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Abstract---In spite of recent advances, the world wide web re-
mains an important vector for malware installation. Approaches
to evaluating potentially malicious code before execution in a
browser, such as blacklisting or content-based detection are
hindered by an attacker’s ability to easily change hosting domains
or mutate malware binaries. On the other hand, whitelist-
based approaches are challenged by the large, dynamic, and
heterogeneous space of benign binaries that they must track. In
practice these approaches continue to provide value for popular
binaries at either extreme of maliciousness (e.g., the current large
outbreak of malware, the benign binaries shipped with an OS),
but bridging the gap between whitelist and blacklist detection
for web malware remains a significant challenge.

This paper presents CAMP, a content-agnostic malware pro-
tection system based on binary reputation that is designed to
address these shortcomings. CAMP is built into the browser and
determines the reputation of most downloads locally, relying on
server-side reputation data only when a local decision cannot be
made. This paper gives a detailed overview of CAMP and its
architecture and provides an evaluation of the system through
a six-month deployment in which 200 million users of Google
Chrome requested between eight to ten million reputation re-
quests a day. Our evaluation shows that CAMP exhibits accuracy
close to 99% relative to proprietary VM-based dynamic analysis,
is able to process requests in less than 130 ms on average, and
was able to detect approximately five million intentional malware
downloads per month that were not detected by existing solutions.

I. I NTRODUCTION

Malware is a popular venue for monetization in the un-
derground economy [7]. Adversaries frequently compromise
vulnerabilities in users’ machines to automatically install mal-
ware via so-called drive-by downloads. The action of visiting
a malicious web page in a vulnerable browser is sufficient
for an adversary to gain complete control over the vulnerable
machine allowing her to install arbitrary software. Frequently,
installed malware can cause the computer to become part of
a botnet or can exfiltrate sensitive data such as credit card
numbers to be sold in the underground economy [20].

As browsers and plugins are becoming more secure, the
vulnerable user base is shrinking and drive-by downloads
are becoming less effective as a malware distribution vector.
While drive-by downloads are still a popular distribution vec-
tor, adversaries are increasingly turning to social engineering
for malware distribution. Fake Anti-Virus products are one
such example in which the user is led to believe that their
computer has been infected and a free product to remedy the
situation is offered. Consequently, the user voluntarily down-
loads and installs malware under the guise of a free security
solution. The benefit to the adversary is that the malware

is now in control of the computer and no vulnerabilities or
exploits were required for the installation [28], [12].

Traditional defense mechanisms such as Anti-Virus (AV)
products are often ineffective against current malware down-
loads as AV engines tend to be content based and provide
an oracle to malware authors allowing them to repackage
their software until it is no longer detected [24]. Similarly,
URL blacklists such as Google’s Safe Browsing API [16]
work well for identifying compromised web pages which tend
to be relatively static, but cannot be completely up to date
in identifying all the domains from which malware is being
distributed. The abundance of dynamic DNS providers allow
for frequent rotation of domains from which malware is being
distributed. If the domains rotate faster than the update interval
of the malware lists, domains distributing malware are more
likely to remain undetected [3], [27].

The malware arms race has shown that neither signature
based AV engines nor malware lists are sufficient to protect
users. A whitelist based approach in which only trusted
software can be installed is more promising in that it can
completely block the installation of socially engineered mal-
ware [6], [11]. Since such malware is not on the whitelist,
installation of it will not be allowed. However, whitelistssuffer
from drawbacks, too. The sheer variety of available software
and the perpetual creation of new software makes the task
of creating a whitelist that covers all benign software nearly
impossible. As a result, neither whitelist nor blacklist based
approaches provide sufficient coverage to protect users from
malicious software in practice.

This paper offers a different approach in which the gap be-
tween known benign and known malicious software is bridged
by a content-agnostic reputation-based detection approach.
CAMP, our detection system, consists of a client component
built into Google Chrome and a server component responsible
for maintaining a reputation system that predicts the likelihood
that a downloaded binary is malicious. CAMP makes use
of Google’s Safe Browsing API to detect downloads known
to be malicious. For all binaries not detected, we extract
additional features from information available to the web
browser about the download and use these features to build a
server-based reputation system. The reputation system predicts
if an unknown binary is malicious without prior knowledge of
its content. We built CAMP to protect users of Google Chrome
from downloading malware on Windows. Our system protects
over 200 million users, makes millions of reputation-based
decisions every day, and identifies about5 million malware
downloads every month beyond the malware warnings that



Google’s Safe Browsing API shows for dangerous web sites.
CAMP achieves an accuracy close to99% relative to propri-
etary, VM-based dynamic analysis.

In this paper, we provide a detailed overview of the design
and architecture that comprises our reputation-based detection
system and evaluate its effectiveness based on data collected
from February to July 2012. We discuss how the system
minimizes the impact on the privacy of browser users and
evaluate its detection performance focusing especially onfalse
positives.

This paper makes the following contributions:

• We present CAMP, a content-agnostic malware protec-
tion system, which utilizes reputation-based detection to
protect users from web-based malware.

• We perform an extensive, six month evaluation of CAMP
consisting of over200 million unique users and millions
of daily reputation evaluations. We show that our content-
agnostic detection approach is both accurate, with an
accuracy close to99%, and well performing, processing
requests in less than130 ms on average.

• We compare CAMP with the current state of practice
and demonstrate that CAMP outperforms Anti-Virus, as
well as various web services, e.g. McAfee’s Site Advi-
sor, Symantec’s SafeWeb, etc. Further, CAMP identifies
large numbers of malware undetected by these services,
including 5 million malware downloads per month not
identified by Google’s Safe Browsing API.

The remainder of the paper is organized as follows. We
discuss related work in Section II. In Section III, we present
a detailed description of the system architecture and all
components responsible for creating the reputation system.
Section IV discusses how to leverage the reputation system
for malware detection. We evaluate the performance of the
system in Section V, and present a small case study of a highly
dynamic malware campaign. We discuss CAMP’s unique
properties in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Protecting users from malware continues to be a challenging
problem. In the following, we provide an overview of differ-
ent approaches to prevent malware from infecting users and
explain how CAMP differs from prior work.

a) Content-based detection: Anti-Virus software is one
of the most common content-based malware detection tech-
niques. Usually, Anti-Virus products run on end-user systems
and employ signature-based detection to identify variantsof
known malware.

While Anti-Virus engines do help in protecting users from
malware infections, several challenges limit their effectiveness.
Malware authors have developed increasingly sophisticated
evasion techniques, such as packing and polymorphism, aimed
at circumventing detection by AV engines [4], [30]. Addi-
tionally, the signature generation and update cycle causesan
inherent delay in protecting users against new variants of
malware.

