
_How to Design a Good API and Why it Matters1

How to Design a Good
API and Why it Matters

Joshua Bloch
Principal Software Engineer

_How to Design a Good API and Why it Matters2

Why is API Design Important?

• APIs can be among a company's greatest assets
_ Customers invest heavily: buying, writing, learning
_ Cost to stop using an API can be prohibitive
_ Successful public APIs capture customers

• Can also be among company's greatest liabilities
_ Bad APIs result in unending stream of support calls

• Public APIs are forever - one chance to get it right

_How to Design a Good API and Why it Matters3

Why is API Design Important to You?

• If you program, you are an API designer
_ Good code is modular–each module has an API

• Useful modules tend to get reused
_ Once module has users, can’t change API at will
_ Good reusable modules are corporate assets

• Thinking in terms of APIs improves code quality

_How to Design a Good API and Why it Matters4

Characteristics of a Good API

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to extend

• Appropriate to audience

_How to Design a Good API and Why it Matters5

Outline

 I. The Process of API Design

 II. General Principles

 III. Class Design

 IV. Method Design

 V. Exception Design

 VI. Refactoring API Designs

_How to Design a Good API and Why it Matters6

I. The Process of API Design

_How to Design a Good API and Why it Matters7

Gather Requirements–with a Healthy
Degree of Skepticism

• Often you'll get proposed solutions instead
_ Better solutions may exist

• Your job is to extract true requirements
_ Should take the form of use-cases

• Can be easier and more rewarding to build
something more general

Good

_How to Design a Good API and Why it Matters8

Start with Short Spec–1 Page is Ideal

• At this stage, agility trumps completeness

• Bounce spec off as many people as possible
_ Listen to their input and take it seriously

• If you keep the spec short, it’s easy to modify

• Flesh it out as you gain confidence
_ This necessarily involves coding

_How to Design a Good API and Why it Matters9

Write to Your API Early and Often

• Start before you've implemented the API
_ Saves you doing implementation you'll throw away

• Start before you've even specified it properly
_ Saves you from writing specs you'll throw away

• Continue writing to API as you flesh it out
_ Prevents nasty surprises
_ Code lives on as examples, unit tests

_How to Design a Good API and Why it Matters10

Writing to SPI is Even More Important

• Service Provider Interface (SPI)
_ Plug-in interface enabling multiple implementations
_ Example: Java Cryptography Extension (JCE)

• Write multiple plug-ins before release
_ If you write one, it probably won't support another
_ If you write two, it will support more with difficulty
_ If you write three, it will work fine

• Will Tracz calls this “The Rule of Threes”
(Confessions of a Used Program Salesman, Addison-Wesley, 1995)

Bad

_How to Design a Good API and Why it Matters11

Maintain Realistic Expectations

• Most API designs are over-constrained
_ You won't be able to please everyone
_ Aim to displease everyone equally

• Expect to make mistakes
_ A few years of real-world use will flush them out
_ Expect to evolve API

_How to Design a Good API and Why it Matters12

II. General Principles

_How to Design a Good API and Why it Matters13

API Should Do One Thing and Do it Well

• Functionality should be easy to explain
_ If it's hard to name, that's generally a bad sign
_ Good names drive development
_ Be amenable to splitting and merging modules

_How to Design a Good API and Why it Matters14

API Should Be As Small As Possible But
No Smaller

• API should satisfy its requirements

• When in doubt leave it out
_ Functionality, classes, methods, parameters, etc.
_ You can always add, but you can never remove

• Conceptual weight more important than bulk

• Look for a good power-to-weight ratio

_How to Design a Good API and Why it Matters15

Implementation Should Not Impact API

• Implementation details
_ Confuse users
_ Inhibit freedom to change implementation

• Be aware of what is an implementation detail
_ Do not overspecify the behavior of methods
_ For example: do not specify hash functions
_ All tuning parameters are suspect

• Don't let implementation details “leak” into API
_ On-disk and on-the-wire formats, exceptions

_How to Design a Good API and Why it Matters16

Minimize Accessibility of Everything

• Make classes and members as private as possible

• Public classes should have no public fields
(with the exception of constants)

• This maximizes information hiding

• Allows modules to be used, understood, built,
tested, and debugged independently

_How to Design a Good API and Why it Matters17

Names Matter–API is a Little Language

• Names Should Be Largely Self-Explanatory
_ Avoid cryptic abbreviations

• Be consistent–same word means same thing
_ Throughout API, (Across APIs on the platform)

• Be regular–strive for symmetry

• Code should read like prose

 if (car.speed() > 2 * SPEED_LIMIT)
 generateAlert("Watch out for cops!");

_How to Design a Good API and Why it Matters18

Documentation Matters

Reuse is something that is far easier to say than
to do. Doing it requires both good design and
very good documentation. Even when we see
good design, which is still infrequently, we won't
see the components reused without good
documentation.

