published API, and
the compiler will warn about incorrect usage.

Annotations have also proven useful for enforcing internal
design constraints as software evolves over time. For example,
the initial design of a thread-safe class must establish certain
constraints: locks are used in a particular way to protect
private data. Over time, however, that class will be read
and modified by many different engineers. Not only may
the initial constraints be forgotten, they may change when
code is refactored. When examining change logs, we found
several cases in which an engineer added a new method to a
class, forgot to acquire the appropriate locks, and consequently
had to debug the resulting race condition by hand. When

the constraints are explicitly specified with annotations, the
compiler can prevent such bugs by mechanically checking new
code for consistency with existing annotations.

The use of annotations does entail costs beyond the effort
required to write the annotations. In particular, we have found
that about 50% of the warnings produced by the analysis are
caused not by incorrect code but rather by incorrect or missing
annotations, such as failure to put a REQUIRES attribute
on getter and setter methods. Thread safety annotations are
roughly analogous to the C++ const qualifier in this regard.

Whether such warnings are false positives depends on
your point of view. Google’s philosophy is that incorrect
annotations are “bugs in the documentation.” Because APIs
are read many times by many engineers, it is important that
the public interfaces be accurately documented.

Excluding cases in which the annotations were clearly
wrong, the false positive rate is otherwise quite low: less than
5%. Most false positives are caused by either (a) pointer alias-
ing, (b) conditionally acquired mutexes, or (c) initialization
code that does not need to acquire a mutex.

Conclusion

Type systems for thread safety have previously been im-
plemented for other languages, most notably Java [3] [11].
Clang thread safety analysis brings the benefit of such systems
to C++. The analysis has been implemented in a production
C++ compiler, tested in a production environment, and adopted
internally by one of the world’s largest software companies.

REFERENCES

[1] K. Asanovic et al., “A view of the parallel computing landscape,”
Communications of the ACM, vol. 52, no. 10, 2009.

[2] L.-C. Wu, “C/C++ thread safety annotations,” 2008. [Online]. Available:
https://docs.google.com/a/google.com/document/d/1 d9MvYX3LpjTk
3nlubM5LE4dFmU91SDabVdWp9-VDxc

[3] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking: Static
race detection for java,” ACM Transactions on Programming Languages
and Systems, vol. 28, no. 2, 2006.

[4] “Clang thread safety analysis documentation.” [Online]. Available:
http://clang.llvm.org/docs/ThreadSafetyAnalysis.html

[5] “Clang: A c-language front-end for llvm.” [Online]. Available:
http://clang.llvm.org

[6] D. F. Sutherland and W. L. Scherlis, “Composable thread coloring,”
PPoPP ’10: Proceedings of the ACM Symposium on Principles and
Practice of Parallel Programming, 2010.

[7] K. Crary, D. Walker, and G. Morrisett, “Typed memory management in
a calculus of capabilities,” Proceedings of POPL, 1999.

[8] J. Boyland, J. Noble, and W. Retert, “Capabilities for sharing,” Proceed-
ings of ECOOP, 2001.

[9] J.-Y. Girard, “Linear logic,” Theoretical computer science, vol. 50, no. 1,
pp. 1–101, 1987.

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs.”
ACM Transactions on Computer Systems (TOCS), vol. 15, no. 4, 1997.

[11] C. Boyapati and M. Rinard, “A parameterized type system for race-free
Java programs,” Proceedings of OOPSLA, 2001.

[12] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” Workshop on Binary Instrumentation and Applications,
2009.

