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ABSTRACT

Spoken dialog systems help users achieve a task using natural
language. Noisy speech recognition and ambiguity in natural lan-
guage motivate statistical approaches that model distributions over
the user’s goal at every step in the dialog. The task of tracking these
distributions, termed Dialog State Tracking, is therefore an essen-
tial component of any spoken dialog system. In recent years, the
Dialog State Tracking Challenges have provided a common test-
bed and evaluation framework for this task, as well as labeled di-
alog data. As a result, a variety of machine-learned methods have
been successfully applied to Dialog State Tracking. This paper re-
views the machine-learning techniques that have been adapted to Di-
alog State Tracking, and gives an overview of published evaluations.
Discriminative machine-learned methods outperform generative and
rule-based methods, the previous state-of-the-art.

Index Terms— dialog systems, dialog state tracking, machine
learning

1. INTRODUCTION

Spoken interaction promises a natural, effective, and hands- and
eyes-free method for users to interact with computer systems. Voice-
based computer systems, called spoken dialog systems, allow users
to interact using speech to achieve a goal. Efficient operation of
a spoken dialog system requires a component that can track what
has happened in a dialog, incorporating system outputs, user speech,
context from previous turns, and other external information. The
output of this Dialog State Tracking (DST) component is then used
by the dialog policy to decide what action the system should take
next, and so DST is essential for the final performance of a complete
system.

A variety of machine-learned discriminative methods for DST
have been proposed in recent years, particularly since the Dialog
State Tracking Challenges (DSTCs) have provided labelled dialog
state tracking data and a common evaluation framework and test-bed
for comparing techniques among research groups [1–4].

This paper presents an overview of recent work on DST, with a
focus on machine-learned methods. Section 2 reproduces the defini-
tion of DST given in the second and third DSTCs. Rule-based and
generative methods for DST found in the literature are presented in
section 3. Section 4 presents how machine learning has been ap-
plied to the problem, and presents some of the techniques that give
the state of the art in DST. Section 5 presents results from the sec-
ond DSTC, where machine-learned methods came top in all metrics.
Finally section 6 concludes.

2. PROBLEM DEFINITION

Spoken dialog systems that help a user complete a task are typically
framed in terms of slots and are termed slot-based dialog systems.
The slots and possible slot values of a slot-based dialog system spec-
ify its domain, i.e. the scope of what it can talk about and the tasks
that it can help the user complete. The slots inform the set of pos-
sible actions the system can take, the possible semantics of the user
utterances, and the possible dialog states.

The second and third DSTCs formulated a definition of slot-
based dialog domains (sometimes referred to as ontologies), which
is relatively general to dialog systems that help the user search a
database of entities by specifying constraints [2, 3]. This is the def-
inition adopted here. The set of all slots S is composed of two not-
necessarily disjoint subsets – the informable slots Sinf, and the re-
questable slots Sreq, such that S = Sinf ∪ Sreq. Informable slots are
attributes of the entities in the database that the user may use to con-
strain their search. Requestable slots are attributes that users may
ask the value of, but may not necessarily be allowed to specify a
value for as a constraint. A typical example of a requestable slot that
is not informable is the phone number, which the user may ask for
but would not give as a constraint. For each slot s ∈ S, the set of
possible values for the slot is denoted Vs.

The term dialog state loosely denotes a full representation of
what the user wants at any point from the dialog system. The dialog
state comprises all that is used when the system makes its decision
about what to say next. Figure 1 gives an illustrative example of
dialog state labels in the domain of restaurant information used in
DSTC2, where the dialog state at a given turn consists of:

• The goal constraint for every informable slot s ∈ Sinf. This
is an assignment of a value v ∈ Vs that the user is specifying
as a constraint, or a special value Dontcare, which means the
user has no preference, or None, which means the user is yet
to specify a valid goal for the slot.

• A set of requested slots, the current list of slots that the user
has asked the system to inform. This is a subset of Sreq.

• The current dialog search method, one of several values that
encode how the user is trying to interact with the dialog sys-
tem including by constraints (the user is attempting to issue a
constraint), by alternatives (the user is requesting alternative
suitable entities), and finished (the user wants to end the call).

