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Abstract---In spite of recent advances, the world wide web re-
mains an important vector for malware installation. Approaches
to evaluating potentially malicious code before execution in a
browser, such as blacklisting or content-based detection are
hindered by an attacker’s ability to easily change hosting domains
or mutate malware binaries. On the other hand, whitelist-
based approaches are challenged by the large, dynamic, and
heter ogeneous space of benign binaries that they must track. In
practice these approaches continue to provide value for popular
binaries at either extreme of maliciousness (e.g., the current large
outbreak of malware, the benign binaries shipped with an OS),
but bridging the gap between whitelist and blacklist detection
for web malware remains a significant challenge.

This paper presents CAMP, a content-agnostic malware pro-
tection system based on binary reputation that is designed to
address these shortcomings. CAMP is built into the browser and
determines the reputation of most downloads locally, relying on
server-side reputation data only when a local decision cannot be
made. This paper gives a detailed overview of CAMP and its
architecture and provides an evaluation of the system through
a six-month deployment in which 200 million users of Google
Chrome requested between eight to ten million reputation re-
quests a day. Our evaluation shows that CAM P exhibits accuracy
close to 99% relative to proprietary VM-based dynamic analysis,
is able to process requests in less than 130 ms on average, and
was able to detect approximately five million intentional malware
downloads per month that were not detected by existing solutions.

|. INTRODUCTION

is now in control of the computer and no vulnerabilities or
exploits were required for the installation [28], [12].

Traditional defense mechanisms such as Anti-Virus (AV)
products are often ineffective against current malware rdow
loads as AV engines tend to be content based and provide
an oracle to malware authors allowing them to repackage
their software until it is no longer detected [24]. Simiigrl
URL blacklists such as Google’s Safe Browsing API [16]
work well for identifying compromised web pages which tend
to be relatively static, but cannot be completely up to date
in identifying all the domains from which malware is being
distributed. The abundance of dynamic DNS providers allow
for frequent rotation of domains from which malware is being
distributed. If the domains rotate faster than the updaezval
of the malware lists, domains distributing malware are more
likely to remain undetected [3], [27].

The malware arms race has shown that neither signature
based AV engines nor malware lists are sufficient to protect
users. A whitelist based approach in which only trusted
software can be installed is more promising in that it can
completely block the installation of socially engineeredlm
ware [6], [11]. Since such malware is not on the whitelist,
installation of it will not be allowed. However, whitelisssiffer
from drawbacks, too. The sheer variety of available soféwar
and the perpetual creation of new software makes the task
of creating a whitelist that covers all benign software hear

Malware is a popular venue for monetization in the ummpossible. As a result, neither whitelist nor blacklistséd

derground economy [7]. Adversaries frequently compromisgproaches provide sufficient coverage to protect users fr
vulnerabilities in users’ machines to automatically iigt@al- malicious software in practice.
ware via so-called drive-by downloads. The action of vigjti  This paper offers a different approach in which the gap be-
a malicious web page in a vulnerable browser is sufficiehween known benign and known malicious software is bridged
for an adversary to gain complete control over the vulnerality a content-agnostic reputation-based detection apjproac
machine allowing her to install arbitrary software. Frenflyle CAMP, our detection system, consists of a client component
installed malware can cause the computer to become partboflt into Google Chrome and a server component responsible
a botnet or can exfiltrate sensitive data such as credit cdod maintaining a reputation system that predicts the ilitad
numbers to be sold in the underground economy [20]. that a downloaded binary is malicious. CAMP makes use
As browsers and plugins are becoming more secure, theGoogle’'s Safe Browsing API to detect downloads known
vulnerable user base is shrinking and drive-by downloatts be malicious. For all binaries not detected, we extract
are becoming less effective as a malware distribution vectadditional features from information available to the web
While drive-by downloads are still a popular distributioecv browser about the download and use these features to build a
tor, adversaries are increasingly turning to social ergging server-based reputation system. The reputation systeificise
for malware distribution. Fake Anti-Virus products are ond an unknown binary is malicious without prior knowledge of
such example in which the user is led to believe that theis content. We built CAMP to protect users of Google Chrome
computer has been infected and a free product to remedy fien downloading malware on Windows. Our system protects
situation is offered. Consequently, the user voluntarisyvd- over 200 million users, makes millions of reputation-based
loads and installs malware under the guise of a free securilgcisions every day, and identifies abdumillion malware
solution. The benefit to the adversary is that the malwad®wnloads every month beyond the malware warnings that



Google’s Safe Browsing APl shows for dangerous web sitesOberheide et al. [24] proposed CloudAV as a new model
CAMP achieves an accuracy close%@% relative to propri- to increase the effectiveness of Anti-Virus products. Unde
etary, VM-based dynamic analysis. this model, Anti-Virus protection is moved into the clouddan
In this paper, we provide a detailed overview of the designultiple AV engines, working in parallel, are employed to
and architecture that comprises our reputation-basedtitete improve detection rates. While combining the decision of-mu
system and evaluate its effectiveness based on data ealle¢iple AV engines leads to better detection, this approadtilis
from February to July 2012. We discuss how the systesubject to the limitations mentioned above as CloudAV also
minimizes the impact on the privacy of browser users arrdlies on timely signature updates. Furthermore, Obeehetd
evaluate its detection performance focusing especialffatse al. show that major Anti-Virus engines detect oAb#% to 70%
positives. of recent malware which means that many malware binaries
This paper makes the following contributions: remain undetected. CloudAV also requires that all binaries

« We present CAMP, a content-agnostic malware prote® uploaded to the cloud which exposes these downloads
tion system, which utilizes reputation-based detection {8 @ third-party and may constitute an unacceptable loss in
protect users from web-based malware. privacy for some users. While CAMP also moves detection

« We perform an extensive, six month evaluation of CAMB! malware into the cloud, it reduces the privacy impact by
consisting of over00 million unique users and millions €MPIoYing whitelists so that most download URLs stay within
of daily reputation evaluations. We show that our conterifle Prowser and do not need to be sent to a third party. Binary
agnostic detection approach is both accurate, with Rayloads never leave the browser. Additionally, its conten
accuracy close t69%, and well performing IoroCessingagnostic approach does not suffer from the same limitations
requests in less thar80 ms on average. as AV engine_s, e.g. delays in sig_nature updates._

. We compare CAMP with the current state of practice ) Blacklist-based protection: Blacklist-based
and demonstrate that CAMP outperforms Anti-Virus, adPProaches provide protection from malware by identifying
well as various web services, e.g. McAfee's Site Advihe Sites from which it is being served. Services such
sor, Symantec’s SafeWeb, etc. Further, CAMP identifidS Google’s Safe Browsing API [16], McAfee's Site

large numbers of malware undetected by these servid®@Visor [22] or Symantec’s Safe Web [23] detect malicious
including 5 million malware downloads per month not°" compromised web sites that may infect users with malware.

identified by Google’s Safe Browsing API. Browsers integrate with these _s_e_rvices directly or via t_ooI
. . . ars and prevent users from visiting known malicious sites.
_The remainder of t-he paper is organgd as follows. hile effective in identifying compromised web-sites whic
dlscuss_ related w_orl_< in Section 1. In Sect|on_ I, we pre;sel? nd to be long lived, blacklists face challenges when gyin
a detailed description of the system architecture and all protect against adversaries that employ highly agile

components responsible for creating the reputation syst lware distribution servers [27]. By frequently changthg

