
Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging
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Abstract

We consider the construction of part-of-speech
taggers for resource-poor languages. Recently,
manually constructed tag dictionaries from
Wiktionary and dictionaries projected via bitext
have been used as type constraints to overcome
the scarcity of annotated data in this setting.
In this paper, we show that additional token
constraints can be projected from a resource-
rich source language to a resource-poor target
language via word-aligned bitext. We present
several models to this end; in particular a par-
tially observed conditional random field model,
where coupled token and type constraints pro-
vide a partial signal for training. Averaged
across eight previously studied Indo-European
languages, our model achieves a 25% relative
error reduction over the prior state of the art.
We further present successful results on seven
additional languages from different families,
empirically demonstrating the applicability of
coupled token and type constraints across a
diverse set of languages.

1 Introduction

Supervised part-of-speech (POS) taggers are avail-
able for more than twenty languages and achieve ac-
curacies of around 95% on in-domain data (Petrov et
al., 2012). Thanks to their efficiency and robustness,
supervised taggers are routinely employed in many
natural language processing applications, such as syn-
tactic and semantic parsing, named-entity recognition
and machine translation. Unfortunately, the resources
required to train supervised taggers are expensive to
create and unlikely to exist for the majority of written

∗Work primarily carried out while at Google Research.

languages. The necessity of building NLP tools for
these resource-poor languages has been part of the
motivation for research on unsupervised learning of
POS taggers (Christodoulopoulos et al., 2010).

In this paper, we instead take a weakly supervised
approach towards this problem. Recently, learning
POS taggers with type-level tag dictionary constraints
has gained popularity. Tag dictionaries, noisily pro-
jected via word-aligned bitext, have bridged the gap
between purely unsupervised and fully supervised
taggers, resulting in an average accuracy of over 83%
on a benchmark of eight Indo-European languages
(Das and Petrov, 2011). Li et al. (2012) further im-
proved upon this result by employing Wiktionary1 as
a tag dictionary source, resulting in the hitherto best
published result of almost 85% on the same setup.

Although the aforementioned weakly supervised
approaches have resulted in significant improvements
over fully unsupervised approaches, they have not
exploited the benefits of token-level cross-lingual
projection methods, which are possible with word-
aligned bitext between a target language of interest
and a resource-rich source language, such as English.
This is the setting we consider in this paper (§2).
While prior work has successfully considered both
token- and type-level projection across word-aligned
bitext for estimating the model parameters of genera-
tive tagging models (Yarowsky and Ngai, 2001; Xi
and Hwa, 2005, inter alia), a key observation under-
lying the present work is that token- and type-level
information offer different and complementary sig-
nals. On the one hand, high confidence token-level
projections offer precise constraints on a tag in a
particular context. On the other hand, manually cre-

1http://www.wiktionary.org/.



ated type-level dictionaries can have broad coverage
and do not suffer from word-alignment errors; they
can therefore be used to filter systematic as well as
random noise in token-level projections.

In order to reap these potential benefits, we pro-
pose a partially observed conditional random field
(CRF) model (Lafferty et al., 2001) that couples to-
ken and type constraints in order to guide learning
(§3). In essence, the model is given the freedom to
push probability mass towards hypotheses consistent
with both types of information. This approach is flex-
ible: we can use either noisy projected or manually
constructed dictionaries to generate type constraints;
furthermore, we can incorporate arbitrary features
over the input. In addition to standard (contextual)
lexical features and transition features, we observe
that adding features from a monolingual word cluster-
ing (Uszkoreit and Brants, 2008) can significantly im-
prove accuracy. While most of these features can also
be used in a generative feature-based hidden Markov
model (HMM) (Berg-Kirkpatrick et al., 2010), we
achieve the best accuracy with a globally normalized
discriminative CRF model.

To evaluate our approach, we present extensive
results on standard publicly available datasets for 15
languages: the eight Indo-European languages pre-
viously studied in this context by Das and Petrov
(2011) and Li et al. (2012), and seven additional lan-
guages from different families, for which no compa-
rable study exists. In §4 we compare various features,
constraints and model types. Our best model uses
type constraints derived from Wiktionary, together
with token constraints derived from high-confidence
word alignments. When averaged across the eight
languages studied by Das and Petrov (2011) and Li
et al. (2012), we achieve an accuracy of 88.8%. This
is a 25% relative error reduction over the previous
state of the art. Averaged across all 15 languages,
our model obtains an accuracy of 84.5% compared to
78.5% obtained by a strong generative baseline. Fi-
nally, we provide an in depth analysis of the relative
contributions of the two types of constraints in §5.