In DSTC1 the dialog state consists only of goal constraints, and
once a slot s had been constrained to a value it was considered fixed
for the rest of the dialog [1].

The task of DST is to output a distribution over all of these com-
ponents of the dialog state at each turn. The distributions output by
a dialog state tracker are sometimes referred to as the tracker’s be-
lief or the belief state. The tracker may have access to the whole
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SLU output Dialog State

Turn 1
a: What part of town

did you have in
mind?
request(area)

u: The North area
inform(area=north)

0.7 null()
0.2 inform(food=‘north

african’)
0.1 inform(area=north)

goal constraints
area=north
requested slots
–
search method
by constraints

Turn 2
a: Which part of

town?
request(area)

u: A cheap place in
the North
inform(area=north,
pricerange=cheap)

0.8 inform(area=north,
pricerange=cheap)

0.2 inform(area=north)

goal constraints
area=north
pricerange=cheap
requested slots
–
search method
by constraints

Turn 3
a: Da Vinci Pizzeria

is a cheap place in
the North.
inform(name=‘Da
Vinci Pizzeria’,
area=north,
pricerange=cheap)

u: Do you have any-
thing else, but in
the West?
requestAlternatives(
area=west)

0.7 reqalts(area=west)
0.3 reqalts()

goal constraints
area=west
pricerange=cheap
requested slots
–
search method
by alternatives

Turn 4
a: Cocum is a cheap

place in the West.
inform(name=cocum,
area=west,
pricerange=cheap)

u: What is their
number and
address?
request(address,
phone)

0.6 request(phone,
address)

0.3 request(phone)
0.1 request(address)

goal constraints
area=west
pricerange=cheap
requested slots
address
phone
search method
by alternatives

Fig. 1: Example dialog from the DSTC 2 restaurant information
domain, annotated with Dialog State labels. The left column shows
the actual system action a and user action u. The second column
shows example SLU M -best hypotheses and their scores. In the
DSTC2 data, up to 10 SLU M -best hypotheses are given. Turn 2
demonstrates an addition to the goal constraints. In turn 3, the goal
constraint for the area slot changes, and the search method changes
from by constraints to by alternatives. The last turn demonstrates a
non-empty set of requested slots.

history of the dialog up to the current turn, including previous sys-
tem acts, Automatic Speech Recognition (ASR) hypotheses, Spoken
Language Understanding (SLU) hypotheses, and external informa-
tion such as databases and models of previous interactions. The ASR
hypotheses are typically given as an N -best list of sentences, a word
confusion network [5], or a lattice; the SLU typically outputs an M -
best list of interpretations.

3. RULE-BASED AND GENERATIVE DIALOG STATE
TRACKING

3.1. Rule-based Dialog State Tracking

Early spoken dialog systems used hand-crafted rules for DST, keep-
ing a single top hypothesis for each component of the dialog state,
often with corresponding confidence scores [6, 7]. Such systems re-
quire no data to implement, and provide an accessible method for
system designers to incorporate knowledge of the dialog domain.
However, such rules are unable to make use of the entire ASR N -
best or SLU M -best lists, and so do not account for uncertainty in
a principled way. In dialog, uncertainty arises not only from errors
in recognizing speech, but also from ambiguities inherent in natural
language, and so it is necessary for DST to track robustly multi-
ple competing hypotheses. The importance of maintaining distribu-
tions over what the participants of a dialog desire was argued for by
Pulman in 1996, who proposed modeling dialog as a conversational
game accounting for uncertainty using probabilistic frameworks [8].

The current dominant DST methods for estimating distributions
of multiple competing dialog states can be split into two categories
– generative models that jointly model both the inputs (typically the
SLU hypotheses) and the dialog state, and discriminative models that
directly capture the conditional probability over dialog states, having
observed the dialog up to a certain point. These two approaches are
described in the following sections.

Rule-based approaches have also been proposed for the task of
tracking multiple hypotheses, using a small set of hand-crafted rules
to compute dialog state distributions given observations from the
SLU [9–12].

3.2. Generative Methods

Generative approaches model dialog as a dynamic Bayesian network
where the true dialog state s and the true user action u are treated as
unobserved random variables [13]. Bayesian inference is used to
give an updated distribution over s given the system act a, and a
noisy observation of u, written ũ. Figure 2 shows the structure of
the dynamic Bayesian network.