 - D. L. Parnas, _Software Aging. Proceedings
 of 16th International Conference Software
 Engineering, 1994

_How to Design a Good API and Why it Matters19

Document Religiously

• Document every class, interface, method,
constructor, parameter, and exception
_ Class: what an instance represents
_ Method: contract between method and its client

_ Preconditions, postconditions, side-effects
_ Parameter: indicate units, form, ownership

• Document state space very carefully

_How to Design a Good API and Why it Matters20

Consider Performance Consequences of
API Design Decisions

• Bad decisions can limit performance
_ Making type mutable
_ Providing constructor instead of static factory
_ Using implementation type instead of interface

• Do not warp API to gain performance
_ Underlying performance issue will get fixed,

but headaches will be with you forever
_ Good design usually coincides with good performance

_How to Design a Good API and Why it Matters21

Effects of API Design Decisions on
Performance are Real and Permanent

• Component.getSize() returns Dimension

• Dimension is mutable

• Each getSize call must allocate Dimension

• Causes millions of needless object allocations

• Alternative added in 1.2; old client code still slow

_How to Design a Good API and Why it Matters22

API Must Coexist Peacefully with Platform

• Do what is customary
_ Obey standard naming conventions
_ Avoid obsolete parameter and return types
_ Mimic patterns in core APIs and language

• Take advantage of API-friendly features
_ Generics, varargs, enums, default arguments

• Know and avoid API traps and pitfalls
_ Finalizers, public static final arrays

_How to Design a Good API and Why it Matters23

III. Class Design

_How to Design a Good API and Why it Matters24

Minimize Mutability

• Classes should be immutable unless there’s a
good reason to do otherwise
_ Advantages: simple, thread-safe, reusable
_ Disadvantage: separate object for each value

• If mutable, keep state-space small, well-defined
_ Make clear when it's legal to call which method

Bad: Date, Calendar
Good: TimerTask

_How to Design a Good API and Why it Matters25

Subclass Only Where It Makes Sense

• Subclassing implies substitutability (Liskov)
_ Subclass only when is-a relationship exists
_ Otherwise, use composition

• Public classes should not subclass other public
classes for ease of implementation

Bad: Properties extends Hashtable
 Stack extends Vector

Good: Set extends Collection

_How to Design a Good API and Why it Matters26

Design and Document for Inheritance
or Else Prohibit it

• Inheritance violates encapsulation (Snyder, ‘86)
_ Subclass sensitive to implementation details of

superclass

• If you allow subclassing, document self-use
_ How do methods use one another?

• Conservative policy: all concrete classes final

Bad: Many concrete classes in J2SE libraries

Good: AbstractSet, AbstractMap

_How to Design a Good API and Why it Matters27

IV. Method Design

_How to Design a Good API and Why it Matters28

Don't Make the Client Do Anything the
Module Could Do

• Reduce need for boilerplate code
_ Generally done via cut-and-paste
_ Ugly, annoying, and error-prone

 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 // DOM code to write an XML document to a specified output stream.
 private static final void writeDoc(Document doc, OutputStream out)throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out));
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

_How to Design a Good API and Why it Matters29

Don't Violate the Principle of Least
Astonishment

• User of API should not be surprised by behavior
_ It's worth extra implementation effort
_ It's even worth reduced performance

 public class Thread implements Runnable {
 // Tests whether current thread has been interrupted.
 // Clears the interrupted status of current thread.
 public static boolean interrupted();
 }

_How to Design a Good API and Why it Matters30

Fail Fast–Report Errors as Soon as
Possible After They Occur

• Compile time is best - static typing, generics

• At runtime, first bad method invocation is best
_ Method should be failure-atomic

 // A Properties instance maps strings to strings
 public class Properties extends Hashtable {
 public Object put(Object key, Object value);

 // Throws ClassCastException if this properties
 // contains any keys or values that are not strings
 public void save(OutputStream out, String comments);
 }

_How to Design a Good API and Why it Matters31

Provide Programmatic Access to All
Data Available in String Form

• Otherwise, clients will parse strings
_ Painful for clients
_ Worse, turns string format into de facto API

public class Throwable {
 public void printStackTrace(PrintStream s);
 public StackTraceElement[] getStackTrace(); // Since 1.4
}

public final class StackTraceElement {
 public String getFileName();
 public int getLineNumber();
 public String getClassName();
 public String getMethodName();
 public boolean isNativeMethod();
}

_How to Design a Good API and Why it Matters32

Overload With Care

• Avoid ambiguous overloadings
_ Multiple overloadings applicable to same actuals
_ Conservative: no two with same number of args

• Just because you can doesn't mean you should
_ Often better to use a different name

• If you must provide ambiguous overloadings,
ensure same behavior for same arguments

public TreeSet(Collection c); // Ignores order
public TreeSet(SortedSet s); // Respects order

_How to Design a Good API and Why it Matters33

Use Appropriate Parameter and Return Types

• Favor interface types over classes for input
_ Provides flexibility, performance

• Use most specific possible input parameter type
_ Moves error from runtime to compile time

• Don't use string if a better type exists
_ Strings are cumbersome, error-prone, and slow

• Don't use floating point for monetary values
_ Binary floating point causes inexact results!

