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ABSTRACT

Our application requires a keyword spotting system with a small
memory footprint, low computational cost, and high precision. To
meet these requirements, we propose a simple approach based on
deep neural networks. A deep neural network is trained to directly
predict the keyword(s) or subword units of the keyword(s) followed
by a posterior handling method producing a final confidence score.
Keyword recognition results achieve 45% relative improvement with
respect to a competitive Hidden Markov Model-based system, while
performance in the presence of babble noise shows 39% relative im-
provement.

Index Terms— Deep Neural Network, Keyword Spotting, Em-
bedded Speech Recognition

1. INTRODUCTION

Thanks to the rapid development of smartphones and tablets, inter-
acting with technology using voice is becoming commonplace. For
example, Google offers the ability to search by voice [1] on Android
devices and Apple’s iOS devices are equipped with a conversational
assistant named Siri. These products allow a user to tap a device and
then speak a query or a command.

We are interested in enabling users to have a fully hands-free
experience by developing a system that listens continuously for spe-
cific keywords to initiate voice input. This could be especially use-
ful in situations like driving. The proposed system must be highly
accurate, low-latency, small-footprint, and run in computationally
constrained environments such as modern mobile devices. Running
the system on the device avoids latency and power implications with
connecting to the server for recognition.

Keyword Spotting (KWS) aims at detecting predefined key-
words in an audio stream, and it is a potential technique to provide
the desired hands-free interface. There is an extensive literature in
KWS, although most of the proposed methods are not suitable for
low-latency applications in computationally constrained environ-
ments. For example, several KWS systems [2, 3, 4] assume offline
processing of the audio using large vocabulary continuous speech
recognition systems (LVCSR) to generate rich lattices. In this case,
their task focuses on efficient indexing and search for keywords in
the lattices. These systems are often used to search large databases
of audio content. We focus instead on detecting keywords in the
audio stream without any latency.

A commonly used technique for keyword spotting is the Key-
word/Filler Hidden Markov Model (HMM) [5, 6, 7, 8, 9]. Despite
being initially proposed over two decades ago, it remains highly
competitive. In this generative approach, an HMM model is trained
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for each keyword, and a filler model HMM is trained from the non-
keyword segments of the speech signal (fillers). At runtime, these
systems require Viterbi decoding, which can be computationally ex-
pensive depending on the HMM topology. Other recent work ex-
plores discriminative models for keyword spotting based on large-
margin formulation [10, 11] or recurrent neural networks [12, 13].
These systems show improvement over the HMM approach but re-
quire processing of the entire utterance to find the optimal keyword
region or take information from a long time span to predict the entire
keyword, increasing detection latency.

We propose a simple discriminative KWS approach based on
deep neural networks that is appropriate for mobile devices. We
refer to it as Deep KWS . A deep neural network is trained to directly
predict the keyword(s) or subword units of the keyword(s) followed
by a posterior handling method producing a final confidence score.
In contrast with the HMM approach, this system does not require
a sequence search algorithm (decoding), leading to a significantly
simpler implementation, reduced runtime computation, and smaller
memory footprint. It also makes a decision every 10 ms, minimizing
latency. We show that the Deep KWS system outperforms a standard
HMM based system on both clean and noisy test sets, even when a
smaller amount of data is used for training.

We describe our DNN based KWS framework in Section 2, and
the baseline HMM based KWS system in Section 3. The experimen-
tal setup, results and some discussion follow in Section 4. Section 5
closes with the conclusions.

2. DEEP KWS SYSTEM

The proposed Deep KWS framework is illustrated in Figure 1. The
framework consists of three major components: (i) a feature extrac-
tion module, (ii) a deep neural network, and (iii) a posterior handling
module. The feature extraction module (i) performs voice-activity
detection and generates a vector of features every frame (10 ms).
These features are stacked using the left and right context to cre-

Fig. 1. Framework of Deep KWS system, components from left to
right: (i) Feature Extraction (ii) Deep Neural Network (iii) Posterior
Handling



ate a larger vector, which is fed as input to the DNN (Section 2.1).
We train a DNN (ii) to predict posterior probabilities for each out-
put label from the stacked features. These labels can correspond to
entire words or sub-words for the keywords (Section 2.2). Finally,
a simple posterior handling module (iii) combines the label posteri-
ors produced every frame into a confidence score used for detection
(Section 2.3).