Early generative approaches used exact inference, enumerating
all possible dialog states [14, 15]. This is quadratic in the number
of possible states, and is intractable as the number of states can be
very large. As a result, two approximations are typically used; either
maintaining a beam of candidate dialog states [16–18], or assuming
conditional independence between components of the dialog state
[19–24].

Typically these techniques use parameters optimized by the sys-
tem designer, though there are methods to optimize the parameters
using corpora of dialog data [25,26]. Another proposition is to use a
secondary step to post-process the output of a generative model [27].
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Fig. 2: Dynamic Bayesian network structure for DST, showing two
consecutive time steps (dialog turns). A prime (′) denotes a variable
in the following time step. The true dialog state s is dependent on
the previous state and the machine action a. The true user’s action u
depends on both s and a, and a noisy observation of this is given by
ũ, whose distribution is inferred from the SLU. Observed nodes are
shaded grey. The connections in the graph encode the conditional
independence relationships in the joint distribution of the random
variables.

4. MACHINE-LEARNED DISCRIMINATIVE DIALOG
STATE TRACKING

There are several deficiencies of generative models, some of which
were identified in [28]. Generative approaches must model all the
correlations in the input features, so they cannot easily exploit arbi-
trary but potentially useful features of the dialog history. Any such
features must be included into the dynamic Bayesian network, re-
quiring new structures and dependencies to be learned or specified.

Generative models used for DST make many independence as-
sumptions in order to make the models tractable, in terms of both
computational complexity and the number of parameters that must
be learned. In particular, the current implementations do not model
ASR and SLU error correlations, instead assuming independence for
simplicity.

Discriminative models address these issues by directly modeling
the distribution over the dialog state given arbitrary and possibly cor-
related input features [29]. While the parameters of generative mod-
els are typically hand-crafted, the model parameters for discrimina-
tive approaches are tuned using machine learning and labeled dialog
data.

Discriminative methods exploiting machine learning can be split
into two categories – static classifiers that encode dialog history in
the input features, and sequence models that explicitly model dialog
as a sequential process.

4.1. Static Classifiers

The task of DST can be considered as specifying the distribution:

P (st | o0, . . . , ot) (1)

where st is the dialog state at the current turn t, and o0, . . . , ot is
the sequence of observations from the SLU, ASR and machine ac-
tions up to and including the current turn. One key issue with this
approach is that it is necessary to extract a fixed dimensional fea-
ture vector to summarise a sequence of arbitrary length observations
o0, . . . , ot.

Given a feature representation, this distribution has been mod-
eled using a variety of machine-learned discriminative models in-
cluding maximum entropy linear classifiers [28–32], neural net-
works [11, 33–35] and web-style ranking models [36].

Applying machine-learned classifiers in the first DSTC pre-
sented a difficulty, as there was no consistent set of possible values
Vs for each slot s across all dialogs in the data. Instead of labeling
the true values for the user’s goal constraint, each SLU hypothesis
was labeled as correct or incorrect. A dialog state tracker therefore
had to assign probabilities to all the SLU hypotheses given so far
in a dialog, a growing list of candidates. This has been achieved by
using value-specific feature representations, and tying weights in the
model.

Even when the set of possible values Vs for each slot s is known,
such as in DSTC 2 and 3, value-specific feature representations have
been key for learning accurate models. Some slots may have values
that occur very infrequently as the constraint, such as food-type in
DSTC2. Using value-specific features and sharing weights allows
for better generalization to unseen or infrequent dialog states [37].

This section presents in some detail the features used by Met-
allinou et al. [30], which is fairly representative of this class of tech-
niques. Consider tracking the correct value for the user’s goal con-
straint for a given slot s ∈ Sinf. Metallinou et al. extract a feature
vector f from the observation and a set of vectors fv for each v that
has appeared in the SLU hypotheses so far. The fv features are in-
tended to convey information about the correctness of the v hypoth-
esis for the goal constraint on slot s. The f features are of general
interest, and are also used to calculate the probability of the None
hypothesis.

