
C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

E
valuated

*
C
G
O
*

A
rt ifact *

A
E
C

MemorySanitizer: fast detector of

uninitialized memory use in C++

Evgeniy Stepanov

Google

eugenis@google.com

Konstantin Serebryany

Google

kcc@google.com

Abstract

This paper presents MemorySanitizer, a dynamic tool that

detects uses of uninitialized memory in C and C++. The tool

is based on compile time instrumentation and relies on bit-

precise shadow memory at run-time. Shadow propagation

technique is used to avoid false positive reports on copying

of uninitialized memory.

MemorySanitizer finds bugs at a modest cost of 2.5x in

execution time and 2x in memory usage; the tool has an

optional origin tracking mode that provides better reports

with moderate extra overhead. The reports with origins are

more detailed compared to reports from other similar tools;

such reports contain names of local variables and the entire

history of the uninitialized memory including intermediate

stores. In this paper we share our experience in deploying the

tool at a large scale and demonstrate the benefits of compile-

time instrumentation over dynamic binary instrumentation.

1. Introduction

Unlike most other programming languages, C and C++ do

not trade performance for safety. As a result, all stack and

heap objects in C/C++ are created uninitialized (except when

calloc is used). Consequently, use of uninitialized mem-

ory (UUM) remains a serious concern for C/C++ developers.

UUMs are hard to find during testing as they do not neces-

sary lead to failures on every execution. UUMs may trigger a

failure when a completely unrelated change is applied to the

program, or when developers start using another compiler,

OS, system library, or machine configuration.

The authors have been involved in a large scale deploy-

ment of several UUM detectors at Google and have seen

thousands of UUM bugs. In the majority of cases the code

owners fix the discovered bugs quickly, but they are of-

ten reluctant to use the tools themselves, mainly because of

huge slowdown incurred by the existing tools. This slow-

down consists of two parts: first, there is a start-up penalty

from dynamic binary instrumentation and second, there is

a steady state slowdown from executing the instrumenta-

©©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including reprinting/re-

publishing this material for advertising or promotional purposes, creating new collec-

tive works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

tion code itself. When executing short running tests or tests

with large code size, the start-up penalty may dominate and

the overal slowdown could be over 100x. Large steady state

slowdown is a problem as well since many network or GUI

applications simply cannot be run correctly when slowed

down by 20x or more. These considerations led us to the

development of MemorySanitizer, a new UUM detector that

has moderate steady state slowdown and no startup penalty.

Unlike other popular UUM detectors MemorySanitizer uses

static compile-time instrumentation — essentially it fulfills

the same task as the other tools by solving a simpler prob-

lem.

1.1 Contributions

In this paper we:

• demonstrate that static compiler instrumentation can be

used to detect uses of uninitialized memory (UUM);

• describe a UUM detector that is an order of magnitude

faster than other state of the art alternatives;

• propose an enhanced way of tracking origins of unini-

tialized memory that allows to produce more informative

error messages.

1.2 Outline

In section 2 we discuss related work; then in section 3 we de-

scribe the MemorySanitizer algorithm, including the instru-

mentation, run-time library and origin tracking. In section 4

we evaluate the tool and compare it to other tools, and also

describe our experience with deploying MemorySanitizer in

large scale projects. In section 5 we discuss future work and

then conclude the paper.

2. Related work

One of the first successful and widely used tools for de-

tecting UUMs is Memcheck [18], based on Valgrind binary

translation system [15]. Memcheck simultaneously detects

UUMs and addressability bugs (heap buffer overflow and

use after free). It normally uses 2 bits of shadow memory per

byte of application memory; the shadow for every byte has 4

states: addressable and initialized, not addressable, address-



able but uninitialized, addressable and partially initialized.

If the byte is partially initialized then the tool maintains a

second layer of shadow, this time with bit-to-bit mapping.

Memcheck propagates shadow bits through most instruc-

tions in the program and reports UUMs only when unini-

tialized memory may affect the program’s behavior. This

shadow propagation allows to achieve near-zero false pos-

itive rate. Memcheck’s slowdown is typically around 20x,

but may be much larger on multi-threaded programs since

Valgrind is single-threaded.

Dr. Memory [9], a tool based on DynamoRIO binary

translation system [8], is similar to Memcheck in many

ways. Using a more modern, optimized, and multi-threaded

binary translation system allows Dr. Memory to be twice

as fast, compared to Memcheck on average (more if the

application is heavily threaded). However, a 2-bit-per-byte

shadow combined with multi-threaded execution leads to

subtle false positives caused by concurrent updates of adja-

cent shadow bits1.

Memcheck and Dr. Memory combine the detection of

UUMs and addressability bugs in a single tool. On the one

hand, this clearly simplifies the usage. But on the other hand,

the overheads required to detect UUMs and addressabil-

ity bugs multiply. In particular, detection of addressability

bugs requires red zones to find buffer overflows and delay-

ing memory reuse to find use after free, but it needs only 1

bit of shadow per byte, or even less. Detecting UUMs re-

quires fatter shadow memory (up to bit-per-bit in the worst

case), but does not need red zones and quarantine. Com-

bining UUM and addressability bug detection requires the

use of fat shadow for red zones and quarantine – as the re-

sult the overheads in memory multiply. This is why Mem-

check and Dr. Memory have to use compact 2-bit-per-byte

shadow for the common case, even though it slows down the

instrumented code and for Dr. Memory also leads to false

positives. MemorySanitizer solves this problem by detecting

only UUMs. A sibling tool based on similar principles, Ad-

dressSanitizer [17], finds addressability bugs without trying

to find UUMs. As we show in Section 4.3, running Memo-

rySanitizer followed by AddressSanitizer is still much faster

than either Valgrind or Dr. Memory in most cases.

