
AUTO-RECTIFICATION OF USER PHOTOS

Krishnendu Chaudhury, Stephen DiVerdi, Sergey Ioffe

krish@google.com, diverdi@google.com, sioffe@google.com

ABSTRACT

The image auto rectification project at Google aims to create

a pleasanter version of user photos by correcting the small,

involuntary camera rotations (roll / pitch/ yaw) that often

occur in non-professional photographs. Our system takes the

image closer to the fronto-parallel view by performing an

affine rectification on the image that restores parallelism of

lines that are parallel in the fronto-parallel image view. This

partially corrects perspective distortions, but falls short of full

metric rectification which also restores angles between lines.

On the other hand the 2D homography for our rectification

can be computed from only two (as opposed to three) esti-

mated vanishing points, allowing us to fire upon many more

images.

A new RANSAC based approach to vanishing point estima-

tion has been developed. The main strength of our vanishing

point detector is that it is line-less, thereby avoiding the hard,

binary (line/no-line) upstream decisions that cause traditional

algorithm to ignore much supporting evidence and/or admit

noisy evidence for vanishing points.

A robust RANSAC based technique for detecting horizon

lines in an image is also proposed for analyzing correctness

of the estimated rectification.

We post-multiply our affine rectification homography with a

2D rotation which aligns the closer vanishing point with the

image Y axis.

Index Terms— image, vanishing points, affine rectifica-

tion, homography, projective geometry, RANSAC

1. INTRODUCTION

Few amongst us can take a perfect photo. One relatively

common mistake is to introduce small involuntary camera

rotations (about an arbitrary axis) leading to perspective and

other distortions. The goal of this project is to automati-

cally fix these distortions and take the image closer to the

fronto-parallel view (a fronto-parallel view corresponds to a

camera orientation such that an upright rectangular object in

the scene, e.g., a door or window, is rectangular in the image,

[1]). Specifically, we perform an affine rectification ([1])

which restores parallelism of the lines that are parallel in the

fronto-parallel view. The 2D homography corresponding to

our affine rectification is computed from a pair of estimated

vanishing points ([1]). Towards this end, a new line-less

RANSAC ([2]) based approach to vanishing point estima-

tion has been developed. Avoiding line detection improves

the accuracy and robustness of the vanishing point detector.

Finally, we post-multiply the above homography with a 2D

rotation. This rotation aligns the vanishing point closer to

image Y axis (in an angular sense) with the image Y axis. It

can be easily proved ([1]) that post-multiplication by rotation

does not destroy an affine rectification (i.e., the rotation does

not undo the parallel line restoration).

It should be noted, that we do not perform metric rectification

which restores angles. Thus, for instance, right angles in the

fronto-parallel view that got distorted, may not get restored

in our rectified image. Metric rectification requires detection

of three vanishing points or knowledge of orthogonal line

pairs. But most Google photos do not have enough struc-

ture to support detection of 3 vanishing points. Nor do we

have knowledge, in general, of any orthogonal lines. Our

experiments over a large number of photos indicate that the

proposed approach strikes the best balance between viewing

quality and hit-ratio.

In this paper, we describe our system, with special emphasis

on the vanishing point estimator.

2. RELATED WORK

Photo rectification via manual warping (also known as

Keystoning) has been available via image editing softwares

(e.g., Adobe Lightroom) for some time. Rectification via

special hardware, at the time of image capture, (e.g., tilt-shift

lenses [3]), is also available. An automatic method for ad-

justing in-plane rotations can be found in [4]. Our approach,

on the other hand, is fully automatic, does not need special

hardware and is not restricted to in-plane rotations only. In

[5] a fully automatic method is presented for improving vi-

sual quality of photographs containing man-made structures.

Here, the authors propose a set of quantitative criteria for

visual quality (picture frame alignment, eye-level alignment,

perspective distortion and distortion of rectangular objects)

and estimate a homography that is optimal with respect to

these criteria via an energy minimization framework. We,

on the other hand, have adopted a more direct approach of

computing two vanishing points and directly estimating the

affine homography. Our approach to rectification is closer in

philosophy to [6, 7] except that we do not need knowledge of

any angle or length ratio in the image.