Oberheide et al. [24] proposed CloudAV as a new model
to increase the effectiveness of Anti-Virus products. Under
this model, Anti-Virus protection is moved into the cloud and
multiple AV engines, working in parallel, are employed to
improve detection rates. While combining the decision of mul-
tiple AV engines leads to better detection, this approach isstill
subject to the limitations mentioned above as CloudAV also
relies on timely signature updates. Furthermore, Oberheide et
al. show that major Anti-Virus engines detect only35% to 70%
of recent malware which means that many malware binaries
remain undetected. CloudAV also requires that all binaries
are uploaded to the cloud which exposes these downloads
to a third-party and may constitute an unacceptable loss in
privacy for some users. While CAMP also moves detection
of malware into the cloud, it reduces the privacy impact by
employing whitelists so that most download URLs stay within
the browser and do not need to be sent to a third party. Binary
payloads never leave the browser. Additionally, its content-
agnostic approach does not suffer from the same limitations
as AV engines, e.g. delays in signature updates.

b) Blacklist-based protection: Blacklist-based
approaches provide protection from malware by identifying
the sites from which it is being served. Services such
as Google’s Safe Browsing API [16], McAfee’s Site
Advisor [22] or Symantec’s Safe Web [23] detect malicious
or compromised web sites that may infect users with malware.
Browsers integrate with these services directly or via tool
bars and prevent users from visiting known malicious sites.
While effective in identifying compromised web-sites which
tend to be long lived, blacklists face challenges when trying
to protect against adversaries that employ highly agile
malware distribution servers [27]. By frequently changingthe
domains that serve malware, blacklists become less effective
as domains rotate faster than the time it takes to detect them.

CAMP offers a different approach. Instead of exporting
a blacklist to clients, CAMP protects users by augmenting
blacklists and whitelists with a content-agnostic reputation
system that protects users from malicious binaries without
requiring a-priori knowledge of the binary or its serving
domains. Specifically, the browser performs the followingto
check the safety of a downloaded file: (1) the browser tries
to locally determine whether the download is malicious by
checking the download URL against a list of URLs known
to serve malware exported to the browser using Google’s
SafeBrowsing API, (2) the browser checks locally against
a dynamically updated list of trusted domains and trusted
binary signers to determine whether the downloaded contentis
likely benign and, (3) for downloads that do not match any of
the local lists, the browser extracts content-agnostic features
from the download and sends a request to CAMP’s reputation
service. As a result, CAMP protects users against malicious
downloads that would likely have been missed by a blacklist-
based approach. We compare CAMP’s performance to popular
blacklist services in Section V.

CAMP and Google’s SafeBrowsing API complement one
another. The API exports blacklists of compromised sites that



include content from malicious sites that automatically exploit
a browser with no interaction from the user. This works well
for protecting browsers from infected landing pages as they
are relatively static, and compromise can be observed by an
automated system to build the blacklist [25]. CAMP, on the
other hand, targets binaries that were downloaded by misled
users from highly dynamic infrastructures.

c) Whitelist-based schemes: In contrast to blacklists,
whitelists ensure that only known benign software can be
installed and installation of everything else is disallowed. For
example, Bit9 [6] and CoreTrace [11] maintain a list of bina-
ries verified to be benign. While whitelisting can be effective
in enterprise settings, it remains challenging to maintainan
up-to-date whitelist that covers the plethora of applications
developed globally. Therefore, protecting downloads in the
browser through whitelists alone is not currently practical.
Nonetheless, to protect user privacy, CAMP derives a whitelist
from its reputation data that is used by the web browser
to locally decide if a binary download should be trusted.
Downloads not on the whitelist require a reputation-based
decision.

d) Reputation-based detection: A lot of research has
been conducted on reputation systems [19] and how to use
them for detecting malicious activities. Hao et al. [18] pro-
posed SNARE, a reputation system for detecting spam email.
Qian et al. [26] proposed using network-based clustering to
increase the accuracy of spam-oriented blacklists.

Notos [2] and EXPOSURE [5] offer a dynamic reputation
engine for DNS. Both systems use features based on passive
DNS resolution to predict the likelihood that a domain name is
malicious. CAMP is complimentary to Notos and EXPOSURE
but is specifically targeted to predict whether an unknown
binary download is malicious. Furthermore, the use of DNS
limits a reputation system to making decisions on the granu-
larity of domain names whereas CAMP operates on all of the
features that are associated with a downloaded binary.

Finally, closely related to our work, is Microsoft’s
SmartScreen described briefly in a blog post [10]. SmartScreen
utilizes a reputation-based approach to protect users from
socially-engineered malware. It does so by computing reputa-
tion for the download URL, the file identifier and the publisher
if available as a digital signature. Unlike CAMP, it requires
that all download URLs are sent to a remote server. In contrast
to SmartScreen, CAMP computes its reputation based on many
other features available to the browser, such as referrer URLs,
IP addresses, etc. In addition, this paper provides in-depth
technical details of CAMP’s reputation system and evaluates
its performance in an operational setting.

III. SYSTEM ARCHITECTURE

In the following, we provide an overview of CAMP’s design
and architecture. Our goal is to create a system that scales
to hundreds of millions of users and protects them from
downloading malware while at the same time limiting the
impact on their privacy. Our focus is specifically on binaries
downloaded by users rather than drive-by downloads in which
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Fig. 1. The diagram presents a high-level overview of the detection system
showing the communication between the client and server as well as the
server-side processing infrastructure.

malware is installed in the background without knowledge
by the user. We believe that focusing on user downloads
is justified for several reasons: the security of browsers has
increased significantly over the last few years [17], [29],[32]
and proposed exploit detection systems such as Blade [21]
or Zozzle [13] offer efficient mechanisms to prevent current
exploits from succeeding. As a result, automated exploitation
of browsers has become more difficult and adversaries are also
incorporating social engineering techniques in which users
download malware themselves.

To efficiently determine if an unknown binary download
is malicious, CAMP is split into a client component and a
server component. The client component is integrated into a
web browser. As a first step, the client checks the download
against both a local blacklist and whitelist. If no match is
found, the client extracts features from the binary download,
sends these features to the server, and displays a warning to
users if the server response instructs it to. The server processes
the features sent from the browser and computes a reputation
decision informed by the client request and a reputation metric
constructed from previous client requests. Figure 1 shows an
overview of the complete detection system. We will discuss
it in detail in the following sections.

A. Binary Analysis

Many machine learning algorithms require labeled ground
truth for training purposes. Our situation is similar in that we
need to label our reputation data according to the nature of
the binary, e.g. whether it is malicious or benign. We support
multiple dimensions for the labels so other classifications such
asspyware are possible, too. Similarly, the type of binary is its
own dimension, e.g. Windows PEbins are treated differently
from Mac OS X DMG files. However, for any binary type,
a corresponding classification system needs to be available to
provide accurate labels.



In this paper, we make use of a binary analysis system
that we developed independently to classify binaries basedon
static features as well as dynamic execution traces. The main
goal of this system is to limit the number of false positives
and we consciously sacrifice detection in favor of fewer false
positives.

The labels produced by the binary analysis system form the
ground truth that governs the training of the reputation system.
The labels also allow us to compute detection performance of
the reputation system post facto. We measure this as part of
our evaluation in Section V.

It is important to note that our reputation system does not
require a particular binary classification solution and other
detection approaches [9], [33] or labeling solely based on the
output of AV engines should also be possible. Of course, the
overall accuracy of the system would be dependent on the
accuracy of the underlying labeling mechanism.

Binary analysis systems are not perfect and are susceptible
to evasion [15], [31]. Since CAMP is a reputation system
that requires a reasonable estimate of ground truth, any errors
in labeling might propagate to CAMP’s decisions. However,
since CAMP is independent of the classification mechanism,
any advances to dynamic analysis or Anti-Virus products will
seamlessly improve CAMP’s performance. Nonetheless, we
show in Section V-B that our binary analysis system exhibits
reasonable accuracy.