The features f provide aggregate information about the dialog
history, including:

• the size of the SLU M -best list in the latest turn

• the entropy of the SLU M -best list in the latest turn

• the posterior scores from the ASR in the latest turn

• the mean and variance of the SLU M -best list lengths in the
dialog history

• the number of distinct SLU results obtained so far and the
entropy of the corresponding probabilities

For a value v, the value specific features fv include:

• information about the latest turn:

– the rank and probability score of the s = v hypothesis
in the SLU list

– the difference between the probability score of the s =
v hypothesis and the top scoring hypothesis in the SLU
list

• information from the dialog history:

– the number of times the hypothesis s = v has appeared
in the SLU so far

– the number of times the hypothesis s = v has appeared
in the SLU so far at each particular rank

– the sum and average of the confidence scores of SLU
results containing s = v

– the number of possible past user negations or confirma-
tions of s = v

• information about likely ASR errors and confusability:



– estimates for the likelihood of s = v being correctly
identified by the SLU, estimated on held-out training
data

– a similar estimate for the prior probability of s = v ap-
pearing in an SLU M -best list, and at specific rank po-
sitions in the list

– similar estimates for how likely s = v is to be confused
with other hypotheses s = v′

Note that the dialog history is summarized using sums, averages,
and other statistics. An alternative approach is to use a sliding win-
dow that runs over features fv, t, which depend on the value v and
turn t [33].

4.2. Sequence Models

Static classifiers models the sequential nature of the input by using
feature functions that attempt to summarise the sequence. It is also
possible to use sequence models that inherently model the sequential
nature of the problem. A Conditional Random Field (CRF) can be
used to do sequential labeling of the dialog [38, 39]. A linear-chain
CRF is used to learn the conditional distribution:

P (s0, . . . , st | o0, . . . , ot) (2)

This is then marginalized to give the distribution for the latest
state st. Features like those used in section 4.1 to extract informa-
tion about hypotheses for the current turn are used, except these are
calculated for all turns in the history.

One key issue with using CRF for DST is that continuous fea-
tures must be quantized, as the CRF modeling techniques in all pub-
lished work on DST so far require discrete features.

Recurrent Neural Networks (RNNs) have been proposed as se-
quential models that are able to deal with high dimensional continu-
ous input features [37, 40]. Notably, such models can be applied to
operating directly on the distribution over sentences from the ASR,
without requiring SLU and instead using weighted n-gram features
from the ASR N -best list. This is termed word-based DST, and has
two key benefits: first, it removes the need for feature design, and
the risk of omitting an important feature, which can degrade perfor-
mance unexpectedly [36]. Second, it avoids the engineering task of
building a separate SLU model.

There are several machine-learning tricks that are required to
reliably train word-based RNNs for DST, which are reproduced here
from Henderson et al. [37, 40, 41]. Firstly, it is useful to exploit
delexicalized features. These are value-specific features that match
values in the domain against the n-grams in the ASR. As with value-
specific SLU-based features, these help both with generalization to
unseen dialog states, and in the case of flexible domains.

RNNs that operate on high-dimensional n-gram features can be
hard to train, and so benefit from careful initialization. Performance
is improved if the weights multiplying the feature vectors are initial-
ized with weights learned by training a denoising auto-encoder. Im-
provements are also found by first learning a slot-independent model
for tracking goal constraints, then adapting this model for each slot.

In the case where the set of possible values Vs for each slot s
is known, it is possible to improve the RNN model by adding layers
that directly modify the output softmax layer given the raw n-gram
features. This allows the model to associate new n-grams with dia-
log states, without relying on delexicalized features.

Long Short-Term Memory (LSTM) networks [42] have also
been applied to the task of word-based DST, modeling not only the
sequence of turns, but also the sequence of words within a turn [43].

This is attractive as it allows for incremental DST, though it is
restricted to using 1-best ASR results.

4.3. System Combination

Many of the competitive results in the DSTCs were achieved by
combining multiple models [12, 31, 36, 37, 40]. In Henderson et
al. [2], the trackers submitted to DSTC2 from all participants were
combined using stacked ensemble learning [44] to give a new tracker
that performed significantly better than any individual tracker. This
suggests that by exploiting the strengths of individual models, en-
semble learning can provide better quality output.