In this paper, we also introduce a line-less RANSAC vanish-

ing point detection technique. Vanishing point detection is a

much researched topic. The first vanishing point detector was

developed in 80s ([8]), using Hough Transform and Gaus-

sian Spheres. Its accuracy was highly sensitive to the choice

of Hough bins. In [9], an EM (Expectation Maximization)

based approach was proposed. But this was sensitive to the

initialization of the EM. In [10], a voting based approach is

presented. Here, a large number of finite non-zero length line

segments are detected. The set of intersection points between

all pairs of these line segments are candidate vanishing points

and the winner is chosen via a voting scheme. The search

space is pruned via criteria like ”a vanishing point cannot be

internal to an existing line segment”. Search for the winning

candidate is guided by orthogonality, camera and vanishing

line criterion. This technique lends itself to RANSAC easily.

Our experiments indicate that the pre-processing step of line

detection imposes significant loss of information and at the

same time introduces much noise in the system. The van-

ishing point detector proposed by us uses a voting like [10],

but does not need lines. Also, the approach in [10] cannot

be easily simplified to detecting two vanishing points only,

whereas ours is symmetric enough to detect one, two or three

vanishing points as required. Also, unlike [10], we do not

need to handle finite and infinite vanishing points separately.

Our experiments indicate, overall, this approach produces

more visually appealing results on a wider variety of images.

The techniques presented in this paper are covered under a

pending Google patent application ([11]).

3. OUR APPROACH

Our overall approach has the following stages: (i) Edgelet

Computation (ii) Vanishing Point Detection (iii) Computa-

tion of Rectification Homography (iv) Feasibility Analysis

We will, now, take a deep dive into each.

3.1. Edgelet Computation

An edgelet is an abstract entity, attached to each edge point

of the image, with 3 properties: (i) edge location (the image

coordinates of the edge point) (ii) edge direction (unit vector

along the edge) (iii) edge strength To compute edgelets, we

run a Harris corner detector ([12]) style operator on the image.

We use a 3 x 3 window to compute derivatives. Eigen values

and eigen vectors of the Gaussian weighted covariance matrix

corresponding to rectangular 5 x 5 neighborhood around each

pixel are computed. Edgelets are extracted from only those

points where one eigen value is big and the other small - these

are the the pure edge points (as opposed to corners where both

eigen values are big and uniform brightness zones where both

eigen values are small). Mathematically, an edgelet is repre-

sented as E = {~x, ~d, s}. where ~x represents the homogenous

coordinates[1] for the edge pixel location 1, ~d represents the

edge direction in homogenous coordinates (derived from the

principal eigen vector of the covariance matrix) and s is the

edge strength (principal eigen value of the covariance matrix).

An edgelet line, ~lE , corresponding to an edgelet E is defined

as the line passing through ~x and parallel to ~d. The computed

edgelets are stored in an edgelets array, descending sorted on

edge strength.

3.2. Vanishing Point Estimation

Our vanishing point detector is RANSAC based. Generally

speaking, in RANSAC, one hypothesizes a random model

and computes consensus for that model by gathering votes

for the model. The model with the maximum number of votes

wins. This is robust against outliers compared to direct least

square regression.

RANSAC Model: In our RANSAC vanishing point detector,

a model comprises of a pair of randomly selected edgelets

(henceforth referred to as model edgelets). The hypothesis

vanishing point corresponding to the model is the point of

intersection of the the edgelet lines corresponding to the two

model edgelets. Thus, given a model M(E1, E2) comprising

of edgelets E1(~x1, ~d1, s1) and E2(~x2, ~d2, s2), the hypothesis

vanishing point ~vM = ~lE1 ×~lE2 (where × denotes the vector

cross-product) is the intersection point of the edgelet lines
~lE1 and ~lE2 (in Homogenous mathematics, cross-products of

homogenous vectors corresponding to lines yield their inter-

section point in homogenous coordinates [1]). Note that ~vM
may be at infinity (indicated by a zero third coordinate). The

cross product is always computable - except in the degenerate

cases, e.g., when the edgelet lines for the model edgelets

coincide or the random selector picks the same edgelet twice

as model edgelets. As soon as a (random) new model is gen-

erated, we check for degeneracy and if degenerate, we reject

that model and generate another one. For performance rea-

sons, we do not make the model edgelet selection completely

random. Instead, we select the first model edgelet randomly

from the top 20 percentile of the edgelets array (remember

this array was sorted on edge strength) and the second model

edgelet from the top 50 percentile. This effectively biases the

system towards stronger edges.