A feature that distinguishes Memcheck from Dr. Memory

is its origin tracking (--track-origins=yes).Unlike most

other kinds of bugs, such as e.g. buffer overflows, where

something bad happens in a particular place of program,

UUMs are harder to analyze because there is no bad event

in the program – instead, the program lacks an event of

memory initialization. Since Memcheck (correctly) does not

report UUMs when copying uninitialized memory, the point

of the actual report may be very far from the point of the

memory allocation. Origin tracking allows the tool to report

the particular memory region from which the uninitialized

memory originated.

1 https://code.google.com/p/drmemory/issues/detail?id=1557

Origin tracking described in the original paper [7] is

based on value piggybacking technique, which stores ori-

gin information in the spare bits of an undefined value. This

approach works well for propagating origins of null point-

ers in Java, but for UUM origins it has severe limitations:

origin information can be destroyed in arithmetic opera-

tions and partial copies, and it is not applicable to values

that are smaller than 32 bits. Current version of Memcheck

implements a different and, to the best of our knowledge, un-

published approach of storing origin information in shadow

memory.

MemorySanitizer implements origin tracking with shadow

storage similar to Memcheck, described in more detail in

Section 3.5. We go one step further and implement an “ad-

vanced” origin tracking mode (Section 3.6), which records

all memory stores along the path from the allocation to the

use of the uninitialized value.

Intel Inspector XE [10] (previously called Intel Parallel

Inspector) is a commercial memory error detector based on

PIN binary translation system [14]; Inspector’s functional-

ity is similar to that of Dr. Memory and Memcheck. The

details of Inspector implementation are not public, however

at least the version released in 2011 suffered from frequent

false positives supposedly because the tool did not propagate

shadow bits through memory copies2. The version released

in 2013 seems to have fewer false positives, however it still

incurs overhead of up to 500x, which significantly limits the

tool usefulness.

All three tools are based on dynamic binary translation,

which means that for short-running tests the translation over-

head is significant, see Section 4.3. To the best of our knowl-

edge, MemorySanitizer is the first tool for detecting UUMs

in C and C++ based on static compiler instrumentation.

There are also tools that do not use code instrumentation

to detect UUMs. DieHard [6] and DieHarder [16] attempt to

find UUMs by initializing heap-allocated memory with spe-

cialized patterns. This approach is much simpler and faster,

but it is probabilistic (i.e. does not guarantee the detection of

UUM) and does not provide detailed error messages.

3. MemorySanitizer algorithm

This section describes MemorySanitizer algorithm: shadow

memory, instrumentation, run-time support, and origin track-

ing.

3.1 Shadow memory

MemorySanitizer employs 1-to-1 shadow mapping, i.e. for

each bit of application memory the tool keeps one bit of

shadow memory. This approach allows very cheap com-

putation of shadow address; in the current implementation,

given the application memory address Addr, the correspond-

ing shadow address is

2 https://software.intel.com/en-us/forums/topic/267308



Application

Origin

Shadow

Protected

0x000000000000

0x200000000000

0x400000000000

0x600000000000

0x7fffffffffff

Figure 1. MemorySanitizer memory mapping

Addr & ShadowMask

The ShadowMask constant is platform-specific; for x86 64

Linux it is chosen as ~0x400000000000 to ensure that

shadow memory occupies the normally unused 32Tb mem-

ory region at address 0x200000000000. See Figure 1.

Each bit of MemorySanitizer shadow encodes the state

of the corresponding bit of the application memory, where

value 0 stands for initialized, or defined bit, and value 1 —

for uninitialized (undefined) bit.

For origin tracking (see Section 3.5), we allocate another

region of the same size immediately following the shadow

memory region. Both Shadow and Origin are mapped with

MAP NORESERVE flag, similarly to AddressSanitizer [17].

3.2 Shadow propagation

On a high level, our algorithm is similar to algorithms used

in Dr. Memory and Memcheck, except that static compiler

instrumentation is used instead of dynamic binary instru-

mentation.

All newly allocated memory is “poisoned”, i.e. corre-

sponding shadow memory is filled with 0xFF, signifying that

all bits of this memory are uninitialized.

According to the C++ Standard [13, §4.1 p1], any lvalue-

to-rvalue conversion on an uninitialized object has undefined

behavior. C++14 relaxes this requirement for unsigned nar-

row character types [5, p1787]. Lvalue-to-rvalue conversion

on an uninitialized object of such type produces an indeter-

minate value in C++14.

Commonly used compilers allow loading uninitialized

values of integer and floating point types with expected

results. Such operations are quite common in existing code,

and must be allowed by any practical tool.

Another consideration is that MemorySanitizer is imple-

mented as a compiler optimization pass. As such, it may ob-

serve memory loads that do not correspond to any reads in

the program source. For example, for a class like this:

class A { char x; int y; };

a C++ compiler may generate a copying constructor that

would simply do an 8-byte memory load including the po-

tential uninitialized padding between class data members.