Section IV discussgs how fo leverage the reputation SySt%I ains that serve malware, blacklists become less eféecti
for malware dgtecuon. We evaluate the performance Of. t%% domains rotate faster than the time it takes to detect.them
system in Section V, and presentasmall case study,ofar.ng YCAMP offers a different approach. Instead of exporting
dynam|_c 'T‘a'Ware_ campaign. We discuss QAMPS. UNIGUE blacklist to clients, CAMP protects users by augmenting
properties in Section VI. Finally, we conclude in Section.VI blacklists and whitelists with a content-agnostic repatat
system that protects users from malicious binaries without
requiring a-priori knowledge of the binary or its serving
Protecting users from malware continues to be a challengidgmains. Specifically, the browser performs the followiog
problem. In the following, we provide an overview of differcheck the safety of a downloaded file: (1) the browser tries
ent approaches to prevent malware from infecting users awdlocally determine whether the download is malicious by
explain how CAMP differs from prior work. checking the download URL against a list of URLs known
a) Content-based detection: Anti-Virus software is one to serve malware exported to the browser using Google’s
of the most common content-based malware detection teSafeBrowsing API, (2) the browser checks locally against
niques. Usually, Anti-Virus products run on end-user gyste a dynamically updated list of trusted domains and trusted
and employ signature-based detection to identify variafts binary signers to determine whether the downloaded coigent
known malware. likely benign and, (3) for downloads that do not match any of
While Anti-Virus engines do help in protecting users fronthe local lists, the browser extracts content-agnostitufea
malware infections, several challenges limit their effemtess. from the download and sends a request to CAMP’s reputation
Malware authors have developed increasingly sophisticateervice. As a result, CAMP protects users against malicious
evasion techniques, such as packing and polymorphismgaint®wnloads that would likely have been missed by a blacklist-
at circumventing detection by AV engines [4], [30]. Addibased approach. We compare CAMP’s performance to popular
tionally, the signature generation and update cycle caasesblacklist services in Section V.
inherent delay in protecting users against new variants of CAMP and Google’'s SafeBrowsing APl complement one
malware. another. The API exports blacklists of compromised sites$ th

Il. RELATED WORK



include content from malicious sites that automaticallpleit Client API Frontend > Decision Engine
a browser with no interaction from the user. This works ' (Browsen

for protecting browsers from infected landing pages as i
are relatively static, and compromise can be observed |
automated system to build the blacklist [25]. CAMP, on }lfjs‘l‘;f:; Reputation Data

other hand, targets binaries that were downloaded by n
users from highly dynamic infrastructures.

c) Whitelist-based schemes. In contrast to blacklist Spam Filter
whitelists ensure that only known benign software cat
installed and installation of everything else is disalldwEol
example, Bit9 [6] and CoreTrace [11] maintain a list of b Labeled Data
ries verified to be benign. While whitelisting can be effee
in enterprise settings, it remains challenging to maintai
up-to-date whitelist that covers the plethora of applmad
developed globally. Therefore, protecting downloads ie
browser through whitelists alone is not currently prad: _ _ , _
Nonetheless, to protect user privacy, CAMP derives a vkt Frllg. 1. The diagram presents a high-level overview of thecten system

showing the communication between the client and server @b a8 the
from its reputation data that is used by the web bro server-side processing infrastructure.
to locally decide if a binary download should be trus
Downloads not on the whitelist require a reputation-b
decision.

d) Reputation-based detection: A lot of research he
been conducted on reputation systems [19] and how ti
them for detecting malicious activities. Hao et al. [18] -
posed SNARE, a reputation system for detecting spam
Qian et al. [26] proposed using network-based clusterir
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malware is installed in the background without knowledge
by the user. We believe that focusing on user downloads
is justified for several reasons: the security of browses h
increased significantly over the last few years [17], [49E]
and proposed exploit detection systems such as Blade [21]
. . : or Zozzle [13] offer efficient mechanisms to prevent cutren
increase the accuracy of spam-oriented blacklists. . . :

. _exploits from succeeding. As a result, automated exploiat

Notos [2] and EXPOSURE [5] offer a dynamic reputa e :

. of browsers has become more difficult and adversaries ace al
engine for DNS. Both systems use features based on P-—incorporating social engineering techniques in which siser
DNS resolution to predict the likelihood that a domain name | ownrl)oad mgalware then?selves g q
malicious. CAMP is complimentary to Notos and EXPOSUR o TR .

. e . To efficiently determine if an unknown binary download
but is specifically targeted to predict whether an unknown - : o .

. . - S malicious, CAMP is split into a client component and a
binary download is malicious. Furthermore, the use of DN ) o )
- . : s server component. The client component is integrated into a
limits a reputation system to making decisions on the granu- , .
. i web browser. As a first step, the client checks the download
larity of domain names whereas CAMP operates on all of the . ) oo :
. . X against both a local blacklist and whitelist. If no match is
features that are associated with a downloaded binary. . .
) . . ,_found, the client extracts features from the binary dowdJoa
Finally, closely related to our work, is Microsoft's

SmartScreen described briefly in a blog post [10]. Smaesier sends_these features to the_server, gnd displays a warning to
- ; users if the server response instructs it to. The serveepsss
utilizes a reputation-based approach to protect users fr

) . . iﬁ% features sent from the browser and computes a reputation
socially-engineered malware. It does so by computing eepu

tion for the download URL, the file identifier and the publés decision informed by the client request and a reputatiomimet

if available as a digital signature. Unlike CAMP, it require constructed from previous client _requests. Figure 1 shpws a
that all download URLS are sent to a remote server. In cantras.c v o O.f the compl_ete dete_ct|on system. We will discuss
to SmartScreen, CAMP computes its reputation based on mén'y detail in the following sections.
other features available to the browser, such as referrérsUR A Binary Analysis
IP addresses, etc. In addition, this paper provides inkdept
technical details of CAMP’s reputation system and evakiate Many machine learning algorithms require labeled ground
its performance in an operational setting. truth for training purposes. Our situation is similar in tthae
need to label our reputation data according to the nature of
the binary, e.g. whether it is malicious or benign. We suppor
In the following, we provide an overview of CAMP’s designmultiple dimensions for the labels so other classificaiench
and architecture. Our goal is to create a system that scadesspyware are possible, too. Similarly, the type of binary is its
to hundreds of millions of users and protects them fromwn dimension, e.g. Windows PEbins are treated differently
downloading malware while at the same time limiting thtom Mac OS X DMG files. However, for any binary type,
impact on their privacy. Our focus is specifically on bimeri a corresponding classification system needs to be avaitabl

downloaded by users rather than drive-by downloads in whighovide accurate labels.

Ill. SYSTEM ARCHITECTURE



In this paper, we make use of a binary analysis systgmnovide as many features as are available to it. The follgwin
that we developed independently to classify binaries basedis a list of features usually available to web browsers:
static features as well as dynamic execution traces. The mai, The final download URL and IP address corresponding
goal of this system is to limit the number of false positives {5 the server hosting the download.
and we consciously sacrifice detection in favor of feweséal , Any referrer URL and corresponding IP address encoun-

positives. _ _ tered when initiating the download, e.g. the results of
The labels produced by the binary analysis system form the multiple HTTP redirects.

ground truth that governs the training of the reputationesys  , The sjze of the download as well as content hashes, e.g.
The labels also allow us to compute detection performance of gya-256.

the reputation system post facto. We measure this as part of The signature attached to the download which includes

our evaluation in Section V. _ the signer as well any certificate chain leading to it. The
It is important to note that our reputation system does not client also informs the server if it could successfully
require a particular binary classification solution andhest verify the signature and if it trusted the signature, e.g.

detection approaches [9], [33] or labeling solely basedhen t it was rooted in a trusted certificate authority.