The simplest method of system combination is score averag-
ing, i.e. averaging the output distributions of multiple trackers. This
has the advantage that no extra training data is required. If each
tracker’s output is correct more than half the time, and if the errors
made by the tracker are not correlated, then this technique is guar-
anteed to improve the performance (since the majority vote will be
correct in the limit). For example, in the RNN-based method for
DST proposed by Henderson et al. [40], at least 6 individual RNNs
are trained with varying hyper-parameters (such as regularization,
learning rates, hidden layer sizes), and the resulting outputs are av-
eraged to give the final distributions. In this case the final combined
output consistently outperforms any individual model.

4.4. Modeling Joint Distributions

The number of possible dialog states can be enormous; every in-
formable slot added to the domain multiplies this number by the
number of possible values it can take. To deal with the resulting in-
evitable sparsity of examples in the training data, and the large num-
ber of possible states to consider, machine-learned methods must
exploit the structure of the DST problem.

One approach is to constrain the dialog states to score to a set of
candidate states [36]. In this case, value-specific features allow for
generalization to unseen states, and the model is able to directly out-
put full structured joint distributions over the most likely candidate
states. In this work, an SLU component is used both to generate can-
didate dialog states, and provide features used in the final classifier.

Another popular approach is to assume conditional indepen-
dence between components of the dialog state. For example, the
joint distribution over goal constraints can be estimated as a product
over distributions for each individual slot. This was the approach
taken by all but one participant in DSTC2.

However, in general the independence assumption among slots
is not valid. For example in DSTC1, which concerned bus infor-
mation, the destination is correlated with the chosen bus route.
And in DSTC3, which concerned tourist information, it only made
sense to constrain by food=italian if the user also had the constraint
type=restaurant and not type=pub.

RNNs for tracking individual slots can be combined using a spe-
cial softmax combination layer [45]. This allows for tuning a factor-
ized model to output an accurate joint distribution, giving improve-
ments in the DSTC3 data. The basic idea is to order the slots, and
add a recurrent layer that selects an assignment for each slot, given
the assignments selected so far [41].

4.5. Unsupervized Adaptation and Generalization

As with all applications of machine learning, generalization from the
training set is a key problem for DST [1, 2]. The ability of methods
to generalize to unseen data was explicitly tested in DSTC3. In this



challenge, no training data in the testing dialog domain was released,
though a large amount of data in a similar but smaller domain was
available.

Rule-based methods that do not require training data, or which
have very few parameters to learn, can give strong generalization
ability [12, 24]. Also recall that value-specific features give inherent
generalization ability, as they allow tracking of unseen dialog states;
in theory it is not necessary to see a value in the training data, so long
as these features can be calculated for the value when it does appear.
Delexicalized features for RNN word-based tracking can be used to
share training data across disparate domains, improve performance
in each individual domain [46]. If a small amount of training exists,
then multi-domain learning can be exploited when adapting to the
new domain [32].

The RNN framework allows for tuning parameters with an unsu-
pervized cost function that tries to propagate information backward
through the dialog. This cost function minimizes the cross entropy
between predictions of consecutive turns, weighted by the entropy of
a baseline model, which serves to propagate information from later
in the dialog so far as the baseline model was uncertain. This has
been shown to improve DST performance when adapting an out-
of-domain model to a new domain, without requiring any training
data [37].

5. EVALUATION

Almost all of the machine-learned methods for DST described in the
previous section were developed for and evaluated in the DSTCs. Ta-
ble 1 gives a summary of the DST techniques and some of the results
of the DSTC2 evaluation. As well as rule-based baselines described
in [2], a generative dynamic Bayesian network is also included in
the table under Bayesian net. (as reported in [41]). The results from
DSTC2 are presented as it is the most simple set-up of the three
challenges and the most amenable to machine learning; DSTC1 had
multiple test sets and hundreds of evaluation metrics, and DSTC3
had no in-domain training data. Nevertheless, full results for all the
DSTCs can be found in the relevant summary papers [1–3] and in
the overview paper [4].

The domain of DSTC2 was restaurant information. In this do-
main, crowd-sourced users were asked to find a restaurant matching
a given set of constraints, and to find some information about the
suggested restaurant. In some cases, a matching restaurant would
not exist, and the user was asked to relax their constraints to find an
alternative. The informable slots Sinf were food type, part of town,
and price range; the requestable slots Sreq additionally included ad-
dress, phone number, and post code.