In the example of Figure 1, the audio contains the key-phrase
“okay google”. The DNN in this case only has 3 output labels:
“okay”, “google”, and “filler”, and it generates frame-level poste-
rior scores shown in (iii). The posterior handling module combines
these scores to provide a final confidence score for that window.

2.1. Feature Extraction

The feature extraction module is common to our proposed Deep
KWS system and the baseline HMM system.

To reduce computation, we use a voice-activity detection system
and only run the KWS algorithm in voice regions. The voice-activity
detector, described in [14], uses 13-dimensional PLP features and
their deltas and double-deltas as input to a 30-component diagonal
covariance GMM trained, which generates speech and non-speech
posteriors at every frame. This is followed by a hand-tuned state
machine (SM), which performs temporal smoothing by identifying
regions where many frame speech posteriors exceed a threshold.

For the speech regions, we generate acoustic features based on
40-dimensional log-filterbank energies computed every 10 ms over
a window of 25 ms. Contiguous frames are stacked to add sufficient
left and right context. The input window is asymmetric since each
additional frame of future context adds 10 ms of latency to the sys-
tem. For our Deep KWS system, we use 10 future frames and 30
frames in the past. For the HMM baseline system we use 5 future
frames and 10 frames in the past, as this provided the best trade-off
between accuracy, latency, and computation [15].

2.2. Deep Neural Network

The deep neural network model is a standard feed-forward fully con-
nected neural network with k hidden layers and n hidden nodes per
layer, each computing a non-linear function of the weighted sum of
the output of the previous layer. The last layer has a softmax which
outputs an estimate of the posterior of each output label. For the
hidden layers, we have experimented with conventional logistic and
rectified linear unit (ReLU) functions [16], and consistently found
that ReLU outperforms logistic on our development set, while re-
ducing computation. We present results with ReLU activations only.

The size of the network is also dictated by the number of output
labels. In the following sub-sections we describe in detail the label
generation and training for our neural network. We also describe a
learning technique that further improves the KWS performance.

Labeling. For our baseline HMM system, as in previous work [8,
9, 17] the labels in the output layer of the neural network are context-
dependent HMM states. More specifically the baseline system uses
2002 context dependent states selected as described in [15].

For the proposed Deep KWS , the labels can represent entire
words or sub-word units in the keyword/key-phrase. We report
results with full word labels, as these outperform sub-word units.
These labels are generated at training time via forced alignment
using our 50M parameter LVCSR system [18]. Using entire word
labels as output for the network, instead of the HMM states, has sev-
eral advantages: (i) smaller inventory of output labels reduces the

number of neural network parameters in the last layer, which is com-
putationally expensive (ii) a simple posterior handling method can
be used to make a decision (as explained in Section 2.3), (iii) whole
word models achieve better performance, assuming the training data
is adequate for each word label considered.

Training. Suppose pij is the neural network posterior for the ith

label and the jth frame xj (see Section 2.1), where i takes values
between 0, 1, ..., n − 1, with n the number of total labels and 0 the
label for non-keyword. The weights and biases of the deep neural
network, θ, are estimated by maximizing the cross-entropy train-
ing criterion over the labeled training data {xj , ij}j (previous para-
graph).

F (θ) =
∑
j

log pijj . (1)

The optimization is performed with the software framework DistBe-
lief [19, 20] that supports distributed computation on multiple CPUs
in deep neural networks. We use asynchronous stochastic gradient
descent with an exponential decay for the learning rate.

Transfer learning. Transfer learning refers to the situation where
(some of) the network parameters are initialized with the corre-
sponding parameters of an existing network, and are not trained
from scratch [21, 22]. Here, we use a deep neural network for
speech recognition with suitable topology to initialize the hidden
layers of the network. All layers are updated in training. Trans-
fer learning has the potential advantage that the hidden layers can
learn a better and more robust feature representation by exploiting
larger amounts of data and avoiding bad local optima [21]. In our
experiments we find this to be the case.

2.3. Posterior Handling

The DNN explained in Section 2.2 produces frame-based label pos-
teriors. In this section we discuss our proposed simple, yet effective,
approach to combine DNN posteriors into keyword/key-phrase con-
fidence scores. A decision then will be made if the confidence ex-
ceeds some predefined threshold. We describe the confidence com-
putation assuming a single keyword. However, it can be easily mod-
ified to detect multiple keywords simultaneously.