output of AV engines should also be possible. Of course, theThe client then sends these features to the server and awaits
overall accuracy of the system would be dependent on the

accuracy of the underlying labeling mechanism. ItS response. The server may reply with several different

Binary analysis systems are not perfect and are suscepti‘ﬁféd'(:tsthbase% gn the rfﬁ uttetlﬂon ddate} a\(/ja!IabIe dt'otlta ltt Ct? n
to evasion [15], [31]. Since CAMP is a reputation syste orm the web browser that Ine downioad 1S predicted 1o be

that requires a reasonable estimate of ground truth, a enignin which case the web browser completes the download

in labeling might propagate to CAMP’s decisions. HoweveWithOUt displaying a warning, or it can tell the web browser

since CAMP is independent of the classification mechanismat the download is either deemesilicious (Figure 2) or

any advances to dynamic analysis or Anti-Virus products lelriknown (Flgurt?] 3)- In BOtht tﬁf ghe I?tte(; caje]scf, th(:o;jve|b ¢
seamlessly improve CAMP’s performance. Nonetheless, gwserwarns the user about the downioad and ofiers cle

show in Section V-B that our binary analysis system exhibi{ € dowrlloaded file. The_mr_1known verd_lct |_nd|cates_ that the
server did not have sufficient reputation information tbdb

reasonable accuracy. . : o .
the download as eithdoenign or malicious. Our evaluation

B. Client shows that in the majority of all casasknown by itself

When a user initiates a binary download in her web browsé,900d a predictor for malicious downloads. The different
the web browser applies several checks before asking flg@utation verdicts are explained in more detail in Secfibn
server for a reputation decision. If any of these checks fail User privacy is an important goal for CAMP. Verifying the

the client makes a local decision on whether the downloadGgntent type of the file and that it neither matches blatklis
malicious or not. nor whitelists drastically limits the number of downloads f

1) The web browser determines if the binary is alrea ich a remote server is contacted. As shovyn in Section JII-D
known to be malicious based on its URL, for exampldN® web browser contacts the CAMP service for only about
via a list of known malware sites. In our case, we use) % of binary downloads. Furthermore, the web browser sends
Google’s Safe Browsing API to make that determinatioRN!Y features computed from the binary, not the binary fifsel
If the binary is known to be malicious, the browser caff the server.
display a warning directly without requiring a reputation
decision. C.

2) The browser determines if the binary download could The server pipeline has two different roles when processing
potentially be harmful to the computer, e.g. it mightequests. First, the server receives the client request and
correspond to an executable which may carry maliciowenders a reputation verdict based on its reputation system
code, or a DMG which is how Mac OS X software isvhich encompasses aggregate information from all dowisload
installed. observed by the server during its measurement intervals,

3) The binary download is checked against a dynamicaliycluding e.g.1 day, 7 day and90 day intervals. Second, the
updated whitelist of trusted domains and trusted binagerver uses the information provided by the client to update
signers. The list of trusted domains or trusted signirigs reputation data.
certificates consists of reputable software publishers The reputation verdict is computed by a reputation metric
known for not distributing malware. If the binary down<calculated by a binary circuit that has access to all feature
load matches the whitelist, the browser assumes thgdm the client request and any reputation data that is ref-
the download is benign and no server-side reputati@imenced by those features, e.g. how many known benign or
decision is required. malicious binaries are hosted on a given IP address, etc.

If all the above checks do not result in a local decision, the To incorporate information provided by the clients into

browser extracts features from the downloaded binary.e&Sinthe reputation system, client requests are first despanimed
the reputation decision is made on the server, the client gamevent misbehaving clients from unduly influencing théada

ver



- unknown.exe is not commonl -
e content.exe appears malicious. T Y
downloaded and could be dangerous.

Fig. 2. The browser warns the user that the download is noaliciThe Fig. 3. The browser warns the user that the download is notoamly
intentionally discrete arrow presents an option to keepfithe downloaded.

Despammed requests are then processed within a few minutigsinish its trust.

to generate up-to-date features. As CAMP is deployed to a large number of users, many
To create a classification system that has both high pef-the design decisions in building the system are in favor

formance and high reliability, we employ BigTable [8] andf reducing false positives. However, the performance ef th

MapReduce [14] for distributed data storage and paralledputation system can be adjusted gradually to favor recall

processing. In the following, we provide a detailed ovemwieover precision.

of each component involved in making reputation decisions. We provide a detailed discussion of CAMP’s reputation-
1) Reputation System: The heart of the decision process ibased detection in the next section but give an overview

the reputation system. To better understand its propesies here of the reputation system itself. The reputation system

place it within the analysis framework proposed by Hoffmal$ responsible for receiving a browser reputation request a

et al. [19]. According to Hoffman a reputation system can Bé€plying to it with a verdict.

characterized across the following three dimensions: For each client request, the reputation system can make a

« Formulation, which represents the mathematical underptljne-CISIon based on a-priori information if either the URL loe t

nings of the reputation metric as well as its informatioﬁon.tem hash is !(_nown to be mahqous. Similarly, to resptnd
major false positives, the reputation system consults eeser

sources. : o . . .
o Calculation, which is the concrete implementation of th%.\Ide whitelist t_o overm.je.any reputation deC|§|on. -
formulation. The reputation metric is calculated by a binary circuit that

« Dissemination, which characterizes how the results froﬁferences reputation data in form of previously computed

: . - aggregates. The features from the client request and the
the reputation metric are propagated to participants. . . . :
reputation formulation determine which aggregates arkddo

In our case, both the calculation and dissemination afig from the data store. The reputation system then computes
centralized and deterministic. The storage of reputatiata d 5 yergdict which can be either: benign, malicious or unknown;

is transient as each item expires afirof days. see Section IV for a discussion of the different meaninge Th
_ In the following, we explain the formulation of the reputagata store lookups happen in parallel and are non-blocking t
tion system in more details. reduce overall latency. The time spent computing the d&tisi

Our reputation data is based solely on direct, automati@m the aggregates is insignificant compared to the time it
sources. The output of the binary analysis pipeline is a@drls tgkes to look up data from the data store.
automatic source. Data collected and sent by web browser®) Frontend and Data Sorage: The frontend is responsible
is also a direct, automatic source but may be untrustesk receiving requests from web browsers and answering them
The reputation data consists of features across a varietywathout incurring any significant latency. To achieve low
dimensions that each describe some aspect of the binaryi@éncy, we split the reputation metric computation and the
its hosting infrastructure. As mentioned in Section lllBr integration of new data into the reputation system into sapa
each binary download, we receive not only a content-hash lygimponents. Upon receiving a request, the frontend issues a
also related information such as corresponding URLs and fmote Procedure Call (RPC) to the reputation system, which
addresses of the servers hosting them, etc. The server rdgsermines whether the binary download is malicious. After
derive further features from the client request. receiving an answer, the frontend writes the request and the

The reputation data maps each feature t@garegate that verdict to a data store that other components of the pipeline
contains measurements over data observed during a givam process, and then returns the verdict to the client.
time frame. Aggregates are continuous features and consishs CAMP needs to handle a large number of web browser
of two counts: the number of interesting observations aed trequests, the temporary storage of request data requires a
total number of observations. For example, assume CAMfrefully chosen storage layout. We use BigTable [8], a non-
observed10 downloads,6 of which were malicious, on IP relational distributed database that provides key-vatoees
addressIP,. The aggregate corresponding to the featuwnd allows the association of a timestamp with a given key.
IP:IP, would then be{6, 10}. Each aggregate also containgVhile Bigtable scales well, it is limited to approximatel®B
the first and last time the particular feature was seen. of data per key. For subsequent data processing it is helpful

