
Query-Free News Search

Monika Henzinger
Google Inc.

2400 Bayshore Parkway
Mountain View, CA 94043

USA

monika@google.com

Bay-Wei Chang
Google Inc.

2400 Bayshore Parkway
Mountain View, CA 94043

USA

bay@google.com

Brian Milch
UC Berkeley

Computer Science Division
Berkeley, CA 94720-1776

USA

milch@cs.berkeley.edu

Sergey Brin
Google Inc.

2400 Bayshore Parkway
Mountain View, CA 94043

USA

sergey@google.com

ABSTRACT
Many daily activities present information in the form of a stream of
text, and often people can benefit from additional information on
the topic discussed. TV broadcast news can be treated as one such
stream of text; in this paper we discuss finding news articleson the
web that are relevant to news currently being broadcast.

We evaluated a variety of algorithms for this problem, looking at
the impact of inverse document frequency, stemming, compounds,
history, and query length on the relevance and coverage of news
articles returned in real time during a broadcast. We also evaluated
several postprocessing techniques for improving the precision, in-
cluding reranking using additional terms, reranking by document
similarity, and filtering on document similarity. For the best algo-
rithm, 84%-91% of the articles found were relevant, with at least
64% of the articles being on the exact topic of the broadcast.In
addition, a relevant article was found for at least 70% of thetopics.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval;
H.3.5 [Information Systems]: Online Information Services

General Terms
Algorithms, experimentation

Keywords
Web information retrieval, query-free search

1. INTRODUCTION
Many daily activities present information using a written or spo-

ken stream of words: television, radio, telephone calls, meetings,
face-to-face conversations with others. Often people can benefit
from additional information about the topics that are beingdis-
cussed. Supplementing television broadcasts is particularly attrac-
tive because of the passive nature of TV watching. Interaction is
severely constrained, usually limited to just changing thechannel;

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

there is no way to more finely direct what kind of information will
be presented.

Indeed, several companies have explored suggesting web pages
to viewers as they watch TV. For example, theIntercast system, de-
veloped by Intel, allows entire HTML pages to be broadcast inun-
used portions of the TV signal. A user watching TV on a computer
with a compatible TV tuner card can then view these pages, even
without an Internet connection. NBC transmitted pages via Inter-
cast during their coverage of the 1996 Summer Olympics. TheIn-
teractive TV Links system, developed by VITAC (a closed caption-
ing company) and WebTV (now a division of Microsoft), broad-
casts URLs in an alternative data channel interleaved with closed
caption data [17, 2]. When a WebTV box detects one of these
URLs, it displays an icon on the screen; if the user chooses toview
the page, the WebTV box fetches it over the Internet.

For both of these systems the producer of a program (or com-
mercial) chooses relevant documents by hand. In fact, the pro-
ducer often creates new documents specifically to be accessed by
TV viewers. To our knowledge, there has been no previous work
onautomaticallyselecting web pages that a user might want to see
while watching a TV program.

In this paper we study the problem of finding news articles on
the web relevant to the ongoing stream of TVbroadcast news. We
restrict our attention to broadcast news since it is very popular and
information-oriented (as supposed to entertainment-oriented).

Our approach is to extract queries from the ongoing stream of
closed captions, issue the queries in real time to a news search en-
gine on the web, and postprocess the top results to determinethe
news articles that we show to the user. We evaluated a varietyof
algorithms for this problem, looking at the impact of inverse doc-
ument frequency, stemming, compounds, history, and query length
on the relevance and coverage of news articles returned in real time
during a broadcast. We also evaluated several postprocessing tech-
niques for improving the precision, including reranking using ad-
ditional terms, reranking by document similarity, and filtering on
document similarity. The best algorithm achieves a precision of
91% on one data set and 84% on a second data set and finds a rele-
vant article for at least 70% of the topics in the data sets.

In general, we find that it is more important to concentrate on
a good postprocessing step than on a good query generation step.



The difference in precision between the best and the worst query
generation algorithm is at most 10 percentage points, whileour best
postprocessing step improves precision by 20 percentage points or
more. To reduce the impact of postprocessing on the total number
of relevant articles retrieved, we simply increased the number of
queries.

To be precise, the best algorithm uses a combination of tech-
niques. Our evaluation indicates that the most important features
for its success are a “history feature” and a postprocessingstep that
filters out irrelevant articles. Many of the other features that we
added to improve the query generation do not seem to have a clearly
beneficial impact on precision. The “history feature” enables the
algorithm to consider all terms since the start of the current topic
when generating a query. It tries to detect when a topic changes
and maintains a data structure that represents all terms in the cur-
rent topic, weighted by age. The filtering step discards articles that
seem too dissimilar to each other or too dissimilar to the current
topic. We also experimented with other postprocessing techniques
but they had only a slight impact on precision.

Our algorithms are basically trying to extract keywords from a
stream of text so that the keywords represent the “current” piece of
the text. Using existing terminology this can be calledtime-based
keyword extraction. There is a large body of research on topic de-
tection and text summarization. Recently, time-based summariza-
tion has also been studied [1], but to the best of our knowledge
there is no prior work on time-based keyword extraction.

The remainder of this paper is organized as follows: Section2
describes the different query generation algorithms and the differ-
ent postprocessing steps. Section 3 presents the evaluation. Sec-
tion 4 discusses related work. We conclude in Section 5.

2. OUR APPROACH
Our approach to finding articles that are related to a stream of

text is to create queries based on the text and to issue the queries to
a search engine. Then we postprocess the answers returned tofind
the most relevant ones. In our case the text consists of closed cap-
tioning of TV news, and we are looking for relevant news articles
on the web. Thus we issue the queries to a news search engine.

We first describe the algorithms we use to create queries and then
the techniques we use for postprocessing the answers.

2.1 Query Generation
We are interested in showing relevant articles at a regular rate

during the news broadcast. As a result the query generation algo-
rithm needs to issue a query periodically, i.e., everys seconds. It
cannot wait for the end of a topic. We choses = 15 for two rea-
sons: (1) Empirically we determined that showing an articleevery
10-15 seconds allows the user to read the title and scan the first
paragraph. The actual user interface may allow the user to pause
and read the current article more thoroughly. (2) A caption text
of 15 seconds corresponds to roughly three sentences or roughly
50 words. This should be enough text to generate a well-specified
query.

Because postprocessing may eliminate some of the candidate
articles, we return two articles for each query. We also tested ats = 7, thus allowing up to half of the candidate articles to be dis-
carded while maintaining the same or better coverage ass = 15.