Posterior smoothing. Raw posteriors from the neural network are
noisy, so we smooth the posteriors over a fixed time window of size
wsmooth. Suppose p′ij is the smoothed posterior of pij (Eq. 1). The
smoothing is done with the following formula:

p′ij =
1

j − hsmooth + 1

j∑
k=hsmooth

pik (2)

where hsmooth = max{1, j−wsmooth +1} is the index of the first
frame within the smoothing window.

Confidence. The confidence score at jth frame is computed within
a sliding window of size wmax, as follows

confidence = n−1

√√√√n−1∏
i=1

max
hmax≤k≤j

p′ik (3)

where p′ij is the smoothed state posterior in Eq. (2), hmax =
max{1, j−wmax+1} is the index of the first frame within the slid-
ing window. We use wsmooth = 30 frames, and wmax = 100, as
this gave best performance on the dev set; however the performance
was not very sensitive to the window sizes. Eq. (3) does not enforce
the order of the label sequence, however the stacked frames fed as
input to the neural network help encode contextual information.



3. BASELINE HMM KWS SYSTEM

We implement a standard Keyword-Filler Hidden Markov Model as
our baseline. The basic idea is to create a HMM for the keyword and
a HMM to represent all non-keyword segments of the speech signal
(filler model). There are several choices for the filler model, from
fully connected phonetic units [6] to a full LVCSR system where the
lexicon excludes the keyword [23]. Obviously, the latter approach
yields a better filler model, however it requires higher computational
cost at runtime, and significantly larger memory footprint. Given
the constraints of our application, we implemented a triphone-based
HMM model as filler. In contrast to previous work [6, 23], our im-
plementation uses a Deep Neural Network to compute the HMM
state densities.

The Keyword-Filler HMM topology is shown in Figure 2. Key-
word detection is achieved by running Viterbi decoding with this
topology and checking if the best path passes through the Keyword
HMM or not. The trade-off between false alarms (a keyword is not
present but the KWS system gives a positive decision) and false re-
jects (a keyword is present but the KWS system gives a negative
decision) is controlled by the transition probability between key-
word and filler models. High transition probability leads to high
false alarm rate and vice versa.

An important advantage of the Keyword-Filler model is that it
does not require keyword-specific data at training time. It simply
learns a generative model for all triphone HMM states through like-
lihood maximization on general speech data. Knowledge of the key-
word can be introduced only at runtime, by specifying the keyword
in the decoder graph. However, if keyword-specific data is avail-
able for training, one can improve system performance using trans-
fer learning (Section 2.2), i.e., by initializing the acoustic model net-
work with a network trained on the general speech data and then
continue training it using the keyword-specific data.

Keyword HMMs

Filler HMMs

HMM HMM

HMM

HMM

end

HMM

......

HMM

start

Fig. 2. HMM topology for KWS system, which consists of a key-
word model and a triphone filler model

4. EXPERIMENTAL RESULTS

Experiments are performed on a data set which combines real voice
search queries as negative examples and phrases including the key-
words, sometimes followed by queries, as positive examples. A full
list of the keywords evaluated is shown in Table 1. We train a sep-
arate Deep KWS and build a separate Keyword-Filler HMM KWS
system for each key-phrase. Results are presented in the form of a
modified receiver operating characteristic (ROC) curves, where we
replace true positive rate with the false reject rate on Y-axis. Lower
curves are better. The ROC for the baseline system is obtained by
sweeping the transition probability for the Keyword HMM path in
Figure 2. For the Deep KWS system, the ROC is obtained by sweep-
ing the confidence threshold. We generate a curve for each keyword
and average the curves vertically (at fixed FA rates) over all key-
words tested.

Table 1. Keywords used in evaluation
answer call dismiss alarm

go back ok google
read aloud record a video
reject call show more commands

snooze alarm take a picture

We compare the Deep KWS system and the HMM system with
different size neural networks (Section 4.3), evaluate the effect of
transfer learning for both systems (Section 4.2), and show perfor-
mance changes in the presence of babble noise (Section 4.4).

4.1. Data

We use two sets of training data. The first set is a general speech
corpus, which consists of 3,000 hours of manually transcribed utter-
ances (referred to as VS data). The second set is a keyword specific
data (referred to as KW data), which included around 2.3K train-
ing examples for each keyword, and 133K negative examples, com-
prised of anonymized voice search queries or other short phrases.
For the keyword “okay google”, 40K positive examples were avail-
able for training.