MemorySanitizer allows copying of uninitialized mem-

ory and a set of other “safe” operations with it without

reporting an error. To handle such cases correctly, Mem-

orySanitizer implements shadow propagation. Result of a

load from uninitialized memory is an undefined value. This

is modelled by assigning a shadow value to each compiler

temporary, and storing that shadow value at the correspond-

ing location in shadow memory when the application value

is stored.

A subset of operations on application values require their

operands to be initialized. These operations are, at mini-

mum: conditional branch, system call and pointer derefer-

ence. An attempt to pass uninitialized memory as an argu-

ment of one of these instructions is reported as an error.

Most of the other operations propagate shadow by assign-

ing a new shadow value to the operation result. The new

shadow value is computed based on values of the operands

and their shadow values. This computation depends on the

operation, and is covered in more detail in section 3.3.

3.3 Instrumentation

MemorySanitizer instrumentation is implemented as an

LLVM [3] optimization pass. Unlike AddressSanitizer and

ThreadSanitizer [4] tools that only care about memory ac-

cesses, MemorySanitizer needs to handle all possible LLVM

IR (SSA-based program representation) instructions either

by checking operand shadow, or by propagating it to the

result shadow.

For every IR temporary value MemorySanitizer creates

another temporary that holds its shadow value. The type of

the shadow value is determined as follows:

• The shadow value for a value of a scalar type (integer,

floating point or any pointer) is an integer of the same bit

length.

• The shadow value for a value of a SIMD vector type

<N x T> is a vector of the same length whose elements

are shadow values of the elements of the original vector,

<N x Shadow(T)>.

• The shadow value for a value of an aggregate type is,

recursively, an aggregate of shadow values of the original

type members.

For example,
Shadow(iN) = iN

Shadow(float) = i32
Shadow(double) = i64
Shadow(i8∗) = i64
Shadow(< 4 x float >) =< 4 x i32 >

Shadow({double, {float, i1}}) = {i64, {i32, i1}}

Given an instruction A = op B,C, we generate one

or more instructions implementing A′ = op′ B,C,B′, C′,

where A′ stands for the shadow value corresponding to the

application value A.



Table 1. Basic shadow propagation rules
A = load P check P ′, A′ = load (P &ShadowMask)
store P, A check P ′, store (P &ShadowMask), A′

A = const A′ = 0
A = undef A′ = 0xff
A = B&C A′ = (B′ &C′) |(B&C′) |(B′ &C)
A = B |C A′ = (B′ &C′) |(∼B&C′) |(B′ &∼C)
A = B xorC A′ = B′ |C′

A = B ≪ C A′ = (sign-extend(C′ 6= 0)) |(B′ ≪ C)

Shadow propagation rules for several basic instructions

are shown in Table 1.

3.3.1 Approximate propagation

It is not always possible to efficiently implement op′ that

correctly models op behaviour. Take integer addition, for

example. A single undefined bit in the lower digit can af-

fect any number of bits of the result due to a possible carry

over. Modelling this behaviour would be difficult and pro-

hibitively slow. Instead, we approximate shadow propaga-

tion in a way that does not result in false positives, and, at

the same time, does not yield too many false negatives.

Approximate propagation must satisfy the following nat-

ural requirements:

• Zero shadow operands should produce zero shadow re-

sult.

• If one of the operands has a non-zero shadow bit in a loca-

tion where corresponding value bit affects the operation

result, then the result shadow must be non-zero.

Several kinds of instructions have stricter requirements. For

example, bit shifts and bit logic operations are often used

to extract individual field from bitfields. As adjacent fields

may be not initialized, it is important that the result shadow

matches the exact bits occupied by a particular field.

One convenient operation with these properties that is

also very fast to compute is bitwise OR.

A = B + C =⇒ A′ = B′ |C′

3.3.2 Integer multiplication

Integer multiplication is tricky. If one of the operands has

one or more zeroes in its least significant bits, the operation

can be decomposed into a left shift followed by a multipli-

cation by a smaller number.

A = B ∗ (C ∗ 2D) =⇒ A = (B ≪ D) ∗ C

In this example, A would have zeroes in its D least sig-

nificant bits. These bits are defined as long as D is defined.

It is important to note that a lot of these quirks never ap-

pear in the user code. Authors would argue that it is fine (and

may be even desirable) to outright forbid multiplication of

partially undefined values. Unfortunately, MemorySanitizer

operates on LLVM IR level and not on source level. For per-

formance reasons, MemorySanitizer runs near the end of the

optimizer chain. The code that it works with has undergone

heavy transformation and contains constructs that were not

present in the source code. This puts additional requirements

on the quality of shadow propagation.

In this example, the authors decided that extracting the

shift count D (by calculating the number of trailing zero

bits) from both operands of a multiplication instruction is

too expensive, both in terms of run time and code size. We

noticed that every case when application logic depends on

the fact that the least significant bits of the result are zero

is the result of a particular optimization and has a constant

as the second operand. We implemented specialized shadow

propagation logic for this case:

A = B ∗ (C ∗ 2D) =⇒ A′ = B′ ≪ D

In general case, multiplication is approximately instru-

mented with a bitwise OR:

A = B ∗ C =⇒ A′ = B′ |C′

3.3.3 Relational comparison

Initially, shadow propagation for relational comparison A =
(B > C) was implemented with a bitwise OR, which made

the result undefined unless both sides of the comparison are

fully defined. It produced a false positive on the following

code when s->a is not initialized:

struct S { int a : 3; int b : 5; };

bool f(S *s) { return s->b; }

The result of the conversion of the second field of S to

boolean can be expressed as

*( unsigned char *)s > 7

LLVM does this transformation as an optimization, as

it allows more compact encoding than otherwise extracting

the 5 highest bits. In this example, s contains both fields of

struct S, but the result of comparison does not depend on

the value of the a field.