The query generation algorithm is given thetext segmentT since
the last query generation. It also keeps information about the pre-
vious stream of text. We consider seven different query generation
algorithms, described in the following sections. All but the last
query generation algorithm issue 2-term queries. Aterm is either a
word or a 2-word compound likeNew York. Two-term queries are

used because experiments on a test set (different from the evalua-
tion set used in this paper) showed that 1-term queries are too vague
and return many irrelevant results. On the other hand, roughly half
of the time 3-term queries are too specific and do not return any
results (because we are requiring all terms to appear in the search
results). The last query generation algorithm uses a combination
of 3- and 2-term queries to explore whether the 2-term limit hurts
performance.

As is common in the IR literature [18] theinverse document fre-
quencyidf of a term is a function of the frequencyf of the term
in the collection and the numberN of documents in the collec-
tion. Specifically, we use the functionlog(N=(f + 1)). Since we
do not have a large amount of closed caption data available, we
used Google’s web collection to compute theidf of the terms. This
meansN was over 2 billion, andf was the frequency of a term in
this collection. Unfortunately, there is a difference in word use in
written web pages and spoken TV broadcasts. As a result we built a
small set of words that are common in captions but rare in the web
data. Examples of such words arereporterandanalyst. All of the
algorithms below ignore the terms on this stopword list.

2.1.1 The baseline algorithm A1-BASE
Our baseline algorithm is a simpletf � idf based algorithm. It

weights each term bytf � idf , wheretf is the frequency of the term
in the text segmentT . This results in larger weights for terms that
appear more frequently inT , and larger weights for more unusual
terms. This is useful since doing a search with the more distinctive
terms of the news story is more likely to find articles relatedto the
story. The baseline algorithm returns the two terms with largest
weight as the query.

2.1.2 Thetf � idf2 algorithm A2-IDF2
This is the same algorithm as the baseline algorithm, but a term is

weighted bytf �idf2. The motivation is that rare words, like named
entities, are particularly important for issuing focussedqueries. Thus,
theidf component is more important thantf .

2.1.3 The simple stemming algorithm A3-STEM
In the previous two algorithms each term is assigned a weight.

Algorithm A3-STEM assigns instead a weight to eachstem. The
stemof a word is approximated by taking the first 5 letters of the
word. For example,congressandcongressionalwould share the
same stem,congr. The intention is to aggregate the weight of terms
that describe the same entity. We use this simple method of deter-
mining stems instead of a more precise method because our algo-
rithm must be real-time.

For each stem we store all the terms that generated the stem and
their weight. The weight of a term is � tf � idf2, where = 1 if
the term was a noun and = 0:5 otherwise. (Nouns are determined
using the publicly available Brill tagger [3].) We use this weight-
ing scheme since nouns are often more useful in queries than other
parts of speech. The weight of a stem is the sum of the weights of
its terms.

To issue a query the algorithm determines the two top-weighted
stems and finds the top-weighted term for each of these stems.
These two terms form the query.

2.1.4 The stemming algorithm with compounds, al-
gorithm A4-COMP

Algorithm A4-COMP consists of algorithm A3-STEM extended
by two-word compounds. Specifically, we build stems not onlyfor
one-word terms, but also for two-word compounds. For this we
use a list of allowed compounds compiled from Google’s corpus



of web data. Stems are computed by stemming both words in the
compound, i.e., the stem for the compoundveterans administration
is veter-admin. Compounds are considered to be terms and are
weighted as before. Queries are issued as for algorithm A3-STEM,
i.e., it finds the top-weighted term for the two top-weightedstems.
Since a term can now consists of a two-word compound, a query
can now in fact consist of two, three, or four words.

2.1.5 The history algorithm A5-HIST
Algorithm A5-HIST is algorithm A4-COMP with a “history fea-

ture”. All previous algorithms generated the query terms solely on
the basis of the text segmentT that was read since the last query
generation. Algorithm A5-HIST uses terms from previous text seg-
ments to aid in generating a query for the current text segment, the
notion being that the context leading up to the current text may
contain terms that are still valuable in generating the query.

It does this by keeping a data structure, called thestem vec-
tor, which represents the previously seen text, i.e., the history. It
combines this information with the information produced byalgo-
rithm A4-COMP for the current text segmentT and finds the top
weighted stems.

To be precise, for each stem the stem vector keeps a weight and
a list of terms that generated the stem, each with its individual
weight. The stem vector keeps the stems of all words that were
seen between the last reset and the current text segment. Areset
simply sets the stem vector to be the empty vector; it occurs when
the topic in a text segment changes substantially from the previous
text segment (see below).

When algorithm A5-HIST receives text segmentT it builds a
second stem vector for it using algorithm A4-COMP. Then it checks
how similarT is to the text represented in the old stem vector by
computing a similarity scoresim. To do this we keep a stem vec-
tor for each of the last three text segments. (Each text segment
consists of the text between two query generations, i.e., itconsists
of the text of the lasts seconds.) We add these vectors and compute
the dot-product of this sum with the vector forT , only considering
the weights of the terms and ignoring the weights of the stems. If
the similarity score is above a thresholda1, thenT is similar to the
earlier text. If the similarity score is abovea2 but belowa1, thenT is somewhat similarto the earlier text. OtherwiseT is dissimilar
from the earlier text.

If text segmentT is similar to the earlier text, the old stem vector
is agedby multiplying every weight by 0.9 and then the two vectors
are added. To add the two vectors, both vectors are expanded to
have the same stems by suitably adding stems of weight 0. Also
the set of terms stored for each stem is expanded to consist ofthe
same set by adding terms of weight 0. Then the two vectors are
added by adding the corresponding weights of the stems and ofthe
terms.

If text segmentT is very dissimilar from the earlier text, then
the old stem vector is reset and is replaced by the new stem vector.
To put it another way, when the current text is very differentthan
the previous text, it means that the topic has changed, so previous
history should be discarded in deciding what query to issue.

If text segmentT is somewhat similar to the earlier text, then
the stem vector is not reset, but the weights in the old stem vector
are decreased by multiplying them with a weight that decreases
with the similarity scoresim. Afterwards the old stem vector and
the new stem vector are added. So even though the topic has not
completely changed, previous terms are given less weight toallow
for topic drift.

We used a test data set (different from the evaluation data sets)
to choose values fora1 anda2 in thesim calculation. In our im-

plementation,a1 = 0:001 anda2 = 0:0003. WhenT is somewhat
similar, we use the weight multipliera = 0:92�1000�sim , which
was chosen so thata � 0:9, i.e., the weights are more decreased
than in the case thatT is similar to the early text.

In the resulting stem vector the top two terms are found in the
same way as in algorithm A4-COMP.

2.1.6 The query shortening algorithm A6-3W
To verify our choice of query length 2 we experimented with a

query shortening algorithm, which issues a multiple term query,
and shortens the query until results are returned from the news
search engine. Earlier experiments showed that reducing the query
to one term hurt precision. Therefore we kept two terms as the
minimum query length. The query shortening algorithm A6-3Wis
identical to A5-HIST, but begins with three-term queries, reissuing
the query with the two top-weighted terms if there are no results.

