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ABSTRACT

This paper proposes a novel approach for directly-modeling speech
at the waveform level using a neural network. This approach uses the
neural network-based statistical parametric speech synthesis frame-
work with a specially designed output layer. As acoustic feature
extraction is integrated to acoustic model training, it can overcome
the limitations of conventional approaches, such as two-step (feature
extraction and acoustic modeling) optimization, use of spectra rather
than waveforms as targets, use of overlapping and shifting frames as
unit, and fixed decision tree structure. Experimental results show
that the proposed approach can directly maximize the likelihood de-
fined at the waveform domain.

Index Terms— Statistical parametric speech synthesis; neural
network; adaptive cepstral analysis.

1. INTRODUCTION

While training an acoustic model for statistical parametric speech
synthesis (SPSS) [1], a set of parametric representation of speech
(e.g.cepstra [2], line spectrum pairs [3], fundamental frequency, and
aperiodicity [4].) at every 5 ms is first extracted then relationships
between linguistic features associated with the speech waveform and
the extracted parameters are modeled by an acoustic model (e.g.hid-
den Markov models [5], neural networks [6]). Typically, a minimum
mean squared error (MMSE) or a maximum likelihood (ML) crite-
rion is used to estimate the model parameters [7,8].

Extracting a parametric representation of speech can also be
viewed as ML estimation of the model parameters given the wave-
form [9, 10]. Linear predictive analysis assumes that the generative
model of speech waveform is autoregressive (AR) then fit the model
to the waveform based on the ML criterion [9]. In this sense, training
of an acoustic model can be viewed as a two-step optimization: ex-
tract parametric representation of speech based on the ML criterion,
then model trajectories of the extracted parameters with an acoustic
model. Therefore, the current framework could be sub-optimal. It
is desirable to combine these two steps in a single one and jointly
optimize both feature extraction and acoustic modeling.

There are a couple of attempts to integrate feature extraction and
acoustic model training into a single framework,e.g.the log spectral
distortion-version of minimum generation error training (MGE-
LSD) [11], statistical vocoder (STAVOCO) [12], waveform-level
statistical model [13], and mel-cepstral analysis-integrated hidden
Markov models (HMMs) [14]. However, there are limitations in
these approaches, such as the use of spectra rather than waveforms,
the use of overlapping and shifting frames as unit, and fixing deci-
sion trees [15], which represent the mapping from linguistic features

to acoustic ones [16].
This paper aims to fully integrate acoustic feature extraction into

acoustic model training and overcome the limitations of the exist-
ing frameworks, using the recently proposed neural network-based
speech synthesis framework [6] with a specially designed output
layer which includes inverse filtering of the speech to define the like-
lihood at the waveform level. An efficient training algorithm based
on this framework which can run sequentially in a sample-by-sample
manner is also derived.

The rest of the paper is organized as follows. Section 2 defines
the waveform-level probability density function. Section 3 gives the
training algorithm. Preliminary experimental results are presented in
Section 4. Concluding remarks are given in the final section.

2. WAVEFORM-LEVEL DEFINITION OF PROBABILITY
DENSITY FUNCTION OF SPEECH

2.1. Cepstral representation

A discrete-time speech signalx = [x(0), x(1), . . . , x(T − 1)]⊤

corresponding to an utterance or whole speech database is assumed
to be a zero-mean stationary Gaussian process [17]. The probability
density function of a zero-mean stationary Gaussian process can be
written as1

p(x | c) = N (x;0,Σc) , (1)

where

Σc =


r(0) r(1) · · · r(T − 1)

r(1) r(0)
. . .

...
...

. . .
. . . r(1)

r(T − 1) · · · r(1) r(0)

 , (2)

r(k) =
1

2π

∫ π

−π

∣∣∣H(ejω)
∣∣∣2 ejωk dω, (3)

and
∣∣H(ejω)

∣∣2 is the power spectrum of the Gaussian process. This
paper assumes that the corresponding minimum-phase system func-
tion H(ejω) is parameterized by cepstral coefficientsc as

H(ejω) = exp

M∑
m=0

c(m) e−jωm, (4)

wherec = [c(0), c(1), c(2), . . . , c(M)]⊤.

1Although x should be an infinite sequence, it is described as a finite
sequence for notation simplicity.



By assumingx is an infinite sequence, the covariance matrixΣc

can be decomposed as follows:

Σc = HcH
⊤
c , (5)

where

Hc =


h(0) 0 · · · 0

h(1) h(0)
. . .

...
...

. . .
. . . 0

h(T − 1) · · · h(1) h(0)

 , (6)

andh(n) is the impulse response of the systemH(ejω) as

h(n) =
1

2π

∫ π

−π

H(ejω) ejωn dω. (7)

Furthermore, the inverse ofΣc can be written as

Σ−1
c = A⊤

c Ac, (8)

where

Ac =


a(0) 0 · · · 0

a(1) a(0)
. . .

...
...