Given an unsigned integer value X and its shadow value

(i.e. the mask of the undefined bits) X ′, the real value of X

can be in the range of

[ VMin(X,X ′),VMax(X,X ′) ]

, where

VMin(X,X ′) = X &(∼X ′),VMax(X,X ′) = X |X ′.

The result of the comparison is defined if and only if it

is not affected by the values of undefined bits, i.e. when

intersection of intervals for both operands is empty.

For signed integers formulas for VMin and VMax be-

come much more complex.

Then, for A = (B < C) shadow value of A can be

calculated as

A′ =((VMin(B,B′) < VMax(C,C′)) xor

(VMax(B,B′) < VMin(C,C′)),



i.e. the value of A is defined iff the intervals for B and C do

not intersect. Note that A′ as well as A is a single-bit value.

This formula defines the exact condition when the re-

sult of the comparison depends on undefined bits. Unfor-

tunately, it is very computationally expensive. Benchmarks

show slowdown of up to 50% when all relational compar-

isons are instrumented this way, compared to simple bitwise

OR propagation.

The authors ended up with the same compromise as in

the multiplication case above. Expensive and correct prop-

agation is used only when one of the compared values is a

compile-time constant. This covers all cases when a com-

piler generates such comparison as an optimization.

3.3.4 Equality comparison

Similar issues exist with equality comparison instructions.

Compiler-generated code sometimes uses the fact that the

result of equality comparison result is defined even when

part of the operands bits are not. It’s important to note that

the result of the comparison is defined in the following two

cases (and undefined otherwise):

• B and C are fully defined (i.e. B′ = C′ = 0).

• There exists a bit position i such that B′

i
= C′

i
= 0 and

Bi 6= Ci.

MemorySanitizer transforms A = (B == C) in the follow-

ing way:

D = B xorC, A = (D == 0).

Then, shadow of the result can be calculated as:

D′ = B′ |C′,

A′ = (!(D&∼D′))&&(D′ 6= 0).

3.3.5 Ternary operator

Another interesting case is the instrumentation of the select

instruction, which models C ternary operator ?:. An impor-

tant fact to note is that it is possible for the result of select

to be defined even if the condition itself is not defined.

Namely, if in A = select B,C,D there is a bit position

i such that Ci and Di are equal and both defined, then Ai

does not depend on the value of B and is always defined.

This leads to the following exact shadow propagation logic:

A = B ?C :D

A′ = B′ ? [(C xorD) |C′ |D′] :[B ?C′ :D′]

3.3.6 Vector instructions

Vectors are first-class types in LLVM IR, which makes most

of the shadow propagation logic described above applicable

verbatim. For example, parallel addition is modelled as par-

allel bitwise OR, and even parallel select is modelled by the

exact same formular and scalar select, but operating on vec-

tor values.

Three special vector operations extractelement,

insertelementand shufflevector that are instrumented

in a straightforward way by applying the same operation to

the shadow values.

3.3.7 Thread safety

In multithreaded environment, shadow update must be done

concurrently with the corresponding application memory

store. This is not an issue for plain store instructions because

LLVM IR follows the C++ memory model in disallowing

data races. If there is a happens-before relation between a

store and a load from one memory location, the same re-

lation exists between the corresponding shadow store and

shadow load.

Handling of atomic operations, however, requires a differ-

ent approach. Ideally, every atomic store should update the

corresponding shadow memory location in an atomic way.

This could be implemented by doing all atomic operation

with a particular location, and corresponding shadow oper-

ations, under a common lock. Contention could be reduced

using a global hash table of locks.

This approach would significantly slow down atomic op-

erations, as in addition to the original store or load the tool

would have to find, acquire and later release a lock.

MemorySanitizer implements a different, faster, approach

that is designed to avoid false positive reports at the cost of

possible false negative errors.

• Atomic loads are instrumented with a shadow load that

follows the original instruction.

• Atomic stores are instrumented with a shadow store of

zero value that precedes the original instruction.

• Atomic loads get acquire ordering, atomic stores get re-

lease ordering.

This way, any atomically accessed location in the program

may only change from uninitialized to fully initialized state,

but not the other way around.

If a store-load pair constitutes a happens-before arc,

shadow store and load are correctly ordered such that the

load will observe either the value that was stored, or some

later value (which is always initialized).

Compare-And-Swap and Read-Modify-Write operations

are instrumented in a similar way by storing a zero shadow

value before the original instruction, considering the previ-

ous value to be always initialized.

3.3.8 Function calls

MemorySanitizer uses a special thread-local array to pass

shadow values for function parameters from the caller to the

callee.

Handling of variable argument list functions in Memo-

rySanitizer is quite complicated due to the asymmetric low-



ering of such functions in LLVM IR. On the caller side, vari-

able argument list functions look the same as normal func-

tions. On the callee side, however, the details of the platform-

dependent va list format are exposed in the IR that is gen-

erated by the compiler frontend to access argument values.