The aggregates include both positive as well as negatitee index requests by the URL of the binary. However, as
events, i.e. they can be both trust building and trust dishini we store each request for two weeks and some URLs are
ing. For example, the number of users downloading a binamguested frequently, on the order of hundreds of thousands
from a site may represent an increase in trust. On the otliienes a day, we chose not to index solely by URL. Instead, we
hand, the number of malicious binaries hosted on a site maypend the Reverse-Ordered hexadecimal string repréisanta



of the timestamp of the request to the URL. This causes the a malicious reputation decision as well as the number

data to be placed in different rows while maintaining ideailti of requests for binaries known a priori to be malicious,
ordering compared to indexing by URL. This design decision either based on their URL or corresponding content
was crucial in scaling CAMP to handle popular URLSs. hash. For the aggregates from the binary analysis system,

3) Spam Filtering: The spam filter processes the data writ-  this contains the number of URLs hosting malicious
ten by the frontends in real time and discards requests that d downloads as well as the number of malicious content
not originate from regular users. We do not require the spam hashes.
filter to be highly accurate and false positives are act®eta For example, the aggregate for
The spam filter may make use of any information provided client]|site:foo.conreputation

in the client request and has visibility into all client rests represents the total number of client requests for the site
made within the lasi4 hours. As a result, the spam filter carfgp.com as well as the number of client requests for the same

apply velocity controls on the user IP address of the requesite that received a malicious reputation decision. Anothe
the Autonomous System Number (ASN) corresponding to th&ample is

IP address, etc. The spam filter also ensures that requests a anal ysi s| site: foo.conmurls

properly formed and contain all required features, e.gp@ry  which contains the total number of URLS found uném.com
formatted URLs, etc. as well as the number of such URLs that were labeled
Requests not discarded by the spam filter are forwardgghlicious by the binary analysis system.
to an aggregator that computes aggregate features used by construct these aggregates, the despamming component
the reputation system. The output of the spam filter is al§@ites client requests to a temporary data store which is
employed to fetch binaries from the web that have not be@{jexed by the second aggregator index dimension. Then a
analyzed by the binary classifier. Since binary downloady mseries of MapReduces [14] periodically processes all @tri
carry sensitive information, we apply further filters s@th iy the data store. This process merges new data with older
only binaries that exhibit sufficient diversity of conteate zggregates to generate aggregates over different timeatge
considered for analysis. The binary analysis does not gafgrently 1 day, 7 days, 14 days, 28 days and 98 days. All

any reputation decision and may complete a long time afteggregates computed this way are available to the repatatio
reputation decision was sent back to the web browser.  gystem.

As stated previously, our goal is not only to make highly
accurate decisions but also to reduce the impact on theqyriv&- Client-side Whitelist
of web users as much as possible. The requests received frol@AMP reduces the privacy impact on its users in several
web browsers reveal not only the binary URL visited by a usélifferent ways. Since the detection is content-agnostieh w
but by their very nature also a corresponding source IP addrérowsers do not need to send binary payloads to CAMP’s
The data processing architecture of the reputation syssemsérvers. As users download binaries that potentially ¢onta
designed so that the source IP address is visible only to #nsitive information, any solution that requires trarssioin
spam filter and completely deleted after two weeks. Therpinaof payload data is likely to face privacy challenges.
URL is visible to rest of the pipeline, but is stored in such Another way in which CAMP reduces the privacy impact
a way that it also is automatically deleted after two weeks. by client-side whitelists that determine which binara@s
The only information that is stored for up 8 days are the trusted in advance. If a binary is trusted, CAMP does not need
aggregates that make up the reputation data. to send the binary URL to a remote server. The whitelists
4) Aggregator: The basis of the reputation system igontain trusted domains such ascrosoft.com as well as
formed by the reputation data which consists of statisticelisted software publishers. A software publisher is iifieot
aggregates indexed by keys derived from request featuigsthe public key of the signing certificate and the CA certi-
Aggregates are computed and written by the aggregatorfwhiging it. The goal of the whitelists is to resolve the majgprit
processes the output of the despammer and organizes agsfredl downloads locally without requiring a reputationsiea
gates according to a three-dimensional index. decision. At the time of this writing, approximatelp% of all
o The first index dimension is defined by whether thelownloads are considered benign due to policy or matching
aggregate is computed from client requests or based dient-side whitelists.
aggregates from the binary analysis system. Aggregates-or a domain or signer to be added to the whitelist, it needs
computed from client requests are considered untrustedfulfill the following criterion. CAMP needs to have sedret
whereas aggregates from the binary analysis system hiearies from the domain or signer for at le88tdays without
inherently trusted. encountering any signs of maliciousness. We add new domains
o The second index dimension consists of features froom signers to the whitelist in the order in which they coniti
client requests and additional features derived from the the number of requests received by CAMP over that time
request on the server side. period.
« The third index dimension contains broad categories overSince adding a domain or signer to the whitelist implies
which aggregates are computed. For client side aggtieat the CAMP server no longer receives any downloads for it,
gates, this contains the number of requests that receiweel employ a web crawl to regularly analyze binaries hosted



os ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ determine with a high degree of confidence whether a binary
is benign or not.

Binaries hosted on the web fall within a wide spectrum rang-
ing from known-benign to known-malicious. Known-benign
binaries can be added to a whitelist and known-malicious
binaries to a blacklist. In an ideal situation, any binary is
either known to be good or known to be bad. The reputation
system described here is concerned with the gray area hetwee
whitelists and blacklists.

For CAMP, we attempt to create a whitelist that covers the
: majority of benign binaries and subject anything not coglere
os | 1 by it to a reputation decision. In the following, we explain
P — how to classify a binary using reputation data.

L L L L L L L
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A. Feature Extraction

Fig. 4. The graph shows the percentage of downloads for waiskeb  For each feature in the client request, the reputation syste
brow;er woulq make a_lo_cal reputation decision dependinghersize of the derives features that form the indices for aggregate Ioskup
domain and signer whitelist.

The aggregates contain statistics about the total number of

times a feature occurred and how many times it occurred in

a malicious context. Each feature type has a different set of
on the trusted domains or signed by trusted signers. If thgrived features.
binary analysis reveals evidence of malicious behavice, th o |p addresses, the features are the IP address itself, the
corr_esponpling entries are removed from_the whitelist aed orresponding'24 netblock, as well as the correspondifits
again subject to reputation-based detection. netblock. The rationale for using netblocks is that seniig

Figure 4 shows the number of downloads that a wefjdress frequently change, e.g. due to load-balancingeotadu

browser would handle locally when adding more trusted sitggversaries switching IP addresses to avoid IP-basedibtpck
to the domain or the signer whitelist. We estimated theg®), netblocks that are used predominantly for serving mali-
values by considering all reputation requests that we vedei cjous content, the likelihood that a yet unknown IP addrass i
then iteratively adding the most popular trusted signers aghat netblock is also serving malicious content is ofterhaig
domains to our whitelist and tracking which requests would caAmMP also uses URL-based features. The reputation re-
have been handled locally by the browser. The graph does gakst from the client contains the URL pointing directly to
contain measurements for whitelists smaller than ourahitiype binary download as well as any URL encountered by the
whitelists as CAMP does not have any knowledge aboyy prowser when following redirects to the binary. For each
requests correqunding to them. Our initigl domain whsteliyg| the reputation system extracts the host, the domaih, an
contained243 entries and matched approximately’ of all  he site. The domain and site are usually identical, buediff
download requests remaining after policy checks. The gragi} dynamic DNS providers where the site is the same as the
shows that by increasing the domain whitelistlt0 entries  post name. The goal of using the site and domain as a feature
the local percentage of downloads not requiring a request;{oy, track potential ownership of resources hosted on them.
CAMP would increase ta3%. The signer whitelist is more o the signature-based features, we extract the signer

effective as increasing it t@a000 entries would cover about key and the corresponding CA certifying the key for each