• Use double (64 bits) rather than float (32 bits)
_ Precision loss is real, performance loss negligible

_How to Design a Good API and Why it Matters34

Use Consistent Parameter Ordering
Across Methods

• Especially important if parameter types identical

 #include <string.h>
 char *strcpy (char *dest, char *src);
 void bcopy (void *src, void *dst, int n);

 java.util.Collections – first parameter always
 collection to be modified or queried

 java.util.concurrent – time always specified as
 long delay, TimeUnit unit

_How to Design a Good API and Why it Matters35

Avoid Long Parameter Lists

• Three or fewer parameters is ideal
_ More and users will have to refer to docs

• Long lists of identically typed params harmful
_ Programmers transpose parameters by mistake
_ Programs still compile, run, but misbehave!

• Two techniques for shortening parameter lists
_ Break up method
_ Create helper class to hold parameters

// Eleven parameters including four consecutive ints
HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
 LPVOID lpParam);

_How to Design a Good API and Why it Matters36

Avoid Return Values that Demand
Exceptional Processing

• return zero-length array or empty collection, not null

 package java.awt.image;
 public interface BufferedImageOp {
 // Returns the rendering hints for this operation,
 // or null if no hints have been set.
 public RenderingHints getRenderingHints();
 }

_How to Design a Good API and Why it Matters37

V. Exception Design

_How to Design a Good API and Why it Matters38

Throw Exceptions to Indicate
Exceptional Conditions

• Don’t force client to use exceptions for control flow

 private byte[] a = new byte[BUF_SIZE];
 void processBuffer (ByteBuffer buf) {
 try {
 while (true) {
 buf.get(a);
 processBytes(tmp, BUF_SIZE);
 }
 } catch (BufferUnderflowException e) {
 int remaining = buf.remaining();
 buf.get(a, 0, remaining);
 processBytes(bufArray, remaining);
 }
 }

• Conversely, don’t fail silently

 ThreadGroup.enumerate(Thread[] list)

_How to Design a Good API and Why it Matters39

Favor Unchecked Exceptions

• Checked – client must take recovery action

• Unchecked – programming error

• Overuse of checked exceptions causes boilerplate

try {
 Foo f = (Foo) super.clone();

} catch (CloneNotSupportedException e) {
 // This can't happen, since we’re Cloneable
 throw new AssertionError();
}

_How to Design a Good API and Why it Matters40

Include Failure-Capture Information in
Exceptions

• Allows diagnosis and repair or recovery

• For unchecked exceptions, message suffices

• For checked exceptions, provide accessors

_How to Design a Good API and Why it Matters41

VI. Refactoring API Designs

_How to Design a Good API and Why it Matters42

1. Sublist Operations in Vector

public class Vector {
 public int indexOf(Object elem, int index);
 public int lastIndexOf(Object elem, int index);
 ...
}

• Not very powerful - supports only search

• Hard too use without documentation

_How to Design a Good API and Why it Matters43

Sublist Operations Refactored

public interface List {
 List subList(int fromIndex, int toIndex);
 ...
}

• Extremely powerful - supports all operations

• Use of interface reduces conceptual weight
_ High power-to-weight ratio

• Easy to use without documentation

_How to Design a Good API and Why it Matters44

2. Thread-Local Variables

 // Broken - inappropriate use of String as capability.
 // Keys constitute a shared global namespace.
 public class ThreadLocal {
 private ThreadLocal() { } // Non-instantiable

 // Sets current thread’s value for named variable.
 public static void set(String key, Object value);

 // Returns current thread’s value for named variable.
 public static Object get(String key);
 }

_How to Design a Good API and Why it Matters45

Thread-Local Variables Refactored (1)

 public class ThreadLocal {
 private ThreadLocal() { } // Noninstantiable

 public static class Key { Key() { } }

 // Generates a unique, unforgeable key
 public static Key getKey() { return new Key(); }

 public static void set(Key key, Object value);
 public static Object get(Key key);
 }

• Works, but requires boilerplate code to use
 static ThreadLocal.Key serialNumberKey = ThreadLocal.getKey();
 ThreadLocal.set(serialNumberKey, nextSerialNumber());
 System.out.println(ThreadLocal.get(serialNumberKey));

_How to Design a Good API and Why it Matters46

Thread-Local Variables Refactored (2)

 public class ThreadLocal {
 public ThreadLocal() { }
 public void set(Object value);
 public Object get();
 }

• Removes clutter from API and client code
 static ThreadLocal serialNumber = new ThreadLocal();
 serialNumber.set(nextSerialNumber());
 System.out.println(serialNumber.get());

_How to Design a Good API and Why it Matters47

Conclusion

• API design is a noble and rewarding craft
_ Improves the lot of programmers, end-users,

companies

• This talk covered some heuristics of the craft
_ Don't adhere to them slavishly, but...
_ Don't violate them without good reason

• API design is tough
_ Not a solitary activity
_ Perfection is unachievable, but try anyway

_How to Design a Good API and Why it Matters48

Shameless Self-Promotion

_How to Design a Good API and Why it Matters49

How to Design a Good
API and Why it Matters

Joshua Bloch
Principal Software Engineer