At the same time the code that sets up va list is hidden

behind an opaque va start intrinsic call.

MemorySanitizer instruments va start call to update

the shadow for the resulting va list structure. This instru-

mentation is platform-dependent and mirrors the va start

lowering code in the platform backend.

3.4 Run-time library

MemorySanitizer run-time library shares much common

code with AddressSanitizer and ThreadSanitizer libraries.

At startup it makes the lower protected area inaccessible,

and maps Shadow and, optionally, Origin areas. Memo-

rySanitizer is currently limited to Linux / x86 64, and these

memory ranges (as specified in Figure 1) are always avail-

able at startup, provided that the application is linked as PIE

(position-independent executable), and address space layout

randomization (ASLR) is enabled.

MemorySanitizer uses the same allocator as the other

Sanitizer tools. It does not add redzones around memory al-

locations, and does not implement memory quarantine. Al-

located regions (with the exception of calloc regions) are

marked as uninitialized, or ‘poisoned‘. Deallocated regions

are marked uninitialized as well.

To update shadow state for memory operations done in

libc library, MemorySanitizer intercepts a large subset (close

to 300) of standard libc functions.

3.5 Origin tracking

UUM reports are notoriously hard to debug. By the nature

of the bug, they tell that something has not happened (i.e.

memory was not initialized), and understanding where it

should have happened requires knowing the programmer’s

intent, which is not something an automated tool can do.

Instead, MemorySanitizer implements origin tracking,

which helps users to understand the errors. It is very similar

to a technique by the same name used in Memcheck, which

is partially based on paper [7].

In origin tracking mode, MemorySanitizer associates a

32-bit origin value with each application value. This value

serves as an identifier of a memory allocation (either heap or

stack) that created the uninitialized bits this value depends

on. Origin has no meaning for fully defined values.

Code instrumentation is changed to propagate origin

values. For example, for a 3-argument operation A =
op B,C,D origin value for A is calculated as

A′′ = (D′) ? (D′′) : (C′ ? C′′ : B′′).

This way A gets the origin ID of one of the undefined

operands. If all operands are defined, then A is defined as

well, and it’s origin ID does not matter.

A special case is the ternary operator, which is repre-

sented as select instruction in LLVM IR. Origin ID for the

ternary operator A = B ? C : D is calculated as

A′′ = (B′) ? (B′′) : (B ? C′′ : D′′).

When an undefined value is stored to memory, its ori-

gin ID is stored to the secondary shadow space, marked as

Origin on Figure 1. Every 4 aligned bytes of memory can

have only one origin ID associated with them. If such 4 bytes

combine undefined data coming from different memory allo-

cations, their origin ID will correspond to the last undefined

store in this range.

The run-time library generates new origin identifiers on

each memory allocation and keeps a mapping between that

id and a description of the allocation. A concurrent hash map

is used for heap memory allocations with a stack trace (as a

list of memory addresses) as a key, and the newly generated

origin ID as a value. This approach allows fast lookup of

origin ID by stack trace to avoid creating multiple origin ID

for the same stack trace. Reverse lookup of stack trace by

origin ID is needed only when a use-of-uninitialized-value

report is printed, which is a relatively rare occurence.

For performance reasons, stack allocations do not get a

full stack trace, and only record function and variable names.

An example of origin tracking report can be found in

Appendix A.

3.6 Advanced origin tracking

With origin tracking, use-of-uninitialized value reports in

addition to the current stack trace include a stack trace of the

allocation where this undefined value came from. Sometimes

this is not enough. A value may undergo multiple memory

copies and transformations that make understanding the se-

quence of events between the allocation and the use chal-

lenging.

MemorySanitizer implements advanced origin tracking

mode in which it prints stack traces of all memory stores

along the path from the allocation to the use of the uninitial-

ized value.

When an undefined value is stored to memory, instead of

directly storing its origin ID to the origin shadow, Memo-

rySanitizer creates a new origin ID that corresponds to the

pair of (previous origin ID, current stack trace) and stores

that new id to the secondary shadow.

This effectively turns origin ID into a descriptor of a

sequence of undefined stores starting with its creation (with

a heap or a stack allocation). All origin IDs with the same

allocation stack form a prefix tree with the allocation origin

ID as the root node.

Edges of the history tree are stored in another hash map

with a pair of (previous origin ID, current stack trace id) as

the key and new origin ID as the value. Hash map provides

de-duplication of origin identifiers: if multiple undefined

values follow the same path, they are assigned the existing

origin ID that encodes the exact sequence of memory stores.



Changes to instrumentation required to implement this

approach are very simple. Every time an uninitialized value

A is stored to memory, the corresponding origin ID is calcu-

lated by passing A′′ to a run-time function.

Extra computations involved in origin tracking only need

to be performed when the value being stored is undefined,

which is relatively uncommon. This explains the limited

extra program slowdown of this mode compared to the basic

origin tracking. See Section 4.3 for more details.

In order to record memory stores in functions like memcpy

and memmove, their implementation in MemorySanitizer

runtime library is changed to generate new origins ids cor-

responding to the copy operation and write them to the sec-

ondary shadow of the destination. It is important to do this

only for uninitialized memory, as origin of initialized mem-

ory is meaningless, and we may end up creating a lot of extra

history nodes.