The evaluation set contains roughly 1K positive examples for
each keyword and 70K negative examples, representing 1.4% of pos-
itive to negative ratio, to match expected application usage. Again,
for keyword “okay google” we used instead 2.2K positive examples.
The noisy test set was generated by adding babble noise to this test
set with a 10db Signal to Noise Ratio (SNR). Finally, we use a sim-
ilar size non-overlapping set of positive and negative examples as
development set to tune decoder parameters and DNN input window
size parameters.

4.2. Results

We first evaluate the performance of the smaller neural network
trained for the baseline HMM and the Deep KWS systems. Both
systems used the frontend described in 2.1. They both used a net-
work with 3 hidden layers and 128 hidden nodes per layer with
ReLU non-linearity. However, the number of parameters for both
networks is not identical. The DNN acoustic model used for the
baseline HMM system uses an input window size of 10 left frames
and 5 right frames, and outputs 2,002 HMM states, resulting in
around 373M parameters. The Deep KWS uses instead a 30 left
frames and 10 right frames, but only produces word labels reducing
the output label inventory to 3 or 4 depending on the key-phrase
evaluated. The total number of parameters for Deep KWS is no
larger than 244M parameters.

Figure 3 shows the performance for both systems. Baseline
3x128 (VS) refers to the HMM system with a DNN acoustic model
trained on the voice search corpus. Baseline 3x128 (VS + KW) is
this same system after adapting the DNN acoustic model using key-
word specific data. Deep 3x128 (KW) refers to the proposed Deep
KWS system trained on keyword specific data. Finally, Deep 3x128
(VS + KW) shows the performance when we initialize the Deep
3x128 KW network with a network trained on VS data as explained
in Section 2.2.

It is clear from the results that the proposed Deep KWS out-
performs the baseline HMM KWS system even when it is trained
with less data and has fewer number of parameters. For example,
see Deep 3x128 (KW) vs Baseline 3x128 (VS + KW) in Figure 3.
The gains are larger at very low false alarm rate, which is a desir-
able operating point for our application. At 0.5% FA rate, Deep



Fig. 3. HMM vs. Deep KWS system with 3 hidden layers, 128
hidden nodes neural network

Fig. 4. HMM vs. Deep KWS system with 6 hidden layers, 512
hidden nodes neural network

3x128 (VS + KW) system achieves 45% relative improvement with
respect to Baseline 3x128 (VS + KW). Training a network on the
KW data takes only a couple of hours, while training it on VS +
KW takes about a week using our DistBelief framework described
in Section 2.2.

4.3. Model Size

Figure 4 presents the performance when evaluating both systems
with a 6x512 network. In this case the number of parameters for
the baseline increases to 2.6M while the Deep models reach 2.1M.
Deep 6x512 (KW) system, actually performs worse than the smaller
3x128 models, we conjecture this is due to not enough KW data to
train the larger number of parameters. However when both systems
are trained on VS + KW data, we observe a consistent improvement
with respect to their corresponding 3x128 systems. Here again, the
Deep KWS system has superior performance to the baseline.

4.4. Noise Robustness

We also test the same models on a noisy test set, generated by adding
babble noise to the original test set with a 10db SNR. Comparing
Baseline 3x128 (VS + KW) in Figure 3 and Figure 5, at 0.5% FA

Fig. 5. HMM vs. Deep KWS system with 3 hidden layers, 128
hidden nodes neural network on NOISY data

Fig. 6. HMM vs. Deep KWS system with 6 hidden layers, 512
hidden nodes neural network on NOISY data

rate, the FR rate of the HMM doubles from 5% FR to 10% FR. The
Deep KWS system suffers similar degradation. However it achieves
39% relative improvement with respect to the baseline.

5. CONCLUSION

We have presented a new deep neural network based framework
for keyword spotting. Experimental results show that the proposed
framework outperforms the standard HMM based system on both
clean and noisy conditions. We further demonstrate that a Deep
KWS model trained with only the KW data yields better search per-
formance over the baseline HMM KWS system trained with both
KW and VS data. The Deep KWS system also leads to a simpler
implementation removing the need for a decoder, reduced runtime
computation, and a smaller model, and thus is favored for our em-
bedded application.
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