2 Coupling Token and Type Constraints

Type-level information has been amply used in
weakly supervised POS induction, either via pure
manually crafted tag dictionaries (Smith and Eisner,

2005; Ravi and Knight, 2009; Garrette and Baldridge,
2012), noisily projected tag dictionaries (Das and
Petrov, 2011) or through crowdsourced lexica, such
as Wiktionary (Li et al., 2012). At the other end
of the spectrum, there have been efforts that project
token-level information across word-aligned bitext
(Yarowsky and Ngai, 2001; Xi and Hwa, 2005). How-
ever, systems that combine both sources of informa-
tion in a single model have yet to be fully explored.
The following three subsections outline our overall
approach for coupling these two types of information
to build robust POS taggers that do not require any
direct supervision in the target language.

2.1 Token Constraints

For the majority of resource-poor languages, there
is at least some bitext with a resource-rich source
language; for simplicity, we choose English as our
source language in all experiments. It is then nat-
ural to consider using a supervised part-of-speech
tagger to predict part-of-speech tags for the English
side of the bitext. These predicted tags can subse-
quently be projected to the target side via automatic
word alignments. This approach was pioneered by
Yarowsky and Ngai (2001), who used the resulting
partial target annotation to estimate the parameters
of an HMM. However, due to the automatic nature
of the word alignments and the POS tags, there will
be significant noise in the projected tags. To conquer
this noise, they used very aggressive smoothing tech-
niques when training the HMM. Fossum and Abney
(2005) used similar token-level projections, but in-
stead combined projections from multiple source lan-
guages to filter out random projection noise as well
as the systematic noise arising from different source
language annotations and syntactic divergences.

2.2 Type Constraints

It is well known that given a tag dictionary, even if
it is incomplete, it is possible to learn accurate POS
taggers (Smith and Eisner, 2005; Goldberg et al.,
2008; Ravi and Knight, 2009; Naseem et al., 2009).
While widely differing in the specific model struc-
ture and learning objective, all of these approaches
achieve excellent results. Unfortunately, they rely
on tag dictionaries extracted directly from the un-
derlying treebank data. Such dictionaries provide in
depth coverage of the test domain and also list all
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Figure 1: Lattice representation of the inference search space Y(x) for an authentic sentence in Swedish (“The farming
products must be pure and must not contain any additives”), after pruning with Wiktionary type constraints. The
correct parts of speech are listed underneath each word. Bold nodes show projected token constraints ỹ. Underlined
text indicates incorrect tags. The coupled constraints lattice Ŷ(x, ỹ) consists of the bold nodes together with nodes for
words that are lacking token constraints; in this case, the coupled constraints lattice thus defines exactly one valid path.

inflected forms – both of which are difficult to obtain
and unrealistic to expect for resource-poor languages.

In contrast, Das and Petrov (2011) automatically
create type-level tag dictionaries by aggregating over
projected token-level information extracted from bi-
text. To handle the noise in these automatic dictionar-
ies, they use label propagation on a similarity graph
to smooth (and also expand) the label distributions.
While their approach produces good results and is
applicable to resource-poor languages, it requires a
complex multi-stage training procedure including the
construction of a large distributional similarity graph.

Recently, Li et al. (2012) presented a simple and
viable alternative: crowdsourced dictionaries from
Wiktionary. While noisy and sparse in nature, Wik-
tionary dictionaries are available for 170 languages.2

Furthermore, their quality and coverage is growing
continuously (Li et al., 2012). By incorporating type
constraints from Wiktionary into the feature-based
HMM of Berg-Kirkpatrick et al. (2010), Li et al. were
able to obtain the best published results in this setting,
surpassing the results of Das and Petrov (2011) on
eight Indo-European languages.

2.3 Coupled Constraints

Rather than relying exclusively on either token or
type constraints, we propose to complement the one
with the other during training. For each sentence in
our training set, a partially constrained lattice of tag
sequences is constructed as follows:

2http://meta.wikimedia.org/wiki/
Wiktionary — October 2012.

1. For each token whose type is not in the tag dic-
tionary, we allow the entire tag set.

2. For each token whose type is in the tag dictio-
nary, we prune all tags not licensed by the dictio-
nary and mark the token as dictionary-pruned.

3. For each token that has a tag projected via a
high-confidence bidirectional word alignment:
if the projected tag is still present in the lattice,
then we prune every tag but the projected tag for
that token; if the projected tag is not present in
the lattice, which can only happen for dictionary-
pruned tokens, then we ignore the projected tag.