If a program often copies initialized memory, this change

may result in less secondary shadow memory being paged

in, and significantly reduce RAM usage. A notable example

is 433.milc benchmark in Table 2, where advanced origin

tracking mode reduces total RAM usage by 17%.

3.6.1 Memory footprint of advanced origin tracking

Some programs have, practically, unlimited growth of his-

tory tree over time. One such example is povray in SPEC-

2006, which generates store chains of average length 76,

where each store can have one of more than 20 unique stack

traces. All combinations of stores are possible, which gives

the upper limit of 2076 unique histories.

We’ve applied two limits on the history tree growth:

• History depth. MemorySanitizer records the store chain

length in the 3 highest bits of an origin identifier. Only

the first 6 stores are recorded, and the rest are ignored.

• Per-stack use count. Each store stack trace is allowed to

participate in the creation of a new history node a limited

number of times.

As soon as one of the limits is reached, MemorySanitizer

stops generating new origin IDs and propagates an unmodi-

fied origin ID, effectively falling back to basic origin track-

ing mode for a given store instruction. This strategy works

well in terms of performance, yet we have not observed any

usability issues in practice.

4. Evaluation

In this section we compare MemorySanitizer with other

tools, provide CPU and memory usage statistics, and dis-

cuss deployment challenges.

4.1 Comparison

Compiler instrumentation has certain advantages over binary

instrumentation used in tools like Memcheck and Dr. Mem-

ory. Intermediate program representation used by compilers

carries more information about program semantics than bi-

nary code. In some cases this allows faster and simpler in-

strumentation which is also less prone to false positives.

For example, Memcheck goes to great lengths to instru-

ment operations that affect x86/ARM flags register in a way

that is both fast and has no false positives. Representing flags

shadow in a usual, bit-for-bit way results in prohibitively

slow instrumentation, as, at least on x86, a very large sub-

set of instructions modify multiple flags. Memcheck imple-

ments a different, less precise representation for the flags

register which results in false positives in some rare cases.3

In comparison, LLVM IR has a notion of boolean-typed

temporary, i1, and several comparison instructions that

produce such temporaries. MemorySanitizer represents i1

shadow as i1, a single-bit value, which exposes extra opti-

mization opportunities by side-stepping the bottleneck of a

central flags register.

The Memcheck paper [18] states that there are “a few”

false positives when compiling with optimization. Authors’

experience with Chromium shows that continuous testing of

a large project has very low tolerance for false positives.

Stable results could be achieved only at -O1 optimization

level with some extra optimizations disabled4. This further

penalises Memcheck performance compared to compiler-

based tools like MemorySanitizer.

One common type of false positives in binary instrumen-

tation tools comes from applying C++ semantics to binary

code. Logical OR operator (||) in C++ is short-circuited, i.e.

in A || B sub-expression B is not evaluated unless A is

false. If B does not include side-effects, it can be evaluated

speculatively, and compilers would often do this to exploit

instruction-level parallelism. This may result in an “impos-

sible” report of B being used uninitialized while A is true.

One more advantage of compiler-based instrumentation

is that the tool has all the names of local variables on stack.

MemorySanitizer in track origins mode can tell the name of

the exact stack variable that has not been initialized, while

Valgrind can only point to the function name.

4.2 MemorySanitizer deployment

Deploying MemorySanitizer may be far from trivial because

it requires to instrument all memory accesses in the program,

including those that happen in pre-built binaries or in hand-

written assembly.

We have set up a continuous testing process that builds

LLVM using MemorySanitizer, runs all tests, and builds it

again using the instrumented compiler binary (bootstrap).

This process has found over 15 regressions in 10 months;

in most cases the LLVM developers were notified about the

bug within a few hours after introducing it. We have also

3 https://bugs.kde.org/show bug.cgi?id=270709
4 For testing with Memcheck we build Chromium with the following com-

piler flags: -O1 -g -fno-inline -fno-omit-frame-pointer -fno-builtin -fno-

optimize-sibling-calls



400.perlbench

401.bzip2

429.mcf
445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

433.milc
444.namd

447.dealII

450.soplex

453.povray

470.lbm
482.sphinx3

mean
0

5

10

15

20

25

30

35

40

45

R
el
at
iv
e 
sl
ow
do
w
n

MemorySanitizer
AddressSanitizer + MemorySanitizer
Dr. Memory
Valgrind

Figure 2. Performance comparison with state-of-the-art tools.

successfully built another opensource compiler, GCC, and

reported one UUM bug. Making MemorySanitizer work on

LLVM and GCC was trivial as both projects have neither

external dependencies nor hand-written assembly.

Second, we have deployed MemorySanitizer for testing

the Google server-side applications. This is a huge code base

with over 100 MLOC in C++. Most of this code has neither

binary-only dependencies nor hand-written assembly, so we

were able to instrument the entire code for the majority of

tests and detect over 500 bugs during the initial deployment.

Current limitation of MemorySanitizer does not allow us to

use it for tests with mixed code (e.g. Python or Java mixed

with C++).

Finally, we’ve enabled MemorySanitizer for the Chromium

browser [1] by rebuilding over 50 Linux system libraries

that Chromium depends on with MemorySanitizer. In Mem-

orySanitizer build, JavaScript is compiled into AArch64 ma-

chine instructions that are executed in the built-in AArch64

simulator, which is instrumented with MemorySanitizer —

this allows the tool to observe all memory accesses coming

from JavaScript. Hundreds of bugs were detected with the

help of fuzzing testing on ClusterFuzz [2]. Due to the higher

tool speed we’ve been able to deploy testing at a much larger

scale than it was possible before.