RANSAC Consensus Building (voting): Given model

M(E1, E2), we iterate over all the other edgelets Ei(~xi, ~di, si).
Each Ei casts a vote for the model M

vote(Ei,M(E1, E2)) =

{

1−e−λ cos
2 θ

1−e−λ if θ <= 5◦;

0 otherwise.

where θ is the smaller angle between the voting edgelet line
~lEi and the line joining that edgelet’s location ~xi to the hy-

1unless specified otherwise, all coordinates and line equations in this pa-

per are specified as Homogenous 2D vectors

pothesis vanishing point ~vM . λ is a system parameter. In

other words, the vote is proportional to the direction coher-

ence. It attains its maximum value of 1 when the voting

edgelet line passes through the hypothesis vanishing point

(θ = 0), dropping to zero as θ reaches 90 degrees. In prac-

tise, we clip the vote to zero when this angle exceeds a thresh-

old (5◦). The hypothesis/model garnering maximal consensus

yields the estimated vanishing point.

Re-estimation of Vanishing Point from best model inliers:

Once the consensus gathering phase is over and we have iden-

tified the best model, we re-estimate the vanishing point more

accurately via a weighted least squares regression. We es-

timate the optimal (in a least square sense) intersection point

for all the inlier edgelet lines corresponding to the best model.

Let S = {Ei | vote(Ei,Mbest) > 0} denote the set of in-

lier edgelets corresponding to the best model Mbest. And,

let ~v∗M denote the (as yet undetermined) optimal vanishing

point. Ideally, the edgelet line, ~lEi will pass through ~v∗M ,

yielding ~lEi · ~v∗M = 0 (in homogenous mathematics, zero

dot product indicates line-membership of point [1]). If ~lEi =
[

ai bi ci]
T
]

, we get
[

ai bi ci
]

~v∗M = 0. Furthermore,

we weight each equation by the vote cast by the correspond-

ing edgelet (strong voters pull the solution closer to them-

selves). Hence, each inlier edgelet to the best model yields an

equation of the form wi

[

ai bi ci
] [

x∗
M y∗M z∗M

]T
= 0

where wi = vote(Ei,Mbest) and ~v∗M =
[

x∗
M y∗M z∗M

]T
.

Overall, we end up with the overdetermined homogeneous

linear system

Diag(w1, w2, · · ·wN)









a1 b1 c1
a2 b2 c2
· · ·
aN bN cN













x∗
M

y∗M
z∗M



 = 0

which is homogeneous linear system that we solve for ~v∗M =
[

x∗
M y∗M z∗M

]T
via the well known Singular Value De-

composition technique.

Estimation of the second Vanishing Point: Once the first

vanishing point is estimated, we delete all its inlier edgelets

from the edgelets array and repeat the process outlined above

to estimate the second vanishing point.

3.3. Computation of Rectification Homography

Restoring parallel lines: In P
2, the space of Homogenous

2D points, the Line at Infinity stands for the line containing

all the points at infinity, i.e., all points of the form ~p∞ =
[

x y 0
]T

. Homogenous representation of the line at infin-

ity is ~l∞ =
[

0 0 1
]T

. It is easy to verify that ~l∞ · ~p∞ = 0,

which proves that all points on infinity lie on the line at infin-

ity.

Geometrically speaking, an image taken with an arbitrarily

rotated camera can be thought of as a mapping (2D homog-

raphy) from the fronto-parallel image plane to some other

image plane. It should be noted that here we are talking of

camera rotation about any axis, not just the focal axis (thus,

potentially, perspective distortion is introduced). We use an

affine rectification which makes the lines that were parallel

in fronto-parallel view to become parallel again in the image.

In other words, our rectification transforms the image back to

the fronto-parallel plane, up to an affine transform. The ho-

mography corresponding to this rectification is computed as

follows ([1]):

Let ~v1 and ~v2 be a pair of vanishing points (estimated, for in-

stance, by the method outlined in 3.2). The line joining them

is ~l12 = ~v1 × ~v2 (in homogenous geometry, cross product

yields the join of two points). Then,

H =





1 0 0
0 1 0
la lb lc





is our rectification homography where ~l12 =
[

la lb lc
]T

.

This homography transforms the vanishing points back to in-

finity,

H~v1 =





· · ·
· · ·

~l12 · ~v1



 =





· · ·
· · ·

~v1 × ~v2 · ~v1









· · ·
· · ·
0





since a scalar triplet product with a repeated vector is identi-

cal to 0. Similarly, H~v2. The curious reader can also verify

that the line joining the vanishing points, ~l12, too gets trans-

formed back to infinity by this homography (a homography

H transforms a line as H−T and the reader can easily verify

that H−T~l12 =
[

0 0 1
]T

). Warping the image with H

effectively restores parallelism of lines that are parallel in the

fronto-parallel view.