B. Client

When a user initiates a binary download in her web browser,
the web browser applies several checks before asking the
server for a reputation decision. If any of these checks fail,
the client makes a local decision on whether the download is
malicious or not.

1) The web browser determines if the binary is already
known to be malicious based on its URL, for example,
via a list of known malware sites. In our case, we use
Google’s Safe Browsing API to make that determination.
If the binary is known to be malicious, the browser can
display a warning directly without requiring a reputation
decision.

2) The browser determines if the binary download could
potentially be harmful to the computer, e.g. it might
correspond to an executable which may carry malicious
code, or a DMG which is how Mac OS X software is
installed.

3) The binary download is checked against a dynamically
updated whitelist of trusted domains and trusted binary
signers. The list of trusted domains or trusted signing
certificates consists of reputable software publishers
known for not distributing malware. If the binary down-
load matches the whitelist, the browser assumes that
the download is benign and no server-side reputation
decision is required.

If all the above checks do not result in a local decision, the
browser extracts features from the downloaded binary. Since
the reputation decision is made on the server, the client can

provide as many features as are available to it. The following
is a list of features usually available to web browsers:

• The final download URL and IP address corresponding
to the server hosting the download.

• Any referrer URL and corresponding IP address encoun-
tered when initiating the download, e.g. the results of
multiple HTTP redirects.

• The size of the download as well as content hashes, e.g.
SHA-256.

• The signature attached to the download which includes
the signer as well any certificate chain leading to it. The
client also informs the server if it could successfully
verify the signature and if it trusted the signature, e.g.
it was rooted in a trusted certificate authority.

The client then sends these features to the server and awaits
its response. The server may reply with several different
verdicts based on the reputation data available to it. It can
inform the web browser that the download is predicted to be
benign in which case the web browser completes the download
without displaying a warning, or it can tell the web browser
that the download is either deemedmalicious (Figure 2) or
unknown (Figure 3). In both of the latter cases, the web
browser warns the user about the download and offers to delete
the downloaded file. Theunknown verdict indicates that the
server did not have sufficient reputation information to label
the download as eitherbenign or malicious. Our evaluation
shows that in the majority of all casesunknown by itself
is good a predictor for malicious downloads. The different
reputation verdicts are explained in more detail in SectionIV.

User privacy is an important goal for CAMP. Verifying the
content type of the file and that it neither matches blacklists
nor whitelists drastically limits the number of downloads for
which a remote server is contacted. As shown in Section III-D,
the web browser contacts the CAMP service for only about
30% of binary downloads. Furthermore, the web browser sends
only features computed from the binary, not the binary itself,
to the server.

C. Server

The server pipeline has two different roles when processing
requests. First, the server receives the client request and
renders a reputation verdict based on its reputation system
which encompasses aggregate information from all downloads
observed by the server during its measurement intervals,
including e.g.1 day,7 day and90 day intervals. Second, the
server uses the information provided by the client to update
its reputation data.

The reputation verdict is computed by a reputation metric
calculated by a binary circuit that has access to all features
from the client request and any reputation data that is ref-
erenced by those features, e.g. how many known benign or
malicious binaries are hosted on a given IP address, etc.

To incorporate information provided by the clients into
the reputation system, client requests are first despammedto
prevent misbehaving clients from unduly influencing the data.



Fig. 2. The browser warns the user that the download is malicious. The
intentionally discrete arrow presents an option to keep thefile.

Fig. 3. The browser warns the user that the download is not commonly
downloaded.

Despammed requests are then processed within a few minutes
to generate up-to-date features.

To create a classification system that has both high per-
formance and high reliability, we employ BigTable [8] and
MapReduce [14] for distributed data storage and parallel
processing. In the following, we provide a detailed overview
of each component involved in making reputation decisions.

1) Reputation System: The heart of the decision process is
the reputation system. To better understand its properties, we
place it within the analysis framework proposed by Hoffman
et al. [19]. According to Hoffman a reputation system can be
characterized across the following three dimensions:

• Formulation, which represents the mathematical underpin-
nings of the reputation metric as well as its information
sources.

• Calculation, which is the concrete implementation of the
formulation.

• Dissemination, which characterizes how the results from
the reputation metric are propagated to participants.

In our case, both the calculation and dissemination are
centralized and deterministic. The storage of reputation data
is transient as each item expires after90 of days.

In the following, we explain the formulation of the reputa-
tion system in more details.

Our reputation data is based solely on direct, automatic
sources. The output of the binary analysis pipeline is a trusted
automatic source. Data collected and sent by web browsers
is also a direct, automatic source but may be untrusted.
The reputation data consists of features across a variety of
dimensions that each describe some aspect of the binary or
its hosting infrastructure. As mentioned in Section III-B,for
each binary download, we receive not only a content-hash but
also related information such as corresponding URLs and IP
addresses of the servers hosting them, etc. The server may
derive further features from the client request.

The reputation data maps each feature to anaggregate that
contains measurements over data observed during a given
time frame. Aggregates are continuous features and consist
of two counts: the number of interesting observations and the
total number of observations. For example, assume CAMP
observed10 downloads,6 of which were malicious, on IP
addressIPA. The aggregate corresponding to the feature
IP:IPA would then be{6, 10}. Each aggregate also contains
the first and last time the particular feature was seen.

The aggregates include both positive as well as negative
events, i.e. they can be both trust building and trust diminish-
ing. For example, the number of users downloading a binary
from a site may represent an increase in trust. On the other
hand, the number of malicious binaries hosted on a site may

diminish its trust.
As CAMP is deployed to a large number of users, many

of the design decisions in building the system are in favor
of reducing false positives. However, the performance of the
reputation system can be adjusted gradually to favor recall
over precision.

We provide a detailed discussion of CAMP’s reputation-
based detection in the next section but give an overview
here of the reputation system itself. The reputation system
is responsible for receiving a browser reputation request and
replying to it with a verdict.

For each client request, the reputation system can make a
decision based on a-priori information if either the URL or the
content hash is known to be malicious. Similarly, to respondto
major false positives, the reputation system consults a server-
side whitelist to override any reputation decision.

The reputation metric is calculated by a binary circuit that
references reputation data in form of previously computed
aggregates. The features from the client request and the
reputation formulation determine which aggregates are looked
up from the data store. The reputation system then computes
a verdict which can be either: benign, malicious or unknown;
see Section IV for a discussion of the different meanings. The
data store lookups happen in parallel and are non-blocking to
reduce overall latency. The time spent computing the decision
from the aggregates is insignificant compared to the time it
takes to look up data from the data store.

2) Frontend and Data Storage: The frontend is responsible
for receiving requests from web browsers and answering them
without incurring any significant latency. To achieve low
latency, we split the reputation metric computation and the
integration of new data into the reputation system into separate
components. Upon receiving a request, the frontend issues a
Remote Procedure Call (RPC) to the reputation system, which
determines whether the binary download is malicious. After
receiving an answer, the frontend writes the request and the
verdict to a data store that other components of the pipeline
can process, and then returns the verdict to the client.