2.1.7 Algorithm A7-IDF
Algorithm A7-IDF is identical to algorithm A5-HIST withidf2

replaced byidf .
(Note that each increasing algorithm A1-A6 adds one additional

feature to the previous. A7-IDF does not fit this pattern; we created
it in order to test the specific contribution ofidf2 to A5-HIST’s
performance.)

2.2 Postprocessing
After generating the search queries we issue them to a news

search engine and retrieve the top at most 15 results. Note that
each result contains exactly one news article. Because we want to
retrieve articles that are about the current news item, we restricted
the search to articles published on the day of the broadcast or the
day before.

We applied several ways of improving upon these search results,
described in the sections below, and then selected the top two re-
sults to show to the user as news articles related to the broadcast
news story.

Since several queries will be issued on the same topic, they may
yield similar result sets and many identical or near identical articles
may end up being shown to the user. In fact, in the data sets used
for the evaluation (see 3.1), queried at boths = 7 ands = 15, an
average of 40% of articles returned would be near-duplicates. Such
a large number of duplicates would lead to a poor user experience,
so we employed a near-duplicate backoff strategy across allthe al-
gorithms. If an article is deemed a near-duplicate of one that has
already been presented, the next article in the ranking is selected.
If all articles in the result set are exhausted in this manner, the first
article in the result set is returned (even though it was deemed a
near-duplicate). This reduces the number of repeated highly simi-
lar articles to an average of 14% in the evaluation data sets.

To detect duplicates without spending time fetching each article,
we looked at the titles and summaries of the articles returned by the
search engine. We compared these titles and summaries to a cache
of article titles and summaries that have already been displayed
during the broadcast. A similarity metric of more than 20% word
overlap in the title, or more than 30% word overlap in the summary,
was successful in identifying exact matches (e.g., the samearticle
returned in the results for a different query) and slight variants of
the same article, as is common for news wires to issue as the story
develops over time.

The postprocessing steps we used were boosting, similarityrerank-
ing, and filtering.



2.2.1 Boosting
The news search engine gets a two-term query and does not know

anything else about the stream of text. The idea behind boosting
is to use additional high-weighted terms to select from the search
results the most relevant articles. To implement this idea the query
generation algorithm returns along with the query associatedboost
termsandboost values. The boost terms are simply the top five
terms found in the same way as the query terms. The boost values
are the IDF values of these terms.

The boosting algorithm then reranks the results returned from the
search by computing a weight for each result using the boost terms.
For a boost term which has IDFidf and occurstf times in the
text summary returned with the result, the weight is incremented
by the valueidf � 4tf=(tf + 3), which is atf � idf -like formula
that limits the influence of thetf part to 4. For boost terms in the
title, the weight is increased by twice that value. Finally,to favor
more recent articles, the weight is divided byd+ 1, whered is the
number of days since the article was published. Since we restrict
articles to the current date and the day before, the weight isdivided
by either 1 or 2. The results are then reordered according to their
weight; non-boosted results or ties are kept in their original order.

2.2.2 Similarity reranking
A second way of reranking is to compute for each of the results

returned by the search engine its similarity to the text segmentT
and to rerank the search results according to the similarityscore.
To implement this idea we built atf � idf -weighted term vector
for both the text segmentT and the text of the article and compute
the normalized cosine similarity score. (The first 500 characters of
the article are used.) This filtering step requires first fetching the
articles, which can be time-expensive.

2.2.3 Filtering
The idea behind filtering is to discard articles that are verydis-

similar to the caption. Additionally, when the issued queryis too
vague, then the top two search results often are very dissimilar. (In-
deed, all the results returned by vague queries are often very differ-
ent from one another.) So whenever we find two candidate articles
and they are dissimilar, we suspect a vague query and irrelevant
results. So we discard each of the articles unless it is itself highly
similar to the caption.

We again used thetf � idf -weighted term vector for the text seg-
mentT and the text of the article and computed the normalized
cosine similarity score as in the similarity reranking, above. When-
ever the page-T similarity score is below a thresholdb the article
is discarded (Rule F1). If there are two search results we compute
their similarity score and discard the articles if the scoreis below a
thresholdp (Rule F2)– but allowing each article to be retained if its
page-T similarity score is above a thresholdg (Rule F3).

We analyzed a test data set (different from the evaluation data
sets) to determine appropriate thresholds. In our implementation,b = 0:1, g = 0:3, andp = 0:35.

3. EVALUATION
To evaluate different algorithms on the same data set the evalu-

ators worked off-line. They were supplied with two browser win-
dows. One browser window contained the article to be evaluated.
The article was annotated with an input box so that the score for
the article could simply be input into the box. The other browser
window contained the part of the closed caption text for which the
article was generated. The evaluators were instructed as follows:

You will be reading a transcript of a television news broadcast.
What you will be evaluating will be the relevance of articlesthat

we provide periodically during the broadcast. For each displayed
article consider whether the article is relevant to at leastone of
the topics being discussed in the newscast for this article.Use the
following scoring system to decide when a article is relevant to a
topic:� 0 - if the article is not on the topic� 1 - if the article is about the topic in general, but not the exact

story� 2 - if the article is about the exact news story that is being
discussed

For example, if the news story is about the results of the presidential
election, then a article about a tax bill in congress would score a
0; a article about the candidates’ stands on the environmentwould
score a 1; a article about the winner’s victory speech would score
a 2.

Don’t worry if two articles seem very similar, or if you’ve seen
the article previously. Just score them normally. The “current
topic” of the newscast can be any topic discussed since the last
article was seen. So if the article is relevant to any of thosetopics,
score it as relevant. If the article is not relevant to those recent
topics, but is relevant to a previous segment of the transcript, it is
considered not relevant; give it a 0.

We count an article as “relevant” (R) if it was given a score of1
or 2 by the human evaluator. We count it as “very relevant” (R+) if
it was given a score of 2.

To compare the algorithms we useprecision, i.e., the percent-
age of relevant articles out of all returned articles.Recall is usu-
ally defined as the percentage of returned relevant articlesout of
all relevant articles that exist. However, this is very hardto mea-
sure on the web, since it is very difficult to determine all articles on
a given topic. In addition, our algorithms are not designed to re-
turn all relevant documents, but instead a steady stream of relevant
documents. Thus, we define therelative recall to be the percent-
age of returned relevant articles out of all relevant articles pooled
from all of the query generation algorithms with all postprocessing
variants. We use relative recall instead of the number of relevant
documents to enable comparison over different data sets. Addition-
ally, we measuretopic coverage, which is the percentage of topics
(defined below) that have at least one relevant article.