Prior to the DSTC2 evaluation, a training set was published con-
taining 2,118 dialogs with transcriptions, SLU labels and dialog state
labels. During the week-long evaluation phase, an unlabeled dataset
of 1,117 dialogs was released. Participants were required to run their
DST algorithms over this data, and submit the output (distributions
over components of the dialog state) for evaluation.

Two metrics were featured in the evaluation. The accuracy met-
ric measures the quality of the top hypothesis for each dialog state
component, and is equal to the fraction of times the top hypothesis
is correct. The L2 metric measures the quality of the whole distri-
bution, and is equal to the square of the L2 distance between the
reported distribution and the label distribution (equal to zero at all
points except at the correct label, where it is 1).

The discriminative machine-learned systems notably outperform
the generative and rule-based systems. The top accuracy and L2

scores achieved by a generative model were 0.699 and 0.498 respec-
tively [26]. In contrast, a method using web-style ranking classifiers
was able to get 0.784 in accuracy [36], and an RNN method achieved
0.346 in L2 score.

Machine-learned methods for DST also performed top in the
DSTC1 and DSTC3 evaluations. In no case has a rule-based or gen-
erative model achieved best performance in any of the DSTCs. Note
however that the focus baseline, the top performing rule-based sys-
tem that uses a very simple method of updating the dialog state [2],
outperforms several of the machine-learned methods. This demon-
strates a deficiency in generalization from the training data to the
test set, particularly since most of these methods were predicted to
outperform the focus baseline on the development set [2].

While the web-style ranking classifier obtained the top accuracy
figures, it performed notably poorly in terms of the probability qual-
ities as measured by the L2 score. The ranker is trained to rank
the correct hypothesis first, but the training procedure does not at-
tempt to further separate the correct and incorrect hypotheses once
a training example has been ranked correctly. This leads to high
accuracy, but less meaningful confidence scores as measured by the
L2 score. The sequential RNN models performed top for this metric,
having been trained to maximize the log-probability and so minimize
the L2 score. In DSTC1, a sequential CRF model outperformed the
static classifier approaches [31]. In DSTC3, a sequential RNN-based
method also outperformed the other approaches [37].

Discriminative machine-learned methods are able to incorporate
arbitrary, potentially correlated features, such as those derived from
the ASR. The top performing methods in table 1 use ASR features,
all of which are machine learned; no generative method has been
presented capable of doing this.

In general, the DSTCs have brought DST into focus in recent
years, and many research teams have improvements over the previ-
ous state-of-the-art as measured by the metrics on off-line corpus-
based evaluations such as these. However, it is important to as-
sess the performance in an end-to-end dialog system. The RNN-
based method for DST presented in [40] was evaluated in a live user
trial, and it was found to significantly improve the end-to-end per-
formance relative to a generative baseline method [41]. This evalu-
ation found significant and substantial gains in employing machine-
learned RNN based dialog state trackers in every metric evaluating
the end-to-end dialog quality, including measures of task comple-
tion, and the users’ subjective impression that the system understood
them well.

6. CONCLUSIONS

The availability of labeled training data for DST has prompted in-
terest in and development of a wide-range of machine learning for
the problem. Discriminative machine-learned methods are now the
state-of-the art in DST, as demonstrated in the offline corpus-based
evaluations of the DSTCs, and in on-line trials with live users.

Top performing approaches use ASR features, exploiting the
ability of discriminative methods to use arbitrary features. It is also
key to model the dialog as a sequence, either by using a sequential
model such as an CRF or RNN, or by using rich features of the dia-
log history.

Poor generalization and over-tuning to the training data is still
a key issue for machine-learned methods, with rule-based baselines
showing better robustness in some cases. This can be counteracted
using some of the techniques presented in section 4 such as system
combination, regularization, value-specific features for generaliza-
tion including delexicalized features, and word-based tracking.