85% of downloads locally. certificate chain encountered in the binary signature. We a
keep track if the signature was trusted on the client, e.g.
IV. REPUTATION SYSTEM the client had a trusted CA that was the root of one of the

The goal of our reputation system is to determine a-priori ffertificate chains.
a binary is likely going to be malicious or not without having S°me of the client features such as the content hash are
access to the content of the binary itself. Instead, meaad4g€d directly in subsequent aggregate lookups.
about the binary such, as its hosting infrastructure and how )
the user reached it, form the basis for detection. B. Aggregate Computation

One of the challenges with detecting malware is the easeThe aggregation step discussed in Section IlI-C4 computes
with which malware authors can change their binaries, eaggregates for all possible dimensions based on clienirest
by repacking, and how quickly they can change the locatioasd features derived on the server. However, not all of these
from which binaries are being served. On the other harafgregates are consulted when making a reputation decision
there is no need to frequently change the hosting location\Which aggregates are consulted for rendering a reputation
benign binaries or the binaries themselves. Differencel as verdict depends on the configuration of the reputationesyst
these may be leveraged to create a reputation metric that dascribed below.



Request Aggregate Index 1 day 7 day 28 day

URL http://a.foo.com/|| analysis—host:a.foo.com—urls 0/1 1/10 3/100
analysis—domain:foo.com—urls 0/2 1/20 7/200
analysis—site:foo.com—digests 3/22 4/25 11/153
client—site:foo.com—requests 10/20 20/50 123/2200

1P 10.0.0.1 analysis—ip:10.0.0.1—urls 0/1 0/1 0/1
analysis—ip:10.0.0.1—digests 0/1 0/1 0/1
client—ip:10.0.0.1—requests 1183/1208| 9801/11327| 33555/37455
analysis—ip24:10.0.0.1/24—urls 2/112 5/237 6/238
analysis—ip16:10.0.0.1/16—digesis  0/3 0/5 0/5
client—ip24:10.0.0.1/24—requests 1313/2571| 9912/32227| 34127/43119

TABLE |

THIS TABLE SHOWS HOW REQUEST FEATURES RELATE TO DIFFERENT INDES AND CORRESPONDING REPUTATION AGGREGATES-OR BREVITY, NOT
ALL CLIENT FEATURES NOR ALL DERIVED FEATURES ARE SHOWN HERE

Table | provides an example of how client features suc ‘
as an IP address or URL are turned into indices for lookir
up aggregates. The counts associated with each index mea:
how often the index was encountered either in client regue:
or by the binary analysis pipeline. The first value counts tt
number of malicious verdicts and the second value counts 1

/) /“

/ \
. \ / \ \
total number of occurrences. For example, the index , e TEmeT R ——
. B " , URL || URL // ng Ping URL || URL |/ \ ng Ping
anal ysi s| domai n: "foo. cont'| url's / ' \
measures how many different URLs under the donfiaarcom
were analyzed by the binary analysis system and how oft Site Agaregates P Agaregates Unknown Agaregates

they were labeled malicious, i.e. for the 7-day time perio
the analyzer checke?0 URLs from foo.com and found one Fig. 5. This figure shows a depth-2 boolean circuit for dfggsy a binary
of them malicious. based on boolean inputs computed from the aggregates otitatiem request
. . . (“Ping™).
An example for a client aggregate is the index
client|ip24:10.0.0.1/24|requests

which measures how many client requests for the netblock
10.0.0.1/24 were received by CAMP during the specified timéoolean circuit and the thresholds for each aggregate.eThes
period. For the last 24 hours, CAMP receivedl71 requests thresholds are determined via a training phase discussew .be
total and used reputation to labE}13 of them as malicious. Logically, the boolean circuit can be separated into three

As the binary analysis system provides us with ground trughfferent parts: the site aggregates, the IP aggregateshend
for client requests for which the payload is known to us, wénknown aggregates.
make decisions based on the direct and derived features akor the IP and site aggregates, we use two different func-
well as their corresponding aggregates. We explain how ttiens to map an aggregate to a boolean value. The threshold

decision is calculated in the next section. function is defined asf(p,n,t) := £ > ¢ and the count
function is defined asf(p,n,t) := n > t wherep is the
C. Reputation Decision number of positive samples in the aggregateis the total

The aggregates computed for each reputation request &%r_nber of samples and is the threshold provided by the

vide a large number of continuously valued features swétab (_)rdhel. bool derived f th K i
for many types of machine learning. One drawback of em- € booleans derived Irom thé unknown aggregates are

ploying machine learning is that the trained models arenoft ore complex. The goal of the unknown _aggregates IS o flag
inaries for which we do not have sufficient reputation to

large and difficult to understand by humans. As any detacti . ) . .
mechanism is going to produce false positives, we favor %bel them benign. The input is formed by the following three

classifier that allows human inspection and reasoning Bb(ﬂ?gated booleans:

false positives. To achieve this, we employ a depth-2 baolea 1) The boolean is true if the binary analysis pipeline has
circuit with a small number of boolean inputs. Figure 5 shows  already analyzed the binary based on the content hash.
the boolean circuit and its inputs as used in CAMP. Its 2) The boolean is true if the binary was signed and the

structure is Simp|e as it contains OTAWD gates at depth 1 and client could trace the certificate chain to a trusted CA

one OR gate at depth 2. Each individuAND gate represents root.

a single detection rule. In the following, we uadD gate and ~ 3) The boolean is true if the binary is popular because a
rule synonymously. large number of users downloaded either the digest itself

Aggregates are mapped to boolean inputs via simple thresh- OF other binaries from the same hosting site.
old functions. The reputation metric is calculated from a As aresult, a binary is labeled unknown by the binary circuit



if CAMP has never seen it before and the binary is not signé8ection I1I-C4). The despammer runs continuously, reqgir

by a trusted signer and not from a popular download sife25 cores and 25 GB RAM. The valid requests that the

The parameters are thresholds on the number of downloaldspammer outputs are processed by an indexer in the aggre-

required before the binary or the site is considered populamgation pipeline, which writes data to a temporary BigTal@le [
The reputation system is configured by choosing thresholfts aggregation by a series of MapReduces [14]. The indexer

according to the precision and recall for ea8ND gate. uses 2 cores and 8 GB RAM. The aggregation MapReduces

Precision and recall are determined from a labeled trainingn periodically throughout the day. Each run finishes in

set. The training set is created by matching the content hagiproximately one hour and uses 90 cores and 120 GB

included in reputation requests from web browsers with tHRAM. The MapReduces produce a model that is comprised of

content hash from the binary analysis system. The binaapproximately 4.75 billion aggregates requiring appraiely

analysis system provides the label, e.g. benign or makgioi.4 TB of BigTable storage. This model is replicated to

and the reputation request provides the features. Thartgainlocations near each of CAMP’s frontends.

set consists oft, 000 benign requests antl, 000 malicious The above metrics do not include resources for running our

requests. binary analysis pipeline, or the CPU and memory resources
Figure 6 shows the precision and recall for site aggregatesjuired by BigTable.

that result from changing the thresholds for the aggregate

mapping functions. We see that achieving a precision larg@r Accuracy of Binary Analysis

thar_10.95 results in recall Of_ I(_ass thal.2. Before we evaluate CAMP’s accuracy relative to our base-
Figure 7 ShOW_S the precision and recall for IP aggre_gatﬁ-ﬁe proprietary VM-based dynamic analysis frameworksit i

We see that achieving a precision larger ties6 results in important to understand the accuracy of that framework. To

recall of I(.ESS tharﬁ).1_5 . do so, we compared the framework against the AV scanners
We omit the precision and recall for the unknown rule %?rovided by VirusTotal [1].

they are very similar to the previous two graphs. As can €\We selected a sample aR00 binaries that our dynamic

seen from .the.se graphs, a high p_re_cision leads to IOW. rec:fwalysis framework processed on a single day, but were not
when considering eachND gate individually. Our evaluation known to VirusTotal. Of thesd,100 were labeled clean by our

in Section V shows that the combination of AND gates, that dynamic analysis framework, aind00 were labeled malicious.

s the complete boolean cireuit, leads to acceptable detBCtWe submitted each of the binaries to VirusTotal, and waited
results with very low false positive rates.