To understand the relationship of the different algorithmswe
compute their overlap, both in terms of issued queries and interms
of articles returned. Since filtering is such a powerful technique we
study its effectiveness in more detail.

3.1 Data sets
We evaluated all these approaches using the following two data

sets:
(1) HN: three 30-minute sessions of CNN Headline News, each

taken from a different day , and
(2) CNN: one hour of Wolf Blitzer Reports on CNN from one

day and 30 mins from another day.
The Headline News sessions (“HN”) consists of many, relatively

short, news stories. The Wolf Blitzer Reports (“CNN”) consists of
fewer news stories discussed for longer and in greater depth.

Both data sets containnews storiesandmeta-text. Meta-text con-
sists of the text between news stories, like “and now to you Tom”
or “thank you very much for this report”. For evaluating the perfor-
mance of our algorithms we manually decomposed the news stories
into topics, ignoring all the meta-text. (This manual segmentation
is not an input to the algorithms; it was used strictly for evaluation
purposes.) Each topic consists of at least 3 sentences on thesame



Table 1: HN data set: Precisionp and relative recall r.
Technique s Postprocessing

None Boost+
Filterp r p r

A1-BASE 7 58% 37% 86% 31%
A2-IDF2 7 58% 37% 87% 31%
A3-STEM 7 64% 32% 88% 29%
A4-COMP 7 64% 32% 88% 28%
A5-HIST 7 64% 36% 91% 30%
A6-THREE 7 72% 33% 89% 28%
A7-IDF 7 61% 38% 89% 31%

A1-BASE 15 63% 20% 91% 17%
A2-IDF2 15 62% 20% 91% 18%
A3-STEM 15 69% 25% 88% 24%
A4-COMP 15 70% 26% 90% 25%
A5-HIST 15 67% 26% 89% 24%
A6-THREE 15 75% 24% 91% 22%
A7-IDF 15 59% 26% 91% 24%

Table 2: CNN data set: Precisionp and relative recall r.
Technique s Postprocessing

None Boost+
Filterp r p r

A1-BASE 7 43% 27% 77% 21%
A2-IDF2 7 46% 27% 75% 18%
A3-STEM 7 43% 23% 76% 18%
A4-COMP 7 44% 23% 76% 17%
A5-HIST 7 55% 32% 84% 23%
A6-THREE 7 60% 30% 86% 23%
A7-IDF 7 52% 25% 82% 23%

A1-BASE 15 48% 17% 83% 14%
A2-IDF2 15 60% 16% 85% 13%
A3-STEM 15 54% 17% 76% 14%
A4-COMP 15 59% 18% 82% 15%
A5-HIST 15 61% 25% 88% 20%
A6-THREE 15 71% 23% 83% 21%
A7-IDF 15 56% 25% 82% 21%

theme; we do not count 1-2 sentence long “teasers” for upcoming
stories as topics. The shortest topic in our data sets is 10 seconds
long, the longest is 426 seconds long. The average length of atopic
in the HN data set is 51 seconds and the median is 27 seconds. The
topics comprise a total of 4181 seconds (70 mins) out of the 90
mins long caption. In the CNN data set the average topic length is
107 seconds and the median is 49 seconds. The topics comprisea
total of 3854 seconds (64 mins).

3.2 Evaluation of the Query Generation Algo-
rithms

We first evaluated all the baseline algorithms with two differ-
ent ways of postprocessing, namely no postprocessing and postpro-
cessing by both boosting and filtering. The CNN data set consists
of 3854 seconds, and thus an algorithm that issues a query every
15 seconds issues 257 queries. We return the top two articlesfor
each query so that a maximum of 514 relevant articles could be
returned for this data set whens = 15. For the HN data set the

corresponding number is 557.
The pool of all relevant documents found by any of the algo-

rithms for the HN data set is 846, and for the CNN data set is 816.
Thus the relative recall for each algorithm is calculated bydivid-
ing the number of relevant documents it found by these numbers.
Note that fors = 15 no algorithm can return more than 557 (for
HN) or 514 (for CNN) relevant articles, so in those cases the max-
imum possible relative recall would be557=846 = 66% (HN) or514=816 = 63% (CNN).

The pooled relative recall numbers are appropriate for comparing
performance among the different algorithms, but not usefulas an
absolute measure of an algorithm’s recall performance, since no
algorithm would be able to achieve 100% relative recall. This is
because when a query is issued at a text segment, an algorithmis
limited to returning a maximum of two articles. However, pooling
usually identifies more than two articles as relevant for a given text
segment.

Table 1 presents the precision and relative recall for all the differ-
ent query generation algorithms for the HN data set. Table 2 shows
the corresponding numbers for the CNN data set. It leads to a few
observations:� All algorithms perform statistically significantly1 better with

a p-value of< 0:003 when postprocessed with boosting and
filtering than without postprocessing. Depending on the al-
gorithm the postprocessing seems to increase the precision
by 20-35 percentage points.� For both data sets the highest precision numbers are achieved
with postprocessing ands = 15. However, the largest rela-
tive recall is achieved without postprocessing ands = 7.
This is no surprise: Filtering reduces not only the number of
non-relevant articles that are returned, but also the number of
relevant ones. The impact of postprocessing on the number
of relevant articles that are returned varies greatly between
algorithms. The maximum change is 71 articles (A1-BASE
with s = 7 on HN), and the minimum change is 10 articles
(A3-STEM with s = 7 on HN). Also, reducings increases
the number of queries issued and thus one expects the num-
ber of returned articles to increase, both the relevant onesas
well as the non-relevant ones. Thus relative recall increases
as well.� Precision on the CNN data set is lower than precision on the
HN data set. This is somewhat surprising as longer topics
might be expected to lead to higher precision. The reason is
that since we issue more queries on the same topic, we reach
further down in the result sets to avoid duplicates and end up
returning less appropriate articles.� Algorithm A5-HIST with s = 7 and with postprocessing
performs well in both precision and relative recall. For the
HN data set, it achieves a precision of 91% with 257 relevant
articles returned, for the CNN data set it achieves a precision
of 84% with 190 relevant articles returned. This means it
returns a relevant article every 16 seconds and every 20 sec-
onds, respectively, on the average. The performance of algo-
rithm A6-3W is very similar to algorithm A5-HIST. None of
the other algorithms achieves precision of at least 90% and
relative recall of at least 30%. For example, algorithms A1-
BASE and A2-IDF2 withs = 15 have precision 91% on

1To determine statistical significance we used the rank-sum test and
the t-test. If a p-value is given, it is the p-value of the rank-sum test,
as it is more conservative. If no p-value is given, the p-value of the
rank-sum test is less than 0.05.