As CAMP needs to handle a large number of web browser
requests, the temporary storage of request data requires a
carefully chosen storage layout. We use BigTable [8], a non-
relational distributed database that provides key-value stores
and allows the association of a timestamp with a given key.
While Bigtable scales well, it is limited to approximately 2GB
of data per key. For subsequent data processing it is helpful
to index requests by the URL of the binary. However, as
we store each request for two weeks and some URLs are
requested frequently, on the order of hundreds of thousands
times a day, we chose not to index solely by URL. Instead, we
append the Reverse-Ordered hexadecimal string representation



of the timestamp of the request to the URL. This causes the
data to be placed in different rows while maintaining identical
ordering compared to indexing by URL. This design decision
was crucial in scaling CAMP to handle popular URLs.

3) Spam Filtering: The spam filter processes the data writ-
ten by the frontends in real time and discards requests that do
not originate from regular users. We do not require the spam
filter to be highly accurate and false positives are acceptable.
The spam filter may make use of any information provided
in the client request and has visibility into all client requests
made within the last24 hours. As a result, the spam filter can
apply velocity controls on the user IP address of the request,
the Autonomous System Number (ASN) corresponding to the
IP address, etc. The spam filter also ensures that requests are
properly formed and contain all required features, e.g. properly
formatted URLs, etc.

Requests not discarded by the spam filter are forwarded
to an aggregator that computes aggregate features used by
the reputation system. The output of the spam filter is also
employed to fetch binaries from the web that have not been
analyzed by the binary classifier. Since binary downloads may
carry sensitive information, we apply further filters so that
only binaries that exhibit sufficient diversity of contextare
considered for analysis. The binary analysis does not gate
any reputation decision and may complete a long time after a
reputation decision was sent back to the web browser.

As stated previously, our goal is not only to make highly
accurate decisions but also to reduce the impact on the privacy
of web users as much as possible. The requests received from
web browsers reveal not only the binary URL visited by a user
but by their very nature also a corresponding source IP address.
The data processing architecture of the reputation system is
designed so that the source IP address is visible only to the
spam filter and completely deleted after two weeks. The binary
URL is visible to rest of the pipeline, but is stored in such
a way that it also is automatically deleted after two weeks.
The only information that is stored for up to90 days are the
aggregates that make up the reputation data.

4) Aggregator: The basis of the reputation system is
formed by the reputation data which consists of statistical
aggregates indexed by keys derived from request features.
Aggregates are computed and written by the aggregator, which
processes the output of the despammer and organizes aggre-
gates according to a three-dimensional index.

• The first index dimension is defined by whether the
aggregate is computed from client requests or based on
aggregates from the binary analysis system. Aggregates
computed from client requests are considered untrusted
whereas aggregates from the binary analysis system are
inherently trusted.

• The second index dimension consists of features from
client requests and additional features derived from the
request on the server side.

• The third index dimension contains broad categories over
which aggregates are computed. For client side aggre-
gates, this contains the number of requests that received

a malicious reputation decision as well as the number
of requests for binaries known a priori to be malicious,
either based on their URL or corresponding content
hash. For the aggregates from the binary analysis system,
this contains the number of URLs hosting malicious
downloads as well as the number of malicious content
hashes.

For example, the aggregate for
client|site:foo.com|reputation

represents the total number of client requests for the site
foo.com as well as the number of client requests for the same
site that received a malicious reputation decision. Another
example is

analysis|site:foo.com|urls
which contains the total number of URLs found underfoo.com
as well as the number of such URLs that were labeled
malicious by the binary analysis system.

To construct these aggregates, the despamming component
writes client requests to a temporary data store which is
indexed by the second aggregator index dimension. Then a
series of MapReduces [14] periodically processes all entries
in the data store. This process merges new data with older
aggregates to generate aggregates over different time intervals,
currently 1 day, 7 days, 14 days, 28 days and 98 days. All
aggregates computed this way are available to the reputation
system.

D. Client-side Whitelist

CAMP reduces the privacy impact on its users in several
different ways. Since the detection is content-agnostic, web
browsers do not need to send binary payloads to CAMP’s
servers. As users download binaries that potentially contain
sensitive information, any solution that requires transmission
of payload data is likely to face privacy challenges.

Another way in which CAMP reduces the privacy impact
is by client-side whitelists that determine which binariesare
trusted in advance. If a binary is trusted, CAMP does not need
to send the binary URL to a remote server. The whitelists
contain trusted domains such asmicrosoft.com as well as
trusted software publishers. A software publisher is identified
by the public key of the signing certificate and the CA certi-
fying it. The goal of the whitelists is to resolve the majority
of all downloads locally without requiring a reputation-based
decision. At the time of this writing, approximately70% of all
downloads are considered benign due to policy or matching
client-side whitelists.

For a domain or signer to be added to the whitelist, it needs
to fulfill the following criterion. CAMP needs to have seen the
binaries from the domain or signer for at least90 days without
encountering any signs of maliciousness. We add new domains
or signers to the whitelist in the order in which they contribute
to the number of requests received by CAMP over that time
period.

Since adding a domain or signer to the whitelist implies
that the CAMP server no longer receives any downloads for it,
we employ a web crawl to regularly analyze binaries hosted



 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

%
 o

f 
w

h
it
e
lis

te
d
 d

o
w

n
lo

a
d
 r

e
q
u
e
s
ts

.

Whitelist size.

Signers
Domains

Fig. 4. The graph shows the percentage of downloads for whicha web
browser would make a local reputation decision depending onthe size of the
domain and signer whitelist.

on the trusted domains or signed by trusted signers. If the
binary analysis reveals evidence of malicious behavior, the
corresponding entries are removed from the whitelist and are
again subject to reputation-based detection.

Figure 4 shows the number of downloads that a web
browser would handle locally when adding more trusted sites
to the domain or the signer whitelist. We estimated these
values by considering all reputation requests that we received,
then iteratively adding the most popular trusted signers and
domains to our whitelist and tracking which requests would
have been handled locally by the browser. The graph does not
contain measurements for whitelists smaller than our initial
whitelists as CAMP does not have any knowledge about
requests corresponding to them. Our initial domain whitelist
contained243 entries and matched approximately47% of all
download requests remaining after policy checks. The graph
shows that by increasing the domain whitelist to1000 entries
the local percentage of downloads not requiring a request to
CAMP would increase to73%. The signer whitelist is more
effective as increasing it to1000 entries would cover about
85% of downloads locally.

IV. REPUTATION SYSTEM

The goal of our reputation system is to determine a-priori if
a binary is likely going to be malicious or not without having
access to the content of the binary itself. Instead, metadata
about the binary such, as its hosting infrastructure and how
the user reached it, form the basis for detection.

One of the challenges with detecting malware is the ease
with which malware authors can change their binaries, e.g.
by repacking, and how quickly they can change the locations
from which binaries are being served. On the other hand,
there is no need to frequently change the hosting location of
benign binaries or the binaries themselves. Differences such as
these may be leveraged to create a reputation metric that can

determine with a high degree of confidence whether a binary
is benign or not.

Binaries hosted on the web fall within a wide spectrum rang-
ing from known-benign to known-malicious. Known-benign
binaries can be added to a whitelist and known-malicious
binaries to a blacklist. In an ideal situation, any binary is
either known to be good or known to be bad. The reputation
system described here is concerned with the gray area between
whitelists and blacklists.