. . .
. . . 0

a(T − 1) · · · a(1) a(0)

 , (9)

anda(n) is the impulse response of the inverse system given as

a(n) =
1

2π

∫ π

−π

H−1(ejω) ejωn dω, (10)

since
HcAc = I, (11)

whereI is an identity matrix.

2.2. Nonstationarity modeling

To model the nonstationary nature of the speech signal,x is assumed
to be segment-by-segment piecewise-stationary,i.e. Ac in Eq. (9) is
assumed to be

Ac =



...
...

a(i−1)(0) 0 ··· ··· ··· ··· ···
··· a(i)(1) a(i)(0) 0 ··· ··· ··· ···
··· ··· a(i)(1) a(i)(0) 0 ··· ··· ···

...
...

...
··· ··· ··· ··· a(i)(1) a(i)(0) 0 ···
··· ··· ··· ··· ··· a(i+1)(1) a(i+1)(0)

...
...



 L,

(12)
wherei is the segment index,L is the size of each segment, and
a(i)(n) is the impulse response of the inverse system ofH(i)(ejω)
represented by cepstral coefficients

c(i) =
[
c(i)(0), c(i)(1), . . . , c(i)(M)

]⊤
, (13)

as in Eq. (4) for thei-th segment. Here the logarithm of the proba-
bility density function can be written as

log p(x | c) = −T

2
log(2π) +

1

2
log

∣∣∣A⊤
c Ac

∣∣∣− 1

2
x⊤A⊤

c Acx,

(14)
where

c =
{
c(0), c(1), . . . , c(I−1)

}
, (15)

andI is the number of segments inx corresponding to an utterance
or whole speech database and thusT = L× I.

3. TRAINING ALGORITHM

3.1. Derivative of the log likelihood

With some elaboration,2 the partial derivative of Eq. (14) w.r.t.c(i)

can be derived as

∂ log p(x | c)
∂c(i)

= d(i) =
[
d(i)(0), d(i)(1), . . . , d(i)(M)

]⊤
, (16)

where

d(i)(m) =

L−1∑
k=0

e(i)(Li+ k) e(i)(Li+ k −m)− δ(m)L,

m = 0, 1, . . . ,M (17)

ande(i)(t) is the output of the inverse system ofH(i)(ejω) repre-
sented byc(i) as in Eq. (4), whose input isx, i.e.

e(i)(t) =

∞∑
n=0

a(i)(n)x(t− n),

t = Li−M, . . . , Li, . . . , Li+ L− 1 (18)

andδ(m) is the unit impulse function.

3.2. Sequential algorithm

For calculating the impulse responsea(i)(n) using a recursive for-
mula [18],O(MN) operations are required at each segmenti, even
if it is truncated with a sufficiently large number ofN . Furthermore,
for calculating Eq. (18),O(N(M + L)) operations are required for
each segmenti.

To reduce the computational burden, the following two approx-
imations are applied;

1. By assuming

e(i)(t) ≃ e(i−1)(t), t = Li−M, . . . , Li− 1 (19)

e(i)(t) can be calculated as the output of the inverse system
whose parameters change segment by segment as follows:

e(i)(t) = e(t) =
∞∑

n=0

at(n)x(t− n), (20)

where

at(n) = a(i)(n), t = Li, . . . , Li+ L− 1 (21)

2. As an approximation, inverse filtering in Eq. (20) can be
efficiently calculated by the log magnitude approximation
(LMA) filter 3 [10] whose coefficients are given by

−ct = −c(i), t = Li, . . . , Li+ L− 1 (22)

With these approximations, a simple structure for training a neu-
ral network-based acoustic model, which represents a mapping from
linguistic features to speech signals, can be derived. It can run in a

2Similar derivation can be found in Eqs. (14) and (16) in [10].
3The LMA filter is a special type of digital filter which can approximate

the system function of Eq. (4).
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Fig. 1. Block diagram of the proposed waveform-based framework (L = 1, M = 3). For notation simplicity, here acoustic model is
illustrated as a feed-forward neural network rather than LSTM-RNN.

sequential manner as shown in Fig. 1 (a). This neural network out-
puts cepstral coefficientsc given linguistic feature vector sequence4

l =
{
l(0), . . . , l(I−1)

}
, which in turn gives a probability density

function of speech signalsx, which corresponds to an utterance or
whole speech database, conditioned onl, p (x | l,M) as

p(x | l,M) = N
(
x;0,Σc(l)

)
, (23)

whereM denotes a set of network weights,c(l) is given by acti-
vations at the output layer of the network given input linguistic fea-
tures, and the RHS is given by Eq. (14). By back-propagating the
derivative of the log likelihood function through the network, the
network weights can be updated to maximize the log likelihood.

It should be noted that although the optimization problem at each
segment becomes an underdetermined problem whenL < M , it
is expected that the finite number of weights in the neural network
can work as a regularizer for the optimization problem. Thus,L =
1 (t = i, ct = c(i), lt = l(i)) is assumed in the figure and the
following discussion. As a result, the training algorithm can run
sequentially in a sample-by-sample manner, rather than conventional
frame-by-frame manner.