Table 3: HN data set: Precision and relative recall in parenthe-
sis.

Tech- s Postprocessing
nique None Boost Fil- Boost Sim. Sim.

ter- + Re- Rerank
Filter rank +Filter

A2- 7 58% 58% 88% 87% 60% 84%
IDF2 (37%) (37%) (32%) (31%) (38%) (34%)
A4- 7 64% 66% 86% 88% 68% 86%
COMP (32%) (33%) (27%) (28%) (34%) (32%)
A5- 7 64% 64% 91% 91% 64% 88%
HIST (36%) (36%) (29%) (30%) (36%) (31%)

A2- 15 62% 64% 89% 91% 66% 92%
IDF2 (20%) (20%) (17%) (18%) (21%) (20%)
A4- 15 70% 72% 93% 90% 74% 91%
COMP (26%) (27%) (23%) (25%) (27%) (25%)
A5- 15 67% 69% 92% 89% 71% 92%
HIST (26%) (26%) (22%) (24%) (26%) (25%)

the HN data set but they return roughly 100 articles fewer
that A5-HIST withs = 7, which corresponds to a drop of
relative recall by 13 percentage points (A1-BASE) and 12
percentage points (A2-IDF2).

Without postprocessing the difference in precision between
A5-HIST and algorithms A1-BASE, A2-IDF2, A3-STEM,
and A4-COMP is statistically significant on the CNN data
set fors = 7. Fors = 15 the difference between A5-HIST
and A1-BASE is significant with a p-value of< 0:004.� Without postprocessing the precision of the baseline algo-
rithm A1-BASE is statistically significantly worse than most
of the other algorithms on the CNN data set. Also algo-
rithm A6-3W is statistically significantly better than mostof
the other algorithms. However, these differences disappear
or are no longer statistically significant when filtering and
boosting is applied.

We also discuss the contribution of different techniques.� idf versusidf2: The baseline algorithm A1-BASE and al-
gorithm A2-IDF2 differ only in the use ofidf2 versusidf .
For s = 15 and no postprocessing, A2-IDF2 gives a statis-
tically significant improvement over A1-BASE on the CNN
data set. In all the other cases their performance is very sim-
ilar.

Algorithms A5-HIST and A7-IDF also differ only in the use
of idf2 versusidf . Without postprocessing A5-HIST out-
performs A7-IDF in precision on both data sets. The differ-
ences are statistically significant fors = 7 on the CNN data
set and fors = 15 on the HN data set. With postprocessing
their performance is either very similar or the difference is
not statistically significant. Altogether,idf2 seems to work
slightly better thanidf .� Stemming:Adding stemming to algorithm A2-IDF2 gives al-
gorithm A3-STEM. On the HN data set stemming gives an
improvement without postprocessing but with postprocess-
ing ands = 15 stemming gives slightly worse performance.
On the CNN data set stemming hurts precision. Stemming
is often used to improve recall. It does increase relative re-
call over A3-STEM fors = 15, but it has no positive impact
on relative recall fors = 7. Overall, our experiments are
inconclusive with regard to the benefits of stemming.

� Compounds:Algorithm A4-COMP consists of algorithm A3-
STEM with 2-word compounding added, i.e., we only eval-
uated compounding for algorithms that use stemming. Their
performance is very similar. The precision of A4-COMP is
larger than the precision of A3-STEM fors = 15 on the
CNN data set but it is not statistically significant. However,
for s = 15 and no postprocessing, A4-COMP gives a sta-
tistically significant improvement (p-value< 0:02) over A1-
BASE on the CNN data set. Overall, adding compounds does
not seem to significantly improve precision.� History: Adding a “history feature” to algorithm A4-COMP
gives algorithm A5-HIST. The history gives a small improve-
ment in precision fors = 7 on the HN data set, while it
seems to slightly hurt fors = 15. On the CNN data set,
A5-HIST clearly outperforms A4-COMP, both in precision
and in relative recall; the difference is statistically significant
with p-value< 0:004 for s = 7 and no postprocessing.

This is not surprising. For longer topics (as the CNN data set
has) it becomes valuable to have a history feature, especially
if queries are issued every 7 seconds. Each text segment may
not on its own contain highly relevant text that can be used
as a query in finding similar stories. Shorter text segments
suffer even more from this problem. The history rectifies
this by effectively extending the length of the text segmentin
a time-aged manner.

For example, for one of the data sets three shootings were
in the news: one in Arizona, one in Oklahoma, and one
in Jordan. The algorithms without history sometimes re-
turned non-relevant articles about shootings different than
the one being discussed in the broadcast because the current
text segment did not mention the location. Algorithm A5-
HIST never made this mistake. Altogether, we recommend
adding a history feature to a query generation algorithm.� Query shortening:Algorithm A6-3W first issues a three-
word query and “backs off” to a two-word query if no re-
sults were found. This happens for about 60% of the queries.
Without postprocessing, its precision is statistically signifi-
cantly better than all of the other algorithms withs = 15
on the CNN data set and for most of the other algorithms
for s = 7 and also for the HN data set. With boosting and
filtering A6-3W is very similar to algorithm A5-HIST. Rel-
ative recall decreases slightly when compared to A5-HIST.
The reason is that three-word queries might return only one
result where two-word query would return at least two re-
sults. Thus, trying out three-word queries is helpful without
postprocessing, but with postprocessing it does not lead toan
improvement.

Table 9 and Table 10 in the appendix give the percentage of ar-
ticles exactly on topic (R+: given a score of 2 by the evaluator)
together with the actual number of such articles found by each al-
gorithm. They confirm the above observations.

In conclusion, postprocessing and the “history feature” give the
largest improvement in search precision, namely 20-35 percentage
points for postprocessing and about 5 percentage points forhistory.
Postprocessing reduces relative recall by about 6 percentage points,
while the history feature has negligible effect on relativerecall. A
query generation algorithm should have both, a way to include the
history and a postprocessing step that filters out irrelevant docu-
ments. None of the other features seem clearly beneficial.



Table 4: HN data set withs = 7: Percentage of queries that are
identical when sorted lexicographically.

A1- A2- A3- A4- A5- A6- A7-
BASE IDF2 STEM COMP HIST 3W IDF

A1- 94% 27% 25% 10% 6% 10%
BASE
A2- 94% 30% 27% 12% 7% 10%
IDF2
A3- 27% 30% 87% 31% 19% 28%
STEM
A4- 25% 27% 87% 38% 19% 34%
COMP
A5- 10% 12% 31% 38% 40% 63%
HIST
A6- 6% 7% 19% 19% 40% 30%
3W
A7- 10% 10% 28% 34% 63% 30%
IDF

Table 5: HN data set with s = 7: Percentage of URLs of al-
gorithm A that are also returned by algorithm B, where the
choice ofA determines the row and the choice ofB determines
the column. Since different algorithms return a different num-
ber of URLs the table is not symmetric.