For CAMP, we attempt to create a whitelist that covers the
majority of benign binaries and subject anything not covered
by it to a reputation decision. In the following, we explain
how to classify a binary using reputation data.

A. Feature Extraction

For each feature in the client request, the reputation system
derives features that form the indices for aggregate lookups.
The aggregates contain statistics about the total number of
times a feature occurred and how many times it occurred in
a malicious context. Each feature type has a different set of
derived features.

For IP addresses, the features are the IP address itself, the
corresponding/24 netblock, as well as the corresponding/16
netblock. The rationale for using netblocks is that servingIP
address frequently change, e.g. due to load-balancing or due to
adversaries switching IP addresses to avoid IP-based blocking.
For netblocks that are used predominantly for serving mali-
cious content, the likelihood that a yet unknown IP address in
that netblock is also serving malicious content is often higher.

CAMP also uses URL-based features. The reputation re-
quest from the client contains the URL pointing directly to
the binary download as well as any URL encountered by the
web browser when following redirects to the binary. For each
URL, the reputation system extracts the host, the domain, and
the site. The domain and site are usually identical, but differ
for dynamic DNS providers where the site is the same as the
host name. The goal of using the site and domain as a feature
is to track potential ownership of resources hosted on them.

For the signature-based features, we extract the signer
key and the corresponding CA certifying the key for each
certificate chain encountered in the binary signature. We also
keep track if the signature was trusted on the client, e.g.
the client had a trusted CA that was the root of one of the
certificate chains.

Some of the client features such as the content hash are
used directly in subsequent aggregate lookups.

B. Aggregate Computation

The aggregation step discussed in Section III-C4 computes
aggregates for all possible dimensions based on client features
and features derived on the server. However, not all of these
aggregates are consulted when making a reputation decision.
Which aggregates are consulted for rendering a reputation
verdict depends on the configuration of the reputation system
described below.



Request Aggregate Index 1 day 7 day 28 day
URL http://a.foo.com/ analysis—host:a.foo.com—urls 0/1 1/10 3/100

analysis—domain:foo.com—urls 0/2 1/20 7/200
analysis—site:foo.com—digests 3/22 4/25 11/153
client—site:foo.com—requests 10/20 20/50 123/2200

IP 10.0.0.1 analysis—ip:10.0.0.1—urls 0/1 0/1 0/1
analysis—ip:10.0.0.1—digests 0/1 0/1 0/1
client—ip:10.0.0.1—requests 1183/1208 9801/11327 33555/37455
analysis—ip24:10.0.0.1/24—urls 2/112 5/237 6/238
analysis—ip16:10.0.0.1/16—digests 0/3 0/5 0/5
client—ip24:10.0.0.1/24—requests 1313/2571 9912/32227 34127/43119

TABLE I
THIS TABLE SHOWS HOW REQUEST FEATURES RELATE TO DIFFERENT INDICES AND CORRESPONDING REPUTATION AGGREGATES. FOR BREVITY, NOT

ALL CLIENT FEATURES NOR ALL DERIVED FEATURES ARE SHOWN HERE.

Table I provides an example of how client features such
as an IP address or URL are turned into indices for looking
up aggregates. The counts associated with each index measure
how often the index was encountered either in client requests
or by the binary analysis pipeline. The first value counts the
number of malicious verdicts and the second value counts the
total number of occurrences. For example, the index

analysis|domain:"foo.com"|urls
measures how many different URLs under the domainfoo.com
were analyzed by the binary analysis system and how often
they were labeled malicious, i.e. for the 7-day time period,
the analyzer checked20 URLs from foo.com and found one
of them malicious.

An example for a client aggregate is the index
client|ip24:10.0.0.1/24|requests

which measures how many client requests for the netblock
10.0.0.1/24 were received by CAMP during the specified time
period. For the last 24 hours, CAMP received2571 requests
total and used reputation to label1313 of them as malicious.

As the binary analysis system provides us with ground truth
for client requests for which the payload is known to us, we
make decisions based on the direct and derived features as
well as their corresponding aggregates. We explain how the
decision is calculated in the next section.

C. Reputation Decision

The aggregates computed for each reputation request pro-
vide a large number of continuously valued features suitable
for many types of machine learning. One drawback of em-
ploying machine learning is that the trained models are often
large and difficult to understand by humans. As any detection
mechanism is going to produce false positives, we favor a
classifier that allows human inspection and reasoning about
false positives. To achieve this, we employ a depth-2 boolean
circuit with a small number of boolean inputs. Figure 5 shows
the boolean circuit and its inputs as used in CAMP. Its
structure is simple as it contains onlyAND gates at depth 1 and
oneOR gate at depth 2. Each individualAND gate represents
a single detection rule. In the following, we useAND gate and
rule synonymously.

Aggregates are mapped to boolean inputs via simple thresh-
old functions. The reputation metric is calculated from a
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Fig. 5. This figure shows a depth-2 boolean circuit for classifying a binary
based on boolean inputs computed from the aggregates of a reputation request
(‘‘Ping’’).

boolean circuit and the thresholds for each aggregate. These
thresholds are determined via a training phase discussed below.
Logically, the boolean circuit can be separated into three
different parts: the site aggregates, the IP aggregates andthe
unknown aggregates.

For the IP and site aggregates, we use two different func-
tions to map an aggregate to a boolean value. The threshold
function is defined asf(p, n, t) := p

n
≥ t and the count

function is defined asf(p, n, t) := n ≥ t where p is the
number of positive samples in the aggregate,n is the total
number of samples andt is the threshold provided by the
model.

The booleans derived from the unknown aggregates are
more complex. The goal of the unknown aggregates is to flag
binaries for which we do not have sufficient reputation to
label them benign. The input is formed by the following three
negated booleans:

1) The boolean is true if the binary analysis pipeline has
already analyzed the binary based on the content hash.

2) The boolean is true if the binary was signed and the
client could trace the certificate chain to a trusted CA
root.

3) The boolean is true if the binary is popular because a
large number of users downloaded either the digest itself
or other binaries from the same hosting site.

As a result, a binary is labeled unknown by the binary circuit



if CAMP has never seen it before and the binary is not signed
by a trusted signer and not from a popular download site.
The parameters are thresholds on the number of downloads
required before the binary or the site is considered popular.

The reputation system is configured by choosing thresholds
according to the precision and recall for eachAND gate.
Precision and recall are determined from a labeled training
set. The training set is created by matching the content hash
included in reputation requests from web browsers with the
content hash from the binary analysis system. The binary
analysis system provides the label, e.g. benign or malicious,
and the reputation request provides the features. The training
set consists of4, 000 benign requests and1, 000 malicious
requests.

Figure 6 shows the precision and recall for site aggregates
that result from changing the thresholds for the aggregate
mapping functions. We see that achieving a precision larger
than0.95 results in recall of less than0.2.

Figure 7 shows the precision and recall for IP aggregates.
We see that achieving a precision larger than0.95 results in
recall of less than0.15.

We omit the precision and recall for the unknown rule as
they are very similar to the previous two graphs. As can be
seen from these graphs, a high precision leads to low recall
when considering eachAND gate individually. Our evaluation
in Section V shows that the combination of allAND gates, that
is the complete boolean circuit, leads to acceptable detection
results with very low false positive rates.