10 days, to allow AV engines to catch up. We then consulted
V. EVALUATION VirusTotal for each of th&200 binaries to see how many AV
e engines agreed with our initial analysis.
For CAMP’s initial deployment, we used Google Chrome After 10 days,99% of the binaries that were flagged as

and targeted Windows executables, e.g. PEbins, MSI-fles, lici b f K f d
The following evaluation measures the performance of caMpBaclous by our framework were ragge l‘m% or more
of AV engines on VirusTotal. Onlyi2% of the binaries that

in that context. We evaluate resource requirements, amur_\f;\ve ﬂagged as clean were also flaggedzo)% or more of the

of the baseline dynamic analysis framework, and the p&tisi - X
i . . AV engines. Of these false negatives, a large percentage are
of the reputation system. We also provide a comparison to . ; . .
. . classified as AdWare, which our system intentionally doas n
other common malware prevention solutions and a case stu iy
. . o ect.

of a campaign that CAMP identified. . . . .

These results indicate that, by design, our dynamic arsalysi
A. Server-Side Resource Requirements framework has a very high true positive rate, but does suffer
%éoAm some false negatives. As we improve this framework,

Here we briefly overview CAMP’s operational performanc . .
y b P MP’s detection rates should improve as well.

and resource requirements. To service 200 million Goog
Chrome users, CAMP frontends and reputation RPC serv sAccurac of CAMP
(Section 11I-C2) use approximately 4 cores and 9 GB RAM”™ Y

globally to serve on average 190 QPS. Most of these resource$he evaluation is based on data collected between February
are reserved for geographic distribution and load balayci2012 to July 2012 from our production deployment of CAMP.
and we have load-tested CAMP frontends at 400 QPS usibgring that time frame, CAMP was used by approximately
1 core and 3 GB RAM. The median latency 187 ms and 200 million users. Each day, it received betwegmillion to

the 90th percentile is313 ms. As many binary downloads10 million reputation requests and labeled approximaggl§y

take much longer time, on the order of seconds, requestitag300 thousand download requests as malicious; During our
a CAMP verdict does not significantly add to the downloadvaluation, the reputation database kept track of apprabeiy
latency observed by users. 3.2 billion aggregates.

Download requests can be processed with minimal overhead’o get a better understanding of how well the reputation
since CAMP leverages preprocessing to build models thaetric works in practice, we measured the true positive),(tpr
are amenable to fast lookup. This is a multi-stage procefase positive (fpr), true negative (tnr) and false negatiates
encompassing despamming (Section [lI-C3) and aggregatidm) of the reputation requests received by CAMP. The rates
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Fig. 6. The figure shows precision and recall for site aggteg for Fig. 7. The figure shows precision and recall for IP aggreg&r different
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Fig. 8. The figure shows the accuracy of the reputation-dbasassifier Fig. 9. The figure shows the false positive rate of the regnriebased

as determined post-facto from the production deploymer@AmMP. classifier as determined post-facto from the productiopl@enent of
CAMP.
are defined as follows; tpe= i fpr:= rme = @i IS optimized to minimize false p05|t|vgs.
and fnr:= 0. At the end of the measurement period, the overall accuracy
tp-+fn , - tp+tn
The labels to compute the rates are taken from the bingly CAMP was 98.6%. We compute this ag == The

analysis system for binaries that could be matched to rél@minating factor in overall accuracy comes from our tcaffi
utation requests. See Section V-B for an evaluation of tigéstribution; the majority of requests are for benign biear
accuracy of the labels. The results are shown in Figurea®d our system exhibits low false positive rates. As witsdal
During the measurement period, the true negative rate wegsitive and true negative rates, accuracy increasesefurth
greater or equal t68% and the false positive rate was arounsvhen taking the client-side whitelists into account.
1% for most of the measurement period but for three occasionsn June 2012, the true positive rate was aroafél, and
where it increased to arouritfs. the false negative rate arousd%. CAMP’s ability to detect

A more detailed graph of the false positive rate is showi% of recent malware without access to the content of the
in Figure 9. We see that the false positive rate was notigealbinary validates the reputation-based detection approah
lower than2% for most of the measurement period. Wheiprovide a more detailed comparison between CAMP and AV
taking into account that the web browser makes local repuggines in Section V-D.
tion decisions for about0% of downloads, the effective true In designing CAMP, our main consideration was avoid-
negative rate increases frod% to 99.5% and the effective ing false positives and as such the binary analysis pipeline
false positive rate decreases fraft to 0.6%. While false frequently prefers false negatives over false positiveschivh
positives are inherent to our content-agnostic approach, dvas a negative impact on all measurements presented here,
criteria for choosing CAMP’s reputation algorithm paraerst e.g. a false negative in the binary analysis pipeline could
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Fig. 10. The graph shows the stacked contribution to detedti cases Fig. 11. The graph shows the number of client requests quneling to
where a singleAND gate or rule is responsible for labeling a download adinaries labeled as malware by the binary classifier. b alsows requests
malicious or unknown. It also shows the number of cases irchviriultiple  to malware were the binary was signed.

rules flagged the binary download.

result in an incorrect false positive for the reputatiosdzh day,74% no longer appeared in our requests the next day. This
classifier. Specifically, when CAMP detects a malware binapercentage increased &% over 10 days. We hypothesize
correctly, but the binary analysis system has a false negatithat this is because such sites are malicious and rotate to
our evaluation will count this as a false positive for CAMP.avoid blacklists. This corroborates previous findings #axial

As discussed in the previous section, each individAdD engineering domains rotate quickly to avoid blacklists][27
gate achieves only low recall. Our hypothesis was that dif02% of the sites transitioned from unknown to bad over the
ferent AND gates would combine to increase the overalld day period8% transitioned to unknown to clean, and the
performance of the classifier. To measure this assumptien, remaining stayed in the unknown state. We manually analyzed
plot how often anAND gate is responsible for detection bythe top sites that transitioned to clean, and found that simo
itself and how often multiplAND gates detect bad content siall of them were indeed hosting dangerous downloads, and
multaneously. The results are shown in Figure 10 as a staclted clean classification was a false negative of our dynamic
graph. The graph has two interesting features. The majorégalysis framework. Based on these results, we believe that
of detections are due to a single rule, i.e. each individutle unknown verdict is actually a very strong indicator that
rule contributes to the overall detection. The other irging binary is actually malicious.
observation is that the detection of unknown binaries actsou :

S . L . - D. Comparison to other systems

for a significant fraction of malicious verdicts. We show in ] _ ) )
the case study below how adversaries frequently rotate the!© determine if CAMP provides benefits beyond that
domains from which they are serving malware and thus newdPvided by other malware detection systems, we conducted
build up any reputation. The drop in the detection of unknow/© different measurements in which we compared reputation
binaries around March 24th is due to a change in data form&8gg€isions from CAMP to results from Anti-Virus engines as
that resulted in dropping the contributions of the unknoule r Well as web-based malware services.
from the graph. Over a pe.r|od. of two weeks we collected a rlandom sample