A1- A2- A3- A4- A5- A6- A7-
BASE IDF2 STEM COMP HIST 3W IDF

A1- 93% 36% 33% 15% 11% 13%
BASE
A2- 96% 37% 36% 17% 13% 15%
IDF2
A3- 41% 41% 83% 36% 23% 21%
STEM
A4- 36% 38% 80% 42% 24% 28%
COMP
A5- 16% 18% 35% 42% 39% 40%
HIST
A6- 13% 15% 23% 26% 43% 38%
3W
A7- 15% 17% 22% 30% 43% 38%
IDF

3.3 Postprocessing
As we saw in the previous section postprocessing using boosting

and filtering gives a big improvement in precision without decreas-
ing relative recall much. The obvious question is what contributed
most to the improvement, boosting or filtering. A second question
is whether postprocessing by similarity reranking performs better
than postprocessing by boosting.

Since the improvement was unanimous among algorithms and
data sets, we evaluated only the HN data set for 3 algorithms.Ta-
ble 3 shows the details. In all six cases the improvement is clearly
achieved by the filtering step, the boosting step only givinga small
improvement. All of the differences between boosting aloneand
filtering and boosting are statistically significant. Also,all of the
differences between boosting alone and filtering alone are statisti-
cally significant. In some cases filtering alone gives even higher
precision than filtering and boosting together.

Similarity reranking seems to give a slightly higher gain inpre-
cision than boosting. However, combined with filtering it does not
perform better than boosting and filtering combined. None ofthe

differences between boosting alone and similarity reranking alone
and between boosting with filtering and similarity reranking with
filtering are statistically significant.

Note, however, that similarity reranking and filtering together
always has better relative recall than boosting and filtering, which
in turn has better relative recall than filtering alone.

The results when analyzing the articles with score R+ and the
data for the CNN data sets (both omitted in this paper) confirmthe
above findings.

To summarize, filtering gives a large precision improvement:
about 20-30 percentage points with a decrease of 6 percentage points
in relative recall. Filtering and similarity reranking together achieve
the same precision but return roughly 10% more relevant articles
than filtering alone.

3.4 Query Overlap and URL Overlap
Given a postprocessing step the performance of the different query

selection algorithms is very similar. An obvious question to ask is
whether the reason for this similarity is that the algorithms issue
very similar queries. To answer this question we compute thesim-
ilarity between the queries issued by the different query selection
algorithms, i.e., we compare theith query issued by one algorithm
with the ith query issued by another algorithm. Table 4 gives the
percentage of queries that have identical terms (though notneces-
sarily ordered identically) fors = 7 and the HN data set. Note that
we are looking at all generated queries, i.e., the queriesbeforethe
postprocessing step.

The table shows that nearly all queries are identical for related
algorithms like A1-BASE and A2-IDF2. However, for algorithms
A1-BASE and A5-HIST for example, only 10% of the queries are
identical. Table 12 give the corresponding data fors = 15. It can
be found in the appendix.

Even if the queries are quite different, there could still bea large
overlap in the URLs returned at a given point in the stream of text.
However, that is also not the case as Table 5 shows for the HN data
set ands = 7. The results fors = 15 are similar. Thus it might be
possible to improve precision by combining the algorithms in the
right way.

To summarize, the overlap both in queries and in articles is high
between A1-BASE and A2-IDF2 and is high between A3-STEM
and A4-COMP but is low otherwise. Thus, even though the algo-
rithms have similar performance when used with postprocessing, it
is in general not due to the same queries being issued or the same
URLs being returned.

3.5 Topic Coverage
Another question to ask is how many of the topics receive at

least one relevant article. In the HN data set there were a total of
82 topics. In Table 6 we show the percentage of topics with at least
one relevant article for the HN data set and also the percentage of
topics with at least one article rated R+ for the HN data set. Not
surprisingly, these percentages are strongly correlated with relative
recall. They are the highest fors = 7 with no postprocessing and
the lowest fors = 15 with postprocessing. It is interesting to note
that the numbers are not much lower for the percentage of topics
with score R+ than for score R. Said differently, if a topic has a
relevant article it most likely also has a topic rated R+.

Table 11 in the appendix gives the corresponding percentages for
the CNN data set. The values are higher as we would expect since
the topics are longer. However, there is also more variationin these
numbers as there are only 36 topics in the CNN data set.

We also analyzed longer and shorter topics. Both are equally
well covered, i.e., the length is not the distinguishing factor of



Table 6: HN data set: Percentage of topics with at least one
relevant article and percentage of topics with at least one article
rated R+.

Technique s Score R Score R+
None Boost None Boost

Filter Filter
A1-BASE 7 78% 73% 76% 70%
A2-IDF2 7 79% 76% 76% 72%
A3-STEM 7 74% 70% 70% 67%
A4-COMP 7 76% 72% 70% 68%
A5-HIST 7 77% 70% 73% 67%
A6-3W 7 73% 70% 70% 68%
A7-IDF 7 73% 73% 72% 70%

A1-BASE 15 63% 59% 60% 56%
A2-IDF2 15 63% 61% 60% 60%
A3-STEM 15 72% 67% 70% 67%
A4-COMP 15 76% 72% 73% 71%
A5-HIST 15 72% 65% 68% 65%
A6-3W 15 71% 66% 66% 63%
A7-IDF 15 71% 69% 70% 63%

whether a topic is covered or not. Instead there seem to be topics
for which it is “hard” to find relevant articles and others forwhich
it easy. For example, it is easy to find articles for Winona Ryder’s
shoplifting trial: Her name is rare and thus had highidf, and she
is not mentioned in other news for that day. For other topics it
is hard to find related news stories, mostly because they fallinto
the category of “unusual” news. Examples include a story about
a beauty pageant for women in Lithuania’s prisons, a story about
a new invention that uses recycled water from showers and baths
to flush toilets, and a story about garbage trucks giving English
lessons over loudspeakers in Singapore.

In summary, roughly 70% of the topics have at least one article
rated relevant, and almost as many have at least one article rated
very relevant (R+). The length of the topic does not seem to bea
factor in determining whether a relevant article can be found for it.

3.6 Filtering Effectiveness
The filtering technique is very powerful in improving precision.

Recall that there can be two reasons why an article is filteredout:
F1: Its similarity with text segmentT is below thresholdb. F2:
Its similarity with text segmentT is below thresholdg and there
are two search results and their similarity score is below a third
threshold. (Recall thatb < g.) Note that it is possible that both
rules apply. We analyzed which of the two rules filters out more
articles. Table 7 shows the percentage of articles that eachfiltering
rule filtered on the HN data set. The percentage can add up to over
100% since both rules can apply. It clearly shows that F2 filters out
most of the articles.