Aligning Verticals: We align the near vertical vanish-

ing point with the image Y axis, which, heuristically, of-

ten improves visual quality. This is effectively applying

a 2D rotation on the image, which does not ”undo” the

previously done rectification (i.e., restored parallel lines

remain so). Let ~v =
[

vx vy 0
]T

be the post-affine-

rectification vanishing point that is closer (in an angular

sense) to the image Y axis, ~Y =
[

0 1 0
]T

. Then

θ = cos−1

(

~v·~Y

‖~v‖‖~Y ‖

)

= cos−−1

(

vy√
v2
x+v2

y

)

is the angle of

rotation and the rotation matrix is

R =





cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1





The overall Homography: The product of the affine recti-

fication and the vertical alignment homographies, i.e., T =
RH , is used to warp the image. The warped image is cropped

and scaled back to match the original image size.

Fig. 1. Image 1.

3.4. Feasibility Analysis

We analyze the result image for possible visual distortions,

and bail out of the rectification if necessary. In particular, we

do face detection. If, on application of homography T, the as-

pect ratio of the face bounding box changes beyond threshold,

we bail out on that image. Also, we have built a RANSAC

and edgelet based horizon detector. It hypothesizes a horizon

direction by randomly picking up an edgelet with horizontal

(within tolerance) direction and examines support for it from

other edgelets. If the consensus for the winning hypothesis

exceeds a pre-determined threshold, we say the image has a

horizon. Thus, essentially, the horizon detector looks for a

long line, not necessarily continuous (in fact, constituent seg-

ments do not have to be perfectly aligned), whose direction

is horizontal (within tolerance). If such a line is detected, we

call it horizon. If the angle of an estimated horizon with the

X axis increases when we apply the rectifying homography,

we bail out on that image.

4. PERFORMANCE AND RESULTS

The proposed auto rectification was tried on 2199 random

Google+ images (used with owner permissions). On 218 of

these, not enough vanishing points were detected, 1233 had

bad angle between detected vanishing points, 173 had image

size changing too much, 116 had too much rotation, 109 had

too much face distortion, 4 had too much horizon distortion.

The algorithm successfully delivered rectified image on the

remaining 346 images (15.7%).

Fig. 2. Auto Rectified Image 1.

Fig. 3. Image 2.

Fig. 4. Auto Rectified Image 2.

5. REFERENCES

[1] Hartley H. and Zisserman A., Multiple View Geometry

in Computer Vision, Cambridge University Press, Cam-

bridge, United Kingdom, 2000.

[2] Martin A. Fischler and Robert C. Bolles, “Random sam-

ple consensus: A paradigm for model fitting with appli-

cations to image analysis and automated cartography,”

Commun. ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[3] Tilt-shift Photography, wikipaedia.

[4] Gallagher A., “Using vanishing points to correct cam-

era rotation in images,” in Computer and Robot Vision,

2005, pp. 147–151.

[5] Hyunjoon Lee, Eli Shechtman, Jue Wang, and Se-

ungyong Lee, “Automatic upright adjustment of pho-

tographs,” in Proc. CVPR 2012, 2012, pp. 877–884.

[6] D. Liebowitz and A. Zisserman, “Metric rectification

for perspective images of planes,” in IEEE Conference

on Computer Vision and Pattern Recognition, 1998, pp.

482–488.

[7] D. Liebowitz and A. Zisserman, “Combining scene

and auto-calibration constraints,” in IEEE International

Conference on Computer Vision, 1999.

[8] Stephen T. Barnard, “Interpreting perspective images,”

Artif. Intell., vol. 21, no. 4, pp. 435–462, Nov. 1983.

[9] Antone M. E. and Teller S. J., “Automatic recovery of

relative camera rotations for urban scenes,” in Proc.

CVPR 2000, 2000, pp. 282–289.

[10] Carsten Rother, “A new approach for vanishing point

detection in architectural environments,” in In Proc.

11th British Machine Vision Conference, 2000, pp. 382–

391.

[11] Chaudhury K. and DiVerdi S., “Auto rectification for

google+ images,” in Google Patent Application (pend-

ing), 2013.

[12] Harris C. and Stephens M., “A combined corner and

edge detector,” in 4th Alvey Vision Conference, 1988,

pp. 147–151.