The rule for labeling binaries as unknown requires th& 10,000 binaries that were labeled as benign by CAMP
a binary is not signed by a trusted signer. To understafld Well as approximatel, 400 binaries that were labeled
how often malicious binaries with trusted signatures ogour @ malicious by CAMP. To avoid bias in binary selection,
our analysis, we extracted the signature state from bisarf@" €xa@mple due to popular download sites which might be
we analyzed from client requests post-facto. As shown fYEr represented in a completely random sample, we sampled

Figure 11, the majority of requests to malware are for ureziignby site rather than by i_ndividual binaries. We compared the
binaries. That makes a trusted signature a good predictor ggsults from CAMP against the results from four different AV
the likelihood that a binary is benign. engines that scanned the binaries on the same day as CAMP

We also wanted to understand how often a binary that made its reputation decision. We conducted the AV scans on
labeled as unknown transitions to clean or to maliciousr af'® sahme day to .approxma:]e .thde pelrfordmam;]e users might
it has been evaluated by our dynamic analysis pipeline. £6€ When AV engines scan their downloads. The AV.englnes
do so, we analyzed requests from clients post-facto, for'd N @ sandboxed environment, and were not permitted any

pe”Od Of_ 10_ days n Novembe'_’ .2012' Of all the sites th_atlDue to licensing restrictions, we cannot disclose the $ipe&V engines
served binaries that were classified as unknown on the fitgt used in our measurements.



e TR <o A N NS RO A N sae - results are shown in Figure 13 and 14.

The URL classification services mostly agreed with CAMP
when presented with the set of clean URLs. TrendMicro
flagged about3.5% as malicious, Symantec abot:% and
Site Advisor aboutl.5%. Furthermore, many of the benign
60 URLs were unknown to these three services. For example,
TrendMicro did not know oveb5% of the URLs. Neither the
Malware Domain List nor Safe Browsing flagged any of the
URLs are malicious.

The URL classification services mostly disagreed with
2 CAMP when presented with the set of malicious URLs. Trend-
Micro identified aboutl 1% as malicious, Safe Browsing about
8.5%, Symantec abowt% and Site Advisor abou2.5%. The
0 %, ", 7, s, % Malware Domain List did not flag any of them as malicious.

" i However, as with the benign URLs, many of the malicious
Fig. 12. The graph shows the results from AV engines for hisalagged URLS were not known to the web services. For example,
as malicious by CAMP. TrendMicro did not know65% of the URLs that CAMP found
to be malicious.
Google Chrome asks for a reputation decision only if a

) URL is not known by the Safe Browsing API. Therefore, it is
network access. Thus any cloud-based reputation data that gg y g

80

40

% of binaries scanned

. i ! t surprising that many of URLs CAMP considers malicious
have been provided by the AV companies was unavaila P g 4

© the AV . H ivel dated A re not in the Safe Browsing list. Moreover, the Safe Brows-
0 the engines. However, we proaclively update ng list primarily targets drive-by downloads, not intental

signatures every tVYO hours to ensure freshness. user installs. Although, the Malware Domain list did nourat

For the 10,000 binaries that CAMP labeled as clean, the,y getections, we included it in our measurements as it is
maximum number of binaries labeled as malicious by a singig.quently used as a base of comparison by other work in this
AV engine was onl\83. Only 16 binaries were flagged as Magpace.
licious by two or more AV engines. This implies that CAMP " thg regylts for the other web services seem to confirm our
has a very high True Negative rate relative to commercig|,spicion that blacklist based approaches are not as igéfect
Anti-Virus products. in the current environment of frequently changing malware

On the other hand, the majority of binaries that CAMP Igfistribution domains. The majority of URLs identified as
beled as malicious were classified as benign by the AV esgin@alicious by CAMP are not known to be bad by any web
(see Figure 12). The AV engine that agreed the most wisrvice. On the other hand, CAMP explicitly assigns negativ
CAMP only flagged25% of the binaries as malicious. Whenreputation to domains unknown to it. We could interpret the
combining the results from all four AV engines, less thafto  unknown results from the web services in a similar way. It tha
of the binaries were detected. One possible explanation fse, detection rates would increase noticeably. For eleamp
these results is that CAMP might exhibit a high false positivyvhen combining unknown and known malicious results, the
rate, but as shown in Figure 9 and discussed earlier, CAMRjétection rate for TrendMicro would bm%’ for Symantec
false positive rate is quite low and thus false positives aig% and for Site Advisor45%. However, in that case, the
not a likely explanation. However, as observed by Oberhei@gtential false positive rates as measured by comparing to
et al. [24] many AV engines exhibit poor detection rates fahe benign URLs would increase significantly, too. Fromttha
recent malware and we believe that to be confirmed by opérspective, TrendMicro would flaip% of the benign URLs,
measurements, too. Symantec24% and Site Advisor29.5%. As the potential

In addition to comparing CAMP’s detection results witifalse positive rates are much higher than can be sustained in
AV engines, we also consulted several web services to tyasgiractice, our original interpretation of the inherent dbaaks
URLs that hosted binaries. For this measurement, we c@tsulin blacklists is a more likely explanation.
the following services: Malware Domain List, McAfee’s Site
Advisor [22], Symantec’s Safe Web [23], Google’s Safé~ Case Sudy
Browsing [16] and TrendMicro’s Site Safety Center. We CAMP provides an interesting vantage point into malware
selected20, 000 URLs from a single day’s worth of requestsgistribution across the web. In the following, we explore an
10,000 URLSs pointed to binaries that were classified as beniggkample of one of many malware campaigns discovered by
by CAMP and10, 000 URLs that pointed to binaries that wereCAMP. This campaign distributes Fake Anti-Virus binaries
identified as malicious. We employed the same site-basadd leverages frequent repacking of binaries as well as fast
sampling strategy that was used for evaluating AV enginemain rotation to evade blacklist-based defense meahanis
For each of the selected URLs, we consulted the web servite observed the campaign between February 13, 2012 and
listed above and compared their verdict with CAMP. Th#&arch 1, 2012.
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Fig. 13.  The graph shows how different web services classiRLs  Fig. 14. The graph shows how different web services classiRLs
flagged as benign by CAMP. flagged as malicious by CAMP.

Time of first appearance Life (sec) | Host(.uni.me)

The Fake AV binaries were primarily hosted on the free

. . ) ) - . 2012/02/18 15:02:00 632 srv62.specialarmor
domain providemuni . me. Free domain providers allow third 2012/02/18 15:02:02 330 srv76.specialarmor
parties to register many domain names at low cost, and are gggggﬁg 12183382 gg? WwwlggUfeW\I/if_e

: . . H :0Z2: server/o.tuelwire
fre_quently abused by adversan_es seeking to _d|str|butwe_ual 2012/02/18 15.02-15 246 W82 fuelwire
This particular campaign registered domains matching the | 2012/02/18 15:02:26 25 update96.fuelwire
following pattern 2012/02/18 15:02:38 560 server45.specialarmo
. . 2012/02/18 15:02:50 693 server52.specialarmo
[srv| wwi server|update] NN. di ct. uni . me 2012/02/18 15:02:53 | 575 www77 fuelwire
where di ct corresponds to a random English word. Each | 2012/02/18 15:02:57 1258 www92.specialarmor
domain was active for only a short period of time. To estimate TABLE Il
domain lifetime, we take thel i ent | host 1 day aggregates THis TABLE LISTS EXAMPLE DOMAINS FOR AFAKE AV CAMPAIGN AND
from February and compute the lifetime as the difference in THEIR CORRESPONDING LIFETIME

time between the last observed download request and the firs
The median lifetime for a domain wa)6 seconds, and the