Finally, we wanted to evaluate for each filtering rule how often
it makes the wrong decision. For F1 and F2 this means that they
discard a relevant article. Rule F3 requires that an articleis kept
if its similarity to the caption text is above a thresholdg. It makes
the wrong decision if it keeps an irrelevant article. Table 8gives
the error rate for each filtering rule. For F1 and F2, theerror rate
is the percentage of relevant articles out of all articles filtered by
the technique. For F3, it is the percentage of irrelevant articles out
of all articles whose similarity with textT is above the thresholdg. The error rates range from very low to, in one instance, nearly a
third. For F3, which excludes highly similar articles from being fil-
tered, the mostly low error rate indicates that few irrelevant articles

Table 7: HN data set: For each filtering rule the percentage of
filtered articles that are filtered by the technique. The percent-
ages for a given algorithm can add up to over 100% since both
filtering rules can apply.

Technique s # filtered % filtered % filtered
articles by F1 by F2

A1-BASE 7 218 39% 97%
A2-IDF2 7 202 38% 96%
A3-STEM 7 139 27% 98%
A4-COMP 7 127 30% 98%
A5-HIST 7 175 54% 86%
A6-3W 7 209 48% 86%
A7-IDF 7 130 54% 78%

A1-BASE 15 126 24% 98%
A2-IDF2 15 85 29% 96%
A3-STEM 15 76 24% 93%
A4-COMP 15 76 22% 93%
A5-HIST 15 95 32% 92%
A6-3W 15 130 26% 97%
A7-IDF 15 36 33% 81%

Table 8: HN data set ands = 7: The error rate for each filter-
ing rule.

Technique F1 F2 F3
A1-BASE 12% 6% 7%
A2-IDF2 15% 9% 6%
A3-STEM 22% 9% 3%
A4-COMP 22% 6% 3%
A5-HIST 32% 33% 11%
A6-3W 29% 28% 2%
A7-IDF 23% 25% 3%

escape filtering through this technique. The higher error rates for
F1 and F2 indicate that relevant pages are being suppressed;but we
can tolerate this since we are aggressively querying for tworesults
every 7 or 15 seconds.

4. RELATED WORK

4.1 Query-free search
To our knowledge, there has been no previous work on auto-

matically selecting documents that a user might want to see while
watching a TV program. However, there is a significant literature
on the broader problem of query-free information retrieval: find-
ing documents that are relevant to a user’s current activity, without
requiring an explicit query. The different systems differ in what
stream of text they consider as input and what genre of related doc-
uments they return. We will use the “Input—Output” notationbe-
low.� Web pages—web pages: The Letizia system [10] observes a

user browsing the web, and suggests other web pages the user
may find interesting. Rather than searching an index of web
pages, it “surfs ahead” of the user, following hyperlinks from
the page the user is currently viewing. Similarly, commercial
browser assistants such as Autonomy Kenjin and PurpleYogi
(both no longer available) suggested related web pages based
on the content of web pages the user has been viewing.� Problem report—repair manual: Another early query-free IR



system is FIXIT [8], which helps technicians as they use an
expert system to diagnose and repair copiers. FIXIT identi-
fies the currently reported symptoms and the faults it consid-
ers likely, then maps these symptoms and faults to keywords,
and retrieves sections of the copier documentation that match
these words.� User behavior—personal files: The just-in-time IR project at
MIT [15, 14] has focused on retrieving personal files – such
as notes and archived email messages – that a user would
currently find useful. This project first produced the Remem-
brance Agent, which looks at a document the user is editing
in Emacs and matches fragments of this document (such as
the last 50 words) against a corpus of personal files. The
followup Margin Notes system performs a similar task, but
observes the web pages that a user views in a web browser.
Finally, the Jimminy system runs on a wearable computer.
Jimminy bases its suggestions on what the user is reading or
writing on the heads-up display, as well as on Global Posi-
tioning System data and active badge data indicating what
other people are nearby. All these systems use a common
information retrieval backend based on the Okapi similarity
metric [16].

The XLibris pen-based document reader [13] allowed users
to mark up documents as they are reading. The system would
derive queries from the passages of text that were marked,
and search over a local corpus for relevant documents to
present to the user.� User behavior—News and stock quotes: The SUITOR sys-
tem [11] tracks user behavior like what applications are run-
ning and what text the user currently writes to build a model
of the user’s current interest. It uses this model to find infor-
mation that is interesting to the user like news headlines and
stock quotes.� Open documents in editor or browser—web pages: The sys-
tem most similar in purpose to our own is Watson [5], which
suggests web pages to a computer user based on the docu-
ments currently open in a word processor or web browser.
Watson uses a variety of heuristics to construct queries from
the text of the documents, then sends these queries to the Al-
taVista search engine.� Email—web pages: Our work is also related to a small pro-
totype system that constructed queries from email messages
and sent them to an early version of the Google search engine
[4].

4.2 Text Summarization and Keyword Extrac-
tion

In the Information Retrieval literature there has been a plethora
of work on topic detection and text summarization. Recently, the
problem of time-based summarization has been studied. See [1]
for an excellent overview of the area. Our work is different in two
ways:

(1) It doesn’t need to identify topics; it only needs to detect
whether the current topic is different from the previous topic. If
a later topic is very similar to a topic discussed much earlier, the
system does not need to recognize this.

(2) The system does not need to construct a summary; it extracts
keyphrases that can be used to formulate a search query.

The research on keyphrase extraction, see, e.g., [9, 12, 19,7], and
specifically the algorithm by [20], is the most related to ourwork.

The main difference to our work is that we study the time-based
variant of the problem, which also includes topic change detection.

5. CONCLUSION
This paper evaluated seven algorithms and three postprocessing

techniques for finding news articles on the web relevant to news
broadcasts. For this genre of television show, the best algorithm
finds a relevant page every 16-20 seconds on average, achieves a
precision of 84-91%, and finds a relevant article for about 70% of
the topics. Our experiments clearly show that filtering articles by
similarity to the caption text and similarity with each other gives a
large improvement in precision. It would be interesting future work
to refine and improve upon the filtering technique presented in this
paper. It would also be interesting to experiment with different
ways of using the history for query generation.

The news search engine we used restricted us to using Boolean
retrieval. It is an interesting open question whether a weighted
term-vector retrieval would have improved the search quality suffi-
ciently to make postfiltering redundant.

The framework of the system is not limited to news, however; we
have considered simple methods of detecting other genres (such as
sports, weather, and “general” topics) and sending such queries to
appropriate web information sources. The genres could be identi-
fied by using machine learning on a labelled corpus of television
captions; an even simpler way would be to use television schedules
and their associated metadata to categorize the current show into a
genre.