V. EVALUATION

For CAMP’s initial deployment, we used Google Chrome
and targeted Windows executables, e.g. PEbins, MSI-files,etc..
The following evaluation measures the performance of CAMP
in that context. We evaluate resource requirements, accuracy
of the baseline dynamic analysis framework, and the precision
of the reputation system. We also provide a comparison to
other common malware prevention solutions and a case study
of a campaign that CAMP identified.

A. Server-Side Resource Requirements

Here we briefly overview CAMP’s operational performance
and resource requirements. To service 200 million Google
Chrome users, CAMP frontends and reputation RPC servers
(Section III-C2) use approximately 4 cores and 9 GB RAM
globally to serve on average 190 QPS. Most of these resources
are reserved for geographic distribution and load balancing,
and we have load-tested CAMP frontends at 400 QPS using
1 core and 3 GB RAM. The median latency is127 ms and
the 90th percentile is313 ms. As many binary downloads
take much longer time, on the order of seconds, requesting
a CAMP verdict does not significantly add to the download
latency observed by users.

Download requests can be processed with minimal overhead
since CAMP leverages preprocessing to build models that
are amenable to fast lookup. This is a multi-stage process,
encompassing despamming (Section III-C3) and aggregation

(Section III-C4). The despammer runs continuously, requiring
1.25 cores and 25 GB RAM. The valid requests that the
despammer outputs are processed by an indexer in the aggre-
gation pipeline, which writes data to a temporary BigTable [8]
for aggregation by a series of MapReduces [14]. The indexer
uses 2 cores and 8 GB RAM. The aggregation MapReduces
run periodically throughout the day. Each run finishes in
approximately one hour and uses 90 cores and 120 GB
RAM. The MapReduces produce a model that is comprised of
approximately 4.75 billion aggregates requiring approximately
1.4 TB of BigTable storage. This model is replicated to
locations near each of CAMP’s frontends.

The above metrics do not include resources for running our
binary analysis pipeline, or the CPU and memory resources
required by BigTable.

B. Accuracy of Binary Analysis

Before we evaluate CAMP’s accuracy relative to our base-
line proprietary VM-based dynamic analysis framework, it is
important to understand the accuracy of that framework. To
do so, we compared the framework against the AV scanners
provided by VirusTotal [1].

We selected a sample of2200 binaries that our dynamic
analysis framework processed on a single day, but were not
known to VirusTotal. Of these,1100 were labeled clean by our
dynamic analysis framework, and1100 were labeled malicious.
We submitted each of the binaries to VirusTotal, and waited
10 days, to allow AV engines to catch up. We then consulted
VirusTotal for each of the2200 binaries to see how many AV
engines agreed with our initial analysis.

After 10 days,99% of the binaries that were flagged as
malicious by our framework were flagged by20% or more
of AV engines on VirusTotal. Only12% of the binaries that
we flagged as clean were also flagged by20% or more of the
AV engines. Of these false negatives, a large percentage are
classified as AdWare, which our system intentionally does not
detect.

These results indicate that, by design, our dynamic analysis
framework has a very high true positive rate, but does suffer
from some false negatives. As we improve this framework,
CAMP’s detection rates should improve as well.

C. Accuracy of CAMP

The evaluation is based on data collected between February
2012 to July 2012 from our production deployment of CAMP.
During that time frame, CAMP was used by approximately
200 million users. Each day, it received between8 million to
10 million reputation requests and labeled approximately200
to 300 thousand download requests as malicious; During our
evaluation, the reputation database kept track of approximately
3.2 billion aggregates.

To get a better understanding of how well the reputation
metric works in practice, we measured the true positive (tpr),
false positive (fpr), true negative (tnr) and false negative rates
(fnr) of the reputation requests received by CAMP. The rates
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classifier as determined post-facto from the production deployment of
CAMP.

are defined as follows; tpr:= tp
tp+fn , fpr := fp

fp+tn, tnr := tn
tn+fp

and fnr:= fn
tp+fn .

The labels to compute the rates are taken from the binary
analysis system for binaries that could be matched to rep-
utation requests. See Section V-B for an evaluation of the
accuracy of the labels. The results are shown in Figure 8.
During the measurement period, the true negative rate was
greater or equal to98% and the false positive rate was around
1% for most of the measurement period but for three occasions
where it increased to around2%.

A more detailed graph of the false positive rate is shown
in Figure 9. We see that the false positive rate was noticeably
lower than2% for most of the measurement period. When
taking into account that the web browser makes local reputa-
tion decisions for about70% of downloads, the effective true
negative rate increases from98% to 99.5% and the effective
false positive rate decreases from2% to 0.6%. While false
positives are inherent to our content-agnostic approach, our
criteria for choosing CAMP’s reputation algorithm parameters

is optimized to minimize false positives.
At the end of the measurement period, the overall accuracy

of CAMP was 98.6%. We compute this as tp+tn
tp+tn+fp+fn . The

dominating factor in overall accuracy comes from our traffic
distribution; the majority of requests are for benign binaries
and our system exhibits low false positive rates. As with false
positive and true negative rates, accuracy increases further
when taking the client-side whitelists into account.

In June 2012, the true positive rate was around70% and
the false negative rate around30%. CAMP’s ability to detect
70% of recent malware without access to the content of the
binary validates the reputation-based detection approach. We
provide a more detailed comparison between CAMP and AV
engines in Section V-D.

In designing CAMP, our main consideration was avoid-
ing false positives and as such the binary analysis pipeline
frequently prefers false negatives over false positives which
has a negative impact on all measurements presented here,
e.g. a false negative in the binary analysis pipeline could
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Fig. 11. The graph shows the number of client requests corresponding to
binaries labeled as malware by the binary classifier. It also shows requests
to malware were the binary was signed.

result in an incorrect false positive for the reputation-based
classifier. Specifically, when CAMP detects a malware binary
correctly, but the binary analysis system has a false negative,
our evaluation will count this as a false positive for CAMP.

As discussed in the previous section, each individualAND
gate achieves only low recall. Our hypothesis was that dif-
ferent AND gates would combine to increase the overall
performance of the classifier. To measure this assumption,we
plot how often anAND gate is responsible for detection by
itself and how often multipleAND gates detect bad content si-
multaneously. The results are shown in Figure 10 as a stacked
graph. The graph has two interesting features. The majority
of detections are due to a single rule, i.e. each individual
rule contributes to the overall detection. The other interesting
observation is that the detection of unknown binaries accounts
for a significant fraction of malicious verdicts. We show in
the case study below how adversaries frequently rotate the
domains from which they are serving malware and thus never
build up any reputation. The drop in the detection of unknown
binaries around March 24th is due to a change in data formats
that resulted in dropping the contributions of the unknown rule
from the graph.

The rule for labeling binaries as unknown requires that
a binary is not signed by a trusted signer. To understand
how often malicious binaries with trusted signatures occurin
our analysis, we extracted the signature state from binaries
we analyzed from client requests post-facto. As shown in
Figure 11, the majority of requests to malware are for unsigned
binaries. That makes a trusted signature a good predictor for
the likelihood that a binary is benign.