The structure of the training algorithm is quite similar to that in
the adaptive cepstral analysis algorithm [10]. The difference is that
the adaptive cepstral analysis algorithm updates cepstral coefficients
directly whereas the training algorithm in Fig. 1 (a) updates weights
of the neural network which predicts the cepstral coefficients.

It is also noted that the log likelihood can be calculated by

log p(x | c) = −T

2
log(2π)−

T−1∑
t=0

ct(0)−
1

2
e⊤e, (24)

wheree = [e(0), . . . , e(T − 1)]⊤ and the third term of Eq. (24)
corresponds to the sum of squares of the inverse system output.

4The definition of the linguistic feature vector used in this paper can be
found in [6] and [19].
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Fig. 2. Log likelihoods of trained LSTM-RNNs over both training
and development subsets (60,000 samples). Note that the initializa-
tion stage using the MMSE criterion was not included.

3.3. Synthesis structure

The synthesis structure is given by Fig. 1 (b). The synthesized
speech (x(t) in Fig. 1 (b)) can be generated by samplingx from
the probability density functionp(x | l,M). It can be done by ex-
citing the LMA filter using a zero-mean white Gaussian noise with
unity variance as source excitation signal (e(t) in Fig. 1 (b)). It is
possible to substitutee(t) with the excitation signal used in standard
statistical parametric speech synthesis systems, such as outputs from
pulse/noise [5] or mixed excitation generators [20].

4. EXPERIMENTS

4.1. Experimental conditions

Speech data in US English from a female professional speaker was
used for the experiments. The training and development data sets
consisted of 34,632 and 100 utterances, respectively. A speaker-
dependent unidirectional LSTM-RNN [19] was trained.
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Fig. 4. Synthesized speech spectra for a sentence “Two elect only two”. Note that spectra were sampled at every 5 ms.

From the speech data, its associated transcriptions, and automat-
ically derived phonetic alignments, sample-level linguistic features
included 535 linguistic contexts, 50 numerical features for coarse-
coded position of the current sample in the current phoneme, and
one numerical feature for duration of the current phoneme.

The speech data was downsampled from 48 kHz to 16 kHz, 24
cepstral coefficients were extracted at each sample using the adap-
tive cepstral analysis [10]. The output features of the LSTM-RNN
consisted of 24 cepstral coefficients. Both the input and output fea-
tures were normalized; the input features were normalized to have
zero-mean unit-variance, whereas the output features were normal-
ized to be within 0.01–0.99 based on their minimum and maximum
values in the training data. The architecture of the LSTM-RNN was
1 forward-directed hidden LSTM layer with 256 memory blocks.

To reduce the training time and impact of having many silences,
80% of silence regions were removed. After setting the network
weights randomly, they were first updated to minimize the mean
squared error between the extracted and predicted cepstral coeffi-
cients. Then they were used as initial values to start the proposed
training algorithm; the weights were further optimized to maximize
the waveform-level log likelihood. A distributed CPU implementa-
tion of mini-batch ASGD [21]-based back propagation through time
(BPTT) [22] algorithm was used [23].

4.2. Experimental results

First the proposed training algorithm was verified with the log likeli-
hoods. Figure 2 plots the log likelihoods of the trained LSTM-RNN
over training and development subsets against the number of train-
ing samples. Both of them consisted of 60,000 samples. It can be
seen from the figure that the log likelihoods w.r.t. the training and
development subsets improved and converged after training. The

log likelihoods w.r.t. the development subset became better than the
training one. It may be due to the use of small subsets from both
training and development sets. As discussed in [10], maximizing the
likelihood corresponds to minimizing prediction error [10]. Thus, it
is expected that the proposed training algorithm reduces the energy
of the waveform-level prediction errors.

When the neural network predicts the true cepstral coefficients,
the inverse filter outpute becomes a zero-mean white Gaussian noise
with unity variance. Figure 3 shows inverse system outputse from
the LSTM-RNNs before and after updating the weights using the
proposed training algorithm. Note that the LSTM-RNN before up-
dating was trained by the MMSE criterion using the sample-level
cepstra as targets. It can be seen from the figure that the energy of
the inverse filter outputs are reduced towards unity variance.

Figure 4 shows the predicted spectra for a sentence not included
in the training data. It can be seen from the figure that smoothly
varying speech spectra were generated. It indicates that the neu-
ral network structure could work as a regularizer and the proposed
framework could be used for text-to-speech applications.

5. CONCLUSIONS

A new neural network structure with a specially designed output
layer for directly modeling speech at the waveform level was pro-
posed and its training algorithm which can run sequentially in a
sample-by-sample manner was derived. Acoustic feature extraction
can be fully integrated into training of neural network-based acoustic
model and can remove the limitations in the conventional approaches
such as two-stage optimization and the use of overlapping frames.

Future work includes introducing a model structure for generat-
ing periodic components and evaluating the performance in practical
conditions as a text-to-speech synthesis application.
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