Finally, as voice recognition systems improve, the same kind of
topic finding and query generation algorithms described in this pa-
per could be applied to conversations, providing relevant informa-
tion immediately upon demand.

6. ACKNOWLEDGEMENTS
We would like to thank Shahid Choudhry for providing us with

closed caption transcripts for our experiments.

7. REFERENCES
[1] J. Allan, R. Gupta, and V. Khandelwal. Temporal summaries

of news topics. InResearch and Development in Information
Retrieval, pages 10–18, 2001.

[2] Electronic Industries Alliance. EIA-746-A: Transportof
internet uniform resource locator (url) information using
text-2 (t-2) service. Technical report, 1998.

[3] E. Brill. Transformation-based error-driven learningand
natural language processing: A case study in part-of-speech
tagging.Computation Linguistics, 21(4):543-565, 1995.

[4] S. Brin, R. Motwani, L. Page, and T. Winograd. What can
you do with a web in your pocket?Data Engineering
Bulletin, 21(2):37–47, 1998.

[5] J. Budzik, K. Hammond, and L. Birnbaum. Information
access in context.Knowledge based systems, 14(1-2):37–53,
2001.

[6] J. Davis. Intercast dying of neglect. CNET News, January
29, 1997.

[7] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G.
Nevill-Manning. Domain-specific keyphrase extraction. In
IJCAI, pages 668–673, 1999.

[8] P. Hart and J. Graham. Query-free information retrieval.
IEEE Expert, 12(5):32–37, 1997.

[9] B. Krulwich and C. Burkey. Learning user information
interests through the extraction of semantically significant



Table 9: HN data set: Percentagep of articles with score R+ out
of all returned articles and percentager of articles with score
R+ out of all articles with score R+.

Technique s Postprocessing
None Boost+

Filterp r p r
A1-BASE 7 44% 28% 69% 25%
A2-IDF2 7 45% 29% 70% 25%
A3-STEM 7 49% 25% 73% 24 %
A4-COMP 7 50% 25% 72% 23 %
A5-HIST 7 47% 26% 76% 25 %
A6-THREE 7 56% 26% 75% 23 %
A7-IDF 7 46% 29% 74% 26 %

A1-BASE 15 53% 16% 81% 15%
A2-IDF2 15 51% 16% 78% 15%
A3-STEM 15 54% 20% 75% 20%
A4-COMP 15 51% 19% 72% 20%
A5-HIST 15 52% 20% 71% 19%
A6-THREE 15 59% 19% 75% 18%
A7-IDF 15 46% 20% 75% 20%

phrases. InAAAI 1996 Spring Symposium on Machine
Learning in Information Access, 1996.

[10] H. Lieberman. Letizia: An agent that assists web browsing.
In C. S. Mellish, editor,Proceedings of the 14th
International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 924–929, 1995.

[11] P. Maglio, R. Barrett, C. Campbell, and T. Selker. Suitor: An
attentive information system. InInternational Conference on
Intelligent User Interfaces, 2000.

[12] A. Munoz. Compound key word generation from document
databases using a hierarchical clustering art model.
Intelligent Data Analysis, 1(1), 1997.

[13] M. N. Price, G. Golovchinsky, and B. N. Schilit. Linkingby
inking: Trailblazing in a paper-like hypertext. InHypertext
’98, pages 30–39, 1998.

[14] B. Rhodes and P. Maes. Just-in-time information retrieval
agents.IBM Systems Journal, 39(3-4), 2000.

[15] B. J. Rhodes.Just-In-Time Information Retrieval. PhD
thesis, MIT Media Laboratory, Cambridge, MA, May 2000.

[16] S. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7:
automatic ad hoc, filtering, VLC and interactive track. In
Proceedings of the 7th International Text Retrieval
Conference (TREC), pages 253–264, 1999.

[17] G. D. Robson. Closed captions, V-chip, and other VBI data.
Nuts and Volts, 2000.

[18] G. Salton.The SMART System – Experiments in Automatic
Document Processing.Prentice Hall, 1971.

[19] A. M. Steier and R. K. Belew. Exporting phrases: A
statistical analysis of topical language. InSecond Symposium
on Document Analysis and Information Retrieval, pages
179–190, 1993.

[20] P. D. Turney. Learning algorithms for keyphrase extraction.
Information Retrieval, 2(4):303–336, 2000.

APPENDIX

A. MORE EVALUATION DATA

Table 10: CNN data set: Percentagep of articles with score
R+ out of all returned articles and percentager of articles with
score R+ out of all articles with score R+.

Technique s Postprocessing
None Boost+

Filterp r p r
A1-BASE 7 30% 19% 61% 16%
A2-IDF2 7 31% 18% 59% 14%
A3-STEM 7 31% 16% 59% 14%
A4-COMP 7 31% 16% 59% 13%
A5-HIST 7 36% 21% 64% 18%
A6-THREE 7 40% 20% 61% 17%
A7-IDF 7 37% 18% 65% 18%

A1-BASE 15 35% 12% 66% 11%
A2-IDF2 15 43% 12% 67% 10%
A3-STEM 15 37% 12% 51% 9%
A4-COMP 15 39% 12% 58% 10%
A5-HIST 15 40% 16% 60% 14%
A6-THREE 15 49% 16% 59% 15%
A7-IDF 15 36% 16% 56% 14%

Table 11: CNN data set: Percentage of topics with at least one
relevant article and percentage of topics with at least one article
rated R+.

Technique s Score R Score R+
None Boost None Boost

Filter Filter
A1-BASE 7 86% 81% 83% 81%
A2-IDF2 7 83% 81% 81% 75%
A3-STEM 7 83% 72% 72% 69%
A4-COMP 7 83% 75% 78% 69%
A5-HIST 7 89% 72% 81% 72%
A7-IDF 7 92% 69% 78% 67%

A1-BASE 15 81% 78% 72% 72%
A2-IDF2 15 75% 72% 67% 61%
A3-STEM 15 69% 64% 64% 61%
A4-COMP 15 72% 67% 64% 64%
A5-HIST 15 78% 75% 69% 67%
A7-IDF 15 78% 75% 64% 69%

Table 12: HN data set withs = 15: Percentage of queries that
are identical when sorted lexicographically.

A1- A2- A3- A4- A5- A6- A7-
BASE IDF2 STEM COMP HIST 3W IDF

A1 75% 34% 27% 11% 6% 14%
A2 75% 40% 32% 13% 9% 11%
A3 34% 40% 82% 33% 21% 25%
A4 27% 32% 82% 45% 21% 32%
A5 11% 13% 33% 45% 38% 57%
A6 6% 9% 21% 21% 38% 25%
A7 14% 11% 25% 32% 57% 25%