We also wanted to understand how often a binary that is
labeled as unknown transitions to clean or to malicious after
it has been evaluated by our dynamic analysis pipeline. To
do so, we analyzed requests from clients post-facto, for a
period of 10 days in November 2012. Of all the sites that
served binaries that were classified as unknown on the first

day,74% no longer appeared in our requests the next day. This
percentage increased to80% over 10 days. We hypothesize
that this is because such sites are malicious and rotate to
avoid blacklists. This corroborates previous findings that social
engineering domains rotate quickly to avoid blacklists [27].
0.02% of the sites transitioned from unknown to bad over the
10 day period,8% transitioned to unknown to clean, and the
remaining stayed in the unknown state. We manually analyzed
the top sites that transitioned to clean, and found that almost
all of them were indeed hosting dangerous downloads, and
the clean classification was a false negative of our dynamic
analysis framework. Based on these results, we believe that
the unknown verdict is actually a very strong indicator thata
binary is actually malicious.

D. Comparison to other systems

To determine if CAMP provides benefits beyond that
provided by other malware detection systems, we conducted
two different measurements in which we compared reputation
decisions from CAMP to results from Anti-Virus engines as
well as web-based malware services.

Over a period of two weeks we collected a random sample
of 10, 000 binaries that were labeled as benign by CAMP
as well as approximately8, 400 binaries that were labeled
as malicious by CAMP. To avoid bias in binary selection,
for example due to popular download sites which might be
over represented in a completely random sample, we sampled
by site rather than by individual binaries. We compared the
results from CAMP against the results from four different AV
engines1 that scanned the binaries on the same day as CAMP
made its reputation decision. We conducted the AV scans on
the same day to approximate the performance users might
see when AV engines scan their downloads. The AV engines
ran in a sandboxed environment, and were not permitted any

1Due to licensing restrictions, we cannot disclose the specific AV engines
we used in our measurements.
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Fig. 12. The graph shows the results from AV engines for binaries flagged
as malicious by CAMP.

network access. Thus any cloud-based reputation data that may
have been provided by the AV companies was unavailable
to the AV engines. However, we proactively updated AV
signatures every two hours to ensure freshness.

For the 10, 000 binaries that CAMP labeled as clean, the
maximum number of binaries labeled as malicious by a single
AV engine was only83. Only 16 binaries were flagged as ma-
licious by two or more AV engines. This implies that CAMP
has a very high True Negative rate relative to commercial
Anti-Virus products.

On the other hand, the majority of binaries that CAMP la-
beled as malicious were classified as benign by the AV engines
(see Figure 12). The AV engine that agreed the most with
CAMP only flagged25% of the binaries as malicious. When
combining the results from all four AV engines, less than40%
of the binaries were detected. One possible explanation for
these results is that CAMP might exhibit a high false positive
rate, but as shown in Figure 9 and discussed earlier, CAMP’s
false positive rate is quite low and thus false positives are
not a likely explanation. However, as observed by Oberheide
et al. [24] many AV engines exhibit poor detection rates for
recent malware and we believe that to be confirmed by our
measurements, too.

In addition to comparing CAMP’s detection results with
AV engines, we also consulted several web services to classify
URLs that hosted binaries. For this measurement, we consulted
the following services: Malware Domain List, McAfee’s Site
Advisor [22], Symantec’s Safe Web [23], Google’s Safe
Browsing [16] and TrendMicro’s Site Safety Center. We
selected20, 000 URLs from a single day’s worth of requests;
10, 000 URLs pointed to binaries that were classified as benign
by CAMP and10, 000 URLs that pointed to binaries that were
identified as malicious. We employed the same site-based
sampling strategy that was used for evaluating AV engines.
For each of the selected URLs, we consulted the web services
listed above and compared their verdict with CAMP. The

results are shown in Figure 13 and 14.
The URL classification services mostly agreed with CAMP

when presented with the set of clean URLs. TrendMicro
flagged about3.5% as malicious, Symantec about2.5% and
Site Advisor about1.5%. Furthermore, many of the benign
URLs were unknown to these three services. For example,
TrendMicro did not know over55% of the URLs. Neither the
Malware Domain List nor Safe Browsing flagged any of the
URLs are malicious.

The URL classification services mostly disagreed with
CAMP when presented with the set of malicious URLs. Trend-
Micro identified about11% as malicious, Safe Browsing about
8.5%, Symantec about8% and Site Advisor about2.5%. The
Malware Domain List did not flag any of them as malicious.
However, as with the benign URLs, many of the malicious
URLs were not known to the web services. For example,
TrendMicro did not know65% of the URLs that CAMP found
to be malicious.

Google Chrome asks for a reputation decision only if a
URL is not known by the Safe Browsing API. Therefore, it is
not surprising that many of URLs CAMP considers malicious
were not in the Safe Browsing list. Moreover, the Safe Brows-
ing list primarily targets drive-by downloads, not intentional
user installs. Although, the Malware Domain list did not return
any detections, we included it in our measurements as it is
frequently used as a base of comparison by other work in this
space.

The results for the other web services seem to confirm our
suspicion that blacklist based approaches are not as effective
in the current environment of frequently changing malware
distribution domains. The majority of URLs identified as
malicious by CAMP are not known to be bad by any web
service. On the other hand, CAMP explicitly assigns negative
reputation to domains unknown to it. We could interpret the
unknown results from the web services in a similar way. In that
case, detection rates would increase noticeably. For example,
when combining unknown and known malicious results, the
detection rate for TrendMicro would be76%, for Symantec
46% and for Site Advisor45%. However, in that case, the
potential false positive rates as measured by comparing to
the benign URLs would increase significantly, too. From that
perspective, TrendMicro would flag59% of the benign URLs,
Symantec24% and Site Advisor29.5%. As the potential
false positive rates are much higher than can be sustained in
practice, our original interpretation of the inherent drawbacks
in blacklists is a more likely explanation.

E. Case Study

CAMP provides an interesting vantage point into malware
distribution across the web. In the following, we explore an
example of one of many malware campaigns discovered by
CAMP. This campaign distributes Fake Anti-Virus binaries
and leverages frequent repacking of binaries as well as fast
domain rotation to evade blacklist-based defense mechanisms.
We observed the campaign between February 13, 2012 and
March 1, 2012.
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Fig. 13. The graph shows how different web services classifyURLs
flagged as benign by CAMP.
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Fig. 14. The graph shows how different web services classifyURLs
flagged as malicious by CAMP.

The Fake AV binaries were primarily hosted on the free
domain provideruni.me. Free domain providers allow third
parties to register many domain names at low cost, and are
frequently abused by adversaries seeking to distribute malware.
This particular campaign registered domains matching the
following pattern

[srv|www|server|update]NN.dict.uni.me
where dict corresponds to a random English word. Each
domain was active for only a short period of time. To estimate
domain lifetime, we take theclient|host 1 day aggregates
from February and compute the lifetime as the difference in
time between the last observed download request and the first.
The median lifetime for a domain was406 seconds, and the
90th percentile was1749 seconds. Some of the domains were
active simultaneously. Table II provides examples of domains
employed in the campaign, along with the time of the first
request we observed for that domain and its estimated lifetime.
Over the two week period, we observed over13, 000 unique
domains onuni.me involved in this campaign.