Features Joint Goals Search Method Requested

Entry ASR SLU Acc. L2 Acc. L2 Acc. L2

Generative and rule-based methods
Bayesian net. X 0.675 0.550 0.880 0.210 0.885 0.197
1-best baseline [2] X 0.619 0.738 0.879 0.209 0.884 0.196
focus baseline [2] X 0.719 0.464 0.867 0.210 0.879 0.206
HWU baseline [9] X 0.711 0.466 0.897 0.158 0.884 0.201
team8 entry1 X 0.699 0.498 0.899 0.153 0.939 0.101

Machine-learned discriminative methods
team1 entry0 X 0.601 0.648 0.904 0.155 0.960 0.073
team3 entry0 X 0.729 0.452 0.878 0.210 0.889 0.188
team4 entry2 X 0.742 0.387 0.922 0.124 0.957 0.069
team6 entry2 X 0.718 0.437 0.871 0.210 0.951 0.085
team7 entry4 X 0.735 0.433 0.910 0.140 0.946 0.089
team9 entry0 X 0.499 0.760 0.857 0.229 0.905 0.149
team2 entry2 X 0.668 0.505 0.944 0.095 0.972 0.043
team4 entry0 X 0.768 0.346 0.940 0.095 0.978 0.035
team7 entry0 X 0.750 0.416 0.936 0.105 0.970 0.056
team2 entry1 X X 0.784 0.735 0.947 0.087 0.957 0.068
team2 entry3 X X 0.771 0.354 0.947 0.087 0.941 0.090
team5 entry4 X X 0.695 0.610 0.927 0.147 0.974 0.053

SLU-based oracle [2] X 0.850 0.300 0.986 0.028 0.957 0.086

Entry Reference Description

team1 entry0 [39] Linear CRF
team3 entry0 [10] Discourse rules + dialog act bigrams
team4 entry2 [37] Recurrent neural network
team6 entry2 anon Maximum entropy Markov model, with DNN output distribution
team7 entry4 [11] System combination of a deep neural network and maximum entropy model
team8 entry1 [26] Hidden information state model + Goal change handling model + System-user action pair

weighting model
team9 entry0 anon Baseline, augmented with priors from a confusion matrix
team2 entry2 [36] Recurrent neural network
team4 entry0 [37] Recurrent neural network
team7 entry0 [11] System combination of a Deep neural network, maximum entropy model, and rules
team2 entry1 [36] Web-style ranking
team2 entry3 [36] Web-style ranking
team5 entry4 anon ASR/SLU re-ranking

Table 1: DSTC2 entries and results. References are given where teams identified their entry in a published paper. Description based on
survey collected from participants. The top performing trackers from each team are selected. The best results in each section for a given
choice of input features are made bold. Note that only results obtained during the official evaluation phase are included. The SLU-based
oracle shows the top possible performance for systems restricted to giving weight to hypotheses suggested by the SLU. For full results of
DSTC 1, 2, and 3, see the DSTC overview paper [4].



This paper has focused on task-driven slot-based dialog do-
mains, such as those featured in DSTC 1, 2, and 3. The next
instance of the DSTC will focus on state tracking in less restricted
human-human conversation [47], which will present a variety of
new issues and challenges. Solving these issues will be another step
in the direction of open domain dialog, and the ultimate goal of a
universal spoken dialog system that can converse naturally on any
subject.
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[46] N. Mrksic, D. Ó. Séaghdha, B. Thomson, M. Gasic, P. Su,
D. Vandyke, T. Wen, and S. J. Young, “Multi-domain dia-
log state tracking using recurrent neural networks,” CoRR, vol.
abs/1506.07190, 2015.

[47] S. Kim, L. F. DHaro, R. E. Banchs, J. Williams, and M. Hen-
derson, “Dialog State Tracking Challenge 4,” http://www.
colips.org/workshop/dstc4/, 2015.

http://www.colips.org/workshop/dstc4/
http://www.colips.org/workshop/dstc4/

	 Introduction
	 Problem Definition
	 Rule-based and Generative Dialog State Tracking
	 Rule-based Dialog State Tracking
	 Generative Methods

	 Machine-Learned Discriminative Dialog State Tracking
	 Static Classifiers
	 Sequence Models
	 System Combination
	 Modeling Joint Distributions
	 Unsupervized Adaptation and Generalization

	 Evaluation
	 Conclusions
	 Acknowledgements
	 References