90th percentile wad 749 seconds. Some of the domains were
active simultaneously. Table Il provides examples of domaiP
employed in the campaign, along with the time of the firs-E
request we observed for that domain and its estimatedntiéeti

Over the two week period, we observed ou8t 000 unique opt | ons\msa. exe\Debugger : svchost . exe

domains oruni . ne involved in this campaign. . . .
) . This prevents key processes from performing meaningfibtas
We observe that the high frequency of domain changgg, jering the machine unusable. The Fake AV binary provides
thwarts simple blacklisting-based approaches. The magra a mechanism to “fix” the problem once the software is
of the blacklist would need to be able to fetch the Conte%gistered for a fee.
analyze it, and push out list updates within minutes. We As the domains for this campaign rotated quickly, our

noticed that even fetching the cpntent would be Cha"eng?%alysis pipeline fetched only a few samples. We observed
as each domain stopping resolving properly after a shok tigy "0 distinct content hashes resulting in binaries with

period. identical behavior. In total, we saw overl, 000 different
The campaign not only switched domains, but also changsifaries exhibiting similar behavior.
the binaries that were served as indicated by their changingyhen the campaign first started and we had not yet fetched
content hash. We observed that the binaries served by eggdse samples, CAMP replied with anknown verdict, thus
host changed approximately every 10 minutes. We fetchggl| protecting our users from these downloads. In general
and analyzed several samples, and they all offered the sagien we cannot fetch the binaries that our users downloag, du
functionality, a Fake Anti-Virus that hijacks the user's®m o e.g. one-time URLS, the unknown verdict offers protettio
and refuses to release it until a registration fee is paid. W the future, CAMP could be updated to use the lack of
submitted one of the samples to VirusTotal and only one ghility to fetch content from an URL as a feature by itself.
40 AV engines identified it as malware. The browser could also be changed to allow users to upload
This particular malware hijacks the user's machine Hbijles. This would facilitate analysis of campaigns that thos
setting the execution environment for all essential systeexecutables on one-time URLSs.

rocesses to run in a debugger that points to a dummy process.
his is achieved by setting the registry key
HKLM\sof t war e\m cr osof t \wi ndows nt\
currentversion\inmage file execution



While this campaign aggressively switched domains arnd any operating system and to any content type that can be
changes binaries, it did not rotate IP addresses as frdguetabeled. For example, with an accurate labeling mechanism
We observed it across only five IPs during a two week perior browser add-ons, CAMP could render reputation-based
95. 143. 37. 145, 46. 21. 154. 155,194, 28. 114. 103, verdicts when a browser add-on is downloaded.

194.28. 114. 102, and217. 116. 198. 33. Our hypothe-  While CAMP is currently only available in Google Chrome,
sis is that the adversaries behind the campaign focusedv@ plan on making the service available to all web browsers
domain rotation to avoid widely-deployed blacklists andesy once we have gained more operational understanding of the

mutation to avoid AV engines, but were not concerned with I&/stem and have further improved CAMP’s detection rates.
rotation as there are few widely-deployed IP-based blsiskli

VI. DISCUSSION VIlI. CONCLUSION

Blacklist-based approaches in which web browsers b|°CkAIthough browsers have become more secure, the world

conFent frolm knovl;/n maf::mofus S'tei offelzrdsome pro:\ectlovr\}ide web continues to be a significant contributor to makvar
agalns_t mfaware, | ut su ;r rom ‘; nowleage gapllN €n ﬁﬂfections. Many of the defenses available to users such as
versaries frequently switch to new domains or repac bmar,'blacklists or AV engines face challenges as adversaries can

Blacklists are still effective in protecting web browsers | evade detection by frequently changing hosting domains or

situations where it is not possible to quickly rotate domainmutating their malware binaries until they are no longer
e.g., when using a compromised web site to drive traffi,iacteq

A potentially more resilient approach leverages whitslist This paper introduced CAMP, a content-agnostic malware
so that web browsers download content only from trusted

. R . rotection system, which employs a reputation system that
sites. Unfortunately, such a whitelist is never going to Y ploy P Y

. S L . Jetects malware independently of the actual binary costent
complete either, resulting in legitimately benign contenot P y Y

. . . CAMP protects browser users from malware downloads while
being available to web users. CAMP bridges the gap between S : .
. Lo . also minimizing the impact on user privacy. To get a reputa-
blacklists and whitelists by augmenting both approachdl wi. s .
tion decision for a binary download, the web browser costact

a reputation system that is applied to unknown content. As o AMP’s servers which automatically build reputation for

evaluation has shown, CAMP does not suffer from Signiﬁca'&ownloads and render reputation-based verdicts. If a d |

false positives, but could benefit from higher detectiotesa . - . .
- o . . is deemed malicious, the web browser displays a warning to
Utilizing more traditional machine learning approaches i )
e user and offers to delete the downloaded file.

addition to the binary circuit currently employed by CAMP . . . , .

may improve detection. However, the ability for humans to W_e provided a qletaned overview of CAMP's design and
reason about detection verdicts is important to our depéym arch|tgcture and d|5(_:ussed in deta_ll all the compone_nﬂs tha
and additional research is required to better reason abeut gonstitute the reputation system. At its core, the reputatiet-

large models generated by machine learning approaches ric is calculated via a binary circuit that receives its ihfroam
The performance of CAMP depends significantly on th tatistical aggregates. The statistical aggregates anputed

mechanism used for labeling binary samples. Any impro @seq on featu_res derived from web browsef req”e$t.s and
ment to detection rates in the binary classifier will dihgct contain information on how often they occurred in a malisiou

- &ontext compared to the total number of occurrences.
classifier is conservative and has the explicit goal of not " this paper, we performed an extensive six month evalu-

tolerating any false positives. However, it is conceivablat ation of CAMP consisting of ove200 million unique users

in the context of CAMP, we could tolerate a small number ¢}f Google Chrome and millions of daily reputation decisions
false positives to improve overall detection. Instead dhgis V€ Showed that our content-agnostic detection approach is
a binary analysis platform, we posit that binaries could al0th accurate, with an accuracy of closed relative to.

be labeled by AV engines, for example, by taking a majoriff OPrietary VM-based dynamic analysis, and well perfognin
vote to determine if a binary is malicious or not. processing requests in less the3) ms on average.

One of CAMP’s important properties is to minimize the N comparing CAMP with the current state of practice, we
impact on user privacy while still providing protection. THemonstrated that CAMP outperforms Anti-Virus, as well as
achieve this goal, the browser leverages a whitelist tot linfarious web services, e.g. McAfee’s Site Advisor, Symastec
the number of decisions which require server interactimere Safeweb, etc. Furthermore, CAMP augments Google’s Safe
when the browser does ask the server for a decision, ofjewsing API, flagging5 million malware downloads per
a small set of features is sent. These features are stored@nth that were not previously identified.
up to two weeks, and afterwards only aggregated information

is stored, but no longer than a few months. Despite severely ACKNOWLEDGMENTS
limiting the data available to the system, our evaluatioovsh
that CAMP exhibits high accuracy rates. The authors would like to thank Michael Bailey for helpful

While the content-agnostic nature of CAMP helps to redusgiggestions for this paper. We also thank our shepherd Lenx
its privacy impact, it also means that CAMP can be appliadfei for his valuable suggestions to improve this paper.
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