4.3 Performance and memory usage

Figure 2 shows the slowdowns of different UUM detectors

on SPEC 2006 [19]. We have compared the performance

of MemorySanitizer with Dr. Memory and Memcheck (Val-

grind). We’ve also included into the comparison the sum of

AddressSanitizer and MemorySanitizer slowdowns, which

is a combination of sanitizer tools that detects both UUM

and addressability bugs, and, as such, is directly comparable

to the competing tools.

MemorySanitizer measurements were done on 64-bit

Linux on a 6-core Intel Xeon W3690 @ 3.47GHz machine

with 24Gb RAM. The slowdown with Intel Inspector XE

Table 2. Memory usage with MemorySanitizer (MB)

Benchmark Base MSan M/O M/AO

400.perlbench 661 2.05x 3.04x 3.04x

401.bzip2 849 2.00x 3.00x 3.00x

429.mcf 1676 2.00x 2.99x 2.99x

433.milc 679 1.99x 2.34x 2.00x

444.namd 46 2.28x 3.30x 3.31x

445.gobmk 28 2.07x 3.03x 3.05x

447.dealII 792 2.36x 3.40x 3.41x

450.soplex 425 2.86x 4.40x 4.40x

453.povray 4 5.22x 7.23x 8.04x

456.hmmer 25 2.76x 4.11x 4.11x

458.sjeng 175 2.01x 3.01x 3.00x

462.libquantum 96 2.03x 2.36x 2.36x

464.h264ref 64 1.88x 2.39x 2.38x

470.lbm 409 2.00x 3.00x 3.00x

471.omnetpp 169 2.15x 3.09x 3.10x

473.astar 325 2.37x 3.58x 3.58x

482.sphinx3 42 1.71x 1.85x 1.84x

483.xalancbmk 419 2.50x 3.74x 3.76x

2013 (flags -collect=mi3-knob analyze-stack=true)

on SPEC ranges from 13x to 500x (180x on average), so we

do not discuss it any further. Memcheck and Dr. Memory

data was taken from [9]. DealII benchmark seems to run

forever under Memcheck and is excluded from Figure 2.

Table 2 (MSan for default mode, M/O for origin tracking

mode and M/AO for advanced origin tracking mode) sum-

marises the increase in the memory usage, collected by run-

ning SPEC2006 benchmarks with time -f %M which prints

the maximum resident set size of a process. For benchmarks

that run multiple processes, we’ve picked the one with the

highest memory usage.

Figure 3 compares the slowdown of different Memo-

rySanitizer modes. The performance and memory usage dif-



400.perlbench

401.bzip2

429.mcf
445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

433.milc
444.namd

447.dealII

450.soplex

453.povray

470.lbm
482.sphinx3

mean
0

1

2

3

4

5

6

7

R
el
at
iv
e 
sl
ow

do
w
n

Default
Origin tracking
Advanced origin tracking

Figure 3. Performance comparison of origin tracking modes.

Table 3. Application startup time (ms).

Benchmark Base MSan MSan/O Valgrind Valgrind/O Dr. Memory

Clang 17 106 118 4525 6053 828

Chromium 586 898 1257 97996 158230 n/a

ference between basic and advanced origin tracking is small

enough that we are considering making the latter the default

origin tracking mode.

Table 3 summarises application startup times for Mem-

orySanitizer, Valgrind, and Dr. Memory5 using two bench-

marks: compilation of a simple “hello world” C++ source

file with the Clang compiler, and startup of Chromium

browser measured in an HTML onload event.

As you can see, tools based on run-time binary instru-

mentation pay extremely large startup cost on large binaries,

while MemorySanitizer does not. This feature is important

when a tool is used to test large binaries with short-running

tests, such as on ClusterFuzz [2].

5. Future work

Improving performance and memory consumption of dy-

namic testing tools, including MemorySanitizer, is an end-

less task. Comprehensive static analysis could eliminate

some of the run-time checks, and researchers already try

that for MemorySanitizer [20]. Memory consumption in the

default mode can hardly be decreased, but in the origin track-

ing modes it is still possible.

MemorySanitizer can be extended to report more kinds

of bugs. For example, a bug where a C++ object is used after

its destructor is called but before the memory is deallocated.

To avoid false positives when parts of code are not instru-

mented, it is possible to combine compiler instrumentation

with static or dynamic binary instrumentation. At least one

5 Dr. Memory does not officially support Linux/x64; we were able to run it

on clang, but not on Chromium.

such attempt has been made [12], but the resulting tool was

too complex and slow compared to pure MemorySanitizer.

Last but not least, the software developer community

needs to embrace the idea of having all of the source code

available for (re)compilation. This is required not just for

MemorySanitizer: other static and dynamic analysis tools

and optimizing compilers will benefit from it. For exam-

ple, usage of Intel MPX [11] instruction set extension could

be greatly simplified if the entire program is being instru-

mented. With a very few exceptions the software libraries

on Linux can be recompiled.

Conclusions

This paper presents MemorySanitizer, a tool that detects

uses of uninitialized memory (UUMs). Traditionally, UUM

detectors use binary instrumentation, but MemorySanitizer

uses compiler instrumentation that allows it to be an order

of magnitude faster, have no startup penalty, and provide

more detailed reports compared to other state of the art tools.