We observe that the high frequency of domain changes
thwarts simple blacklisting-based approaches. The maintainers
of the blacklist would need to be able to fetch the content,
analyze it, and push out list updates within minutes. We
noticed that even fetching the content would be challenging,
as each domain stopping resolving properly after a short time
period.

The campaign not only switched domains, but also changes
the binaries that were served as indicated by their changing
content hash. We observed that the binaries served by each
host changed approximately every 10 minutes. We fetched
and analyzed several samples, and they all offered the same
functionality, a Fake Anti-Virus that hijacks the user’s system
and refuses to release it until a registration fee is paid. We
submitted one of the samples to VirusTotal and only one of
40 AV engines identified it as malware.

This particular malware hijacks the user’s machine by
setting the execution environment for all essential system

Time of first appearance Life (sec) Host(.uni.me)
2012/02/18 15:02:00 632 srv62.specialarmor
2012/02/18 15:02:02 330 srv76.specialarmor
2012/02/18 15:02:05 629 www12.fuelwire
2012/02/18 15:02:06 587 server78.fuelwire
2012/02/18 15:02:15 246 www82.fuelwire
2012/02/18 15:02:26 25 update96.fuelwire
2012/02/18 15:02:38 560 server45.specialarmor
2012/02/18 15:02:50 693 server52.specialarmor
2012/02/18 15:02:53 575 www77.fuelwire
2012/02/18 15:02:57 1258 www92.specialarmor

TABLE II
THIS TABLE LISTS EXAMPLE DOMAINS FOR A FAKE AV CAMPAIGN AND

THEIR CORRESPONDING LIFETIME.

processes to run in a debugger that points to a dummy process.
This is achieved by setting the registry key

HKLM\software\microsoft\windows nt\
currentversion\image file execution
options\msa.exe\Debugger:svchost.exe

This prevents key processes from performing meaningful tasks
rendering the machine unusable. The Fake AV binary provides
a mechanism to ‘‘fix’’ the problem once the software is
registered for a fee.

As the domains for this campaign rotated quickly, our
analysis pipeline fetched only a few samples. We observed
over 900 distinct content hashes resulting in binaries with
identical behavior. In total, we saw over41, 000 different
binaries exhibiting similar behavior.

When the campaign first started and we had not yet fetched
these samples, CAMP replied with anunknown verdict, thus
still protecting our users from these downloads. In general,
when we cannot fetch the binaries that our users download, due
to e.g. one-time URLs, the unknown verdict offers protection.
In the future, CAMP could be updated to use the lack of
ability to fetch content from an URL as a feature by itself.
The browser could also be changed to allow users to upload
files. This would facilitate analysis of campaigns that host
executables on one-time URLs.



While this campaign aggressively switched domains and
changes binaries, it did not rotate IP addresses as frequently.
We observed it across only five IPs during a two week period:
95.143.37.145, 46.21.154.155, 194.28.114.103,
194.28.114.102, and217.116.198.33. Our hypothe-
sis is that the adversaries behind the campaign focused on
domain rotation to avoid widely-deployed blacklists and binary
mutation to avoid AV engines, but were not concerned with IP
rotation as there are few widely-deployed IP-based blacklists.

VI. D ISCUSSION

Blacklist-based approaches in which web browsers block
content from known malicious sites offer some protection
against malware, but suffer from a knowledge gap when ad-
versaries frequently switch to new domains or repack binaries.
Blacklists are still effective in protecting web browsers in
situations where it is not possible to quickly rotate domains,
e.g., when using a compromised web site to drive traffic.
A potentially more resilient approach leverages whitelists
so that web browsers download content only from trusted
sites. Unfortunately, such a whitelist is never going to be
complete either, resulting in legitimately benign contentnot
being available to web users. CAMP bridges the gap between
blacklists and whitelists by augmenting both approaches with
a reputation system that is applied to unknown content. As our
evaluation has shown, CAMP does not suffer from significant
false positives, but could benefit from higher detection rates.
Utilizing more traditional machine learning approaches in
addition to the binary circuit currently employed by CAMP
may improve detection. However, the ability for humans to
reason about detection verdicts is important to our deployment
and additional research is required to better reason about the
large models generated by machine learning approaches.

The performance of CAMP depends significantly on the
mechanism used for labeling binary samples. Any improve-
ment to detection rates in the binary classifier will directly
translate to improved detection in CAMP. Our current binary
classifier is conservative and has the explicit goal of not
tolerating any false positives. However, it is conceivablethat
in the context of CAMP, we could tolerate a small number of
false positives to improve overall detection. Instead of using
a binary analysis platform, we posit that binaries could also
be labeled by AV engines, for example, by taking a majority
vote to determine if a binary is malicious or not.

One of CAMP’s important properties is to minimize the
impact on user privacy while still providing protection. To
achieve this goal, the browser leverages a whitelist to limit
the number of decisions which require server interaction. Even
when the browser does ask the server for a decision, only
a small set of features is sent. These features are stored for
up to two weeks, and afterwards only aggregated information
is stored, but no longer than a few months. Despite severely
limiting the data available to the system, our evaluation shows
that CAMP exhibits high accuracy rates.

While the content-agnostic nature of CAMP helps to reduce
its privacy impact, it also means that CAMP can be applied

to any operating system and to any content type that can be
labeled. For example, with an accurate labeling mechanism
for browser add-ons, CAMP could render reputation-based
verdicts when a browser add-on is downloaded.

While CAMP is currently only available in Google Chrome,
we plan on making the service available to all web browsers
once we have gained more operational understanding of the
system and have further improved CAMP’s detection rates.

VII. C ONCLUSION

Although browsers have become more secure, the world
wide web continues to be a significant contributor to malware
infections. Many of the defenses available to users such as
blacklists or AV engines face challenges as adversaries can
evade detection by frequently changing hosting domains or
mutating their malware binaries until they are no longer
detected.

This paper introduced CAMP, a content-agnostic malware
protection system, which employs a reputation system that
detects malware independently of the actual binary contents.
CAMP protects browser users from malware downloads while
also minimizing the impact on user privacy. To get a reputa-
tion decision for a binary download, the web browser contacts
CAMP’s servers which automatically build reputation for
downloads and render reputation-based verdicts. If a download
is deemed malicious, the web browser displays a warning to
the user and offers to delete the downloaded file.

We provided a detailed overview of CAMP’s design and
architecture and discussed in detail all the components that
constitute the reputation system. At its core, the reputation met-
ric is calculated via a binary circuit that receives its input from
statistical aggregates. The statistical aggregates are computed
based on features derived from web browser requests and
contain information on how often they occurred in a malicious
context compared to the total number of occurrences.

In this paper, we performed an extensive six month evalu-
ation of CAMP consisting of over200 million unique users
of Google Chrome and millions of daily reputation decisions.
We showed that our content-agnostic detection approach is
both accurate, with an accuracy of close to99% relative to
proprietary VM-based dynamic analysis, and well performing,
processing requests in less than130 ms on average.

In comparing CAMP with the current state of practice, we
demonstrated that CAMP outperforms Anti-Virus, as well as
various web services, e.g. McAfee’s Site Advisor, Symantec’s
Safeweb, etc. Furthermore, CAMP augments Google’s Safe
Browsing API, flagging5 million malware downloads per
month that were not previously identified.
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