MemorySanitizer has an optional mode that tracks origins

and copies of the uninitialized values to provide easier to

understand error messages. We have deployed MemorySan-

itizer in several large scale software projects and demon-

strated the tool’s advantages.

MemorySanitizer is open-source and a part of LLVM [3]

compiler suit.



References

[1] The Chromium project. http://dev.chromium.org.

[2] ClusterFuzz. http://blog.chromium.org/

2012/04/fuzzing-for-security.html.

[3] The LLVM Compiler Infrastructure. http://llvm.org.

[4] ThreadSanitizer. https://code.google.com/p/

thread-sanitizer/.

[5] WG21 N3914. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2014/n3914.html.

[6] Emery D. Berger and Benjamin G. Zorn. DieHard: probabilis-

tic memory safety for unsafe languages. In PLDI 06, pages

158–168. ACM Press, 2006.

[7] Michael D. Bond, Samuel Z. Guyer, Nicholas Nethercote,

Stephen W. Kent, and Kathryn S. Mckinley. Tracking bad

apples: reporting the origin of null and undefined value errors.

In In Proc. of the ACM SIGPLAN Conference on Object-

Oriented Programming Systems and Applications, pages 405–

422, 2007.

[8] Derek Bruening. Efficient, Transparent, and Comprehensive

Runtime Code Manipulation. PhD thesis, M.I.T., September

2004.

[9] Derek Bruening and Qin Zhao. Practical memory checking

with Dr. Memory. In Proc. of the International Symposium on

Code Generation and Optimization (CGO ’11), pages 213–

223, April 2011.

[10] Intel. Intel Inspector XE. http://software.intel.com/

en-us/intel-inspector-xe.

[11] Intel. Intel MPX. https://software.intel.com/en-us/

articles/introduction-to-intel-memory-

protection-extensions.

[12] Timur Iskhodzhanov, Reid Kleckner, and Evgeniy Stepanov.

Combining compile-time and run-time instrumentation for

testing tools. In Programmnye produkty i sistemy, volume 3,

pages 224–231, 2013.

[13] ISO. ISO/IEC 14882:2011 Information technology — Pro-

gramming languages — C++. International Organization for

Standardization, Geneva, Switzerland, February 2012.

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,

Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. Pin: building customized pro-

gram analysis tools with dynamic instrumentation. In PLDI

’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages

190–200, New York, NY, USA, 2005. ACM.

[15] Nicholas Nethercote and Julian Seward. Valgrind: A frame-

work for heavyweight dynamic binary instrumentation. In

Proc. of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’07), pages 89–

100, June 2007.

[16] Gene Novark and Emery D. Berger. DieHarder: securing the

heap. In Proc. of the 17th ACM conference on Computer and

communications security, CCS ’10, pages 573–584. ACM,

2010.

[17] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: A

fast address sanity checker. In Proceedings of the 2012

USENIX Conference on Annual Technical Conference,

USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012.

USENIX Association.

[18] Julian Seward and Nicholas Nethercote. Using Valgrind to

detect undefined value errors with bit-precision. In Proc. of

the USENIX Annual Technical Conference, pages 2–2, 2005.

[19] Standard Performance Evaluation Corpora-

tion. SPEC CPU2006 benchmark suite, 2006.

http://www.spec.org/osg/cpu2006/.

[20] Ding Ye, Yulei Sui, and Jingling Xue. Accelerating dynamic

detection of uses of undefined values with static value-flow

analysis. In Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’14,

pages 154:154–154:164, New York, NY, USA, 2014. ACM.

A. MemorySanitizer report example

1 int a r r [ 2 ] ;

2 void s h i f t ( ) { a r r [ 1 ] = a r r [ 0 ] ; }
3 void push ( int *p ) {
4 s h i f t ( ) ;

5 a r r [ 0 ] = *p ;

6 }
7 int pop ( ) {
8 int x = a r r [ 1 ] ;

9 s h i f t ( ) ;

10 return x ;

11 }
12 void func1 ( ) {
13 int l o c a l v a r ;

14 push (& l o c a l v a r ) ;

15 }
16 int main ( ) {
17 func1 ( ) ;

18 s h i f t ( ) ;

19 return pop ( ) ;

20 }

The following report was obtained by compiling the

above source with the latest Clang compiler (SVN r214393)

with -fsanitize-memory-track-origins=2 -g

-fsanitize=memory command line flags.

WARNING: MemorySanitizer: use-of-uninitialized-value

#0 0x7fa14df37e1d in main test.c:19:10

Uninitialized value was stored to memory at

#0 0x7fa14df37a57 in pop() test.c:8:3

#1 0x7fa14df37dd5 in main test.c:19:10

Uninitialized value was stored to memory at

#0 0x7fa14df37733 in shift() test.c:2:16

#1 0x7fa14df37dbb in main test.c:18:3

Uninitialized value was stored to memory at

#0 0x7fa14df3793f in push(int*) test.c:5:3

#1 0x7fa14df37b2f in func1() test.c:14:3

#2 0x7fa14df37db6 in main test.c:17:3

Uninitialized value was created by an allocation of

’local_var’ in the stack frame of function ’func1’

#0 0x7fa14df37ad0 in func1() test.c:12