Figure 1 provides a running example. The lattice
shows tags permitted after constraining the words
to tags licensed by the dictionary (up until Step 2
from above). There is only a single token “Jordbruk-
sprodukterna” (“the farming products”) not in the
dictionary; in this case the lattice permits the full
set of tags. With token-level projections (Step 3;
nodes with bold border in Figure 1), the lattice can
be further pruned. In most cases, the projected tag
is both correct and is in the dictionary-pruned lattice.
We thus successfully disambiguate such tokens and
shrink the search space substantially.

There are two cases we highlight in order to show
where our model can break. First, for the token
“Jordbruksprodukterna”, the erroneously projected
tag ADJ will eliminate all other tags from the lattice,
including the correct tag NOUN. Second, the token
“några” (“any”) has a single dictionary entry PRON

and is missing the correct tag DET. In the case where



DET is the projected tag, we will not add it to the
lattice and simply ignore it. This is because we hy-
pothesize that the tag dictionary can be trusted more
than the tags projected via noisy word alignments. As
we will see in §4, taking the union of tags performs
worse, which supports this hypothesis.

For generative models, such as HMMs (§3.1), we
need to define only one lattice. For our best gen-
erative model this is the coupled token- and type-
constrained lattice.3 At prediction time, in both the
discriminative and the generative cases, we find the
most likely label sequence using Viterbi decoding.

For discriminative models, such as CRFs (§3.2),
we need to define two lattices: one that the model
moves probability mass towards and another one
defining the overall search space (or partition func-
tion). In traditional supervised learning without a
dictionary, the former is a trivial lattice containing
the gold standard tag sequence and the latter is the
set of all possible tag sequences spanning the tokens.
With our best model, we will move mass towards the
coupled token- and type-constrained lattice, such that
the model can freely distribute mass across all paths
consistent with these constraints. The lattice defining
the partition function will be the full set of possible
tag sequences when no dictionary is used; when a
dictionary is used it will consist of all dictionary-
pruned tag sequences (sans Step 3 above; the full set
of possibilities shown in Figure 1 for our running
example).

Figures 2 and 3 provide statistics regarding the
supervision coverage and remaining ambiguity. Fig-
ure 2 shows that more than two thirds of all tokens in
our training data are in Wiktionary. However, there is
considerable variation between languages: Spanish
has the highest coverage with over 90%, while Turk-
ish, an agglutinative language with a vast number
of word forms, has less than 50% coverage. Fig-
ure 3 shows that there is substantial uncertainty left
after pruning with Wiktionary, since tokens are rarely
fully disambiguated: 1.3 tags per token are allowed
on average for types in Wiktionary.

Figure 2 further shows that high-confidence align-
ments are available for about half of the tokens for
most languages (Japanese is a notable exception with

3Other training methods exist as well, for example, con-
trastive estimation (Smith and Eisner, 2005).
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Figure 2: Wiktionary and projection dictionary coverage.
Shown is the percentage of tokens in the target side of the
bitext that are covered by Wiktionary, that have a projected
tag, and that have a projected tag after intersecting the two.
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Figure 3: Average number of licensed tags per token on
the target side of the bitext, for types in Wiktionary.

less than 30% of the tokens covered). Intersecting the
Wiktionary tags and the projected tags (Step 2 and 3
above) filters out some of the potentially erroneous
tags, but preserves the majority of the projected tags;
the remaining, presumably more accurate projected
tags cover almost half of all tokens, greatly reducing
the search space that the learner needs to explore.

3 Models with Coupled Constraints

We now formally present how we couple token and
type constraints and how we use these coupled con-
straints to train probabilistic tagging models. Let
x = (x1x2 . . . x|x|) ∈ X denote a sentence, where
each token xi ∈ V is an instance of a word type from
the vocabulary V and let y = (y1y2 . . . y|x|) ∈ Y de-
note a tag sequence, where yi ∈ T is the tag assigned
to token xi and T denotes the set of all possible part-
of-speech tags. We denote the lattice of all admissible
tag sequences for the sentence x by Y(x). This is the



inference search space in which the tagger operates.
As we shall see, it is crucial to constrain the size of
this lattice in order to simplify learning when only
incomplete supervision is available.

A tag dictionary maps a word type xj ∈ V to
a set of admissible tags T (xj) ⊆ T . For word
types not in the dictionary we allow the full set of
tags T (while possible, in this paper we do not at-
tempt to distinguish closed-class versus open-class
words). When provided with a tag dictionary, the
lattice of admissible tag sequences for a sentence x
is Y(x) = T (x1) × T (x2) × . . . × T (x|x|). When
no tag dictionary is available, we simply have the full
lattice Y(x) = T |x|.

Let ỹ = (ỹ1ỹ2 . . . ỹ|x|) be the projected tags for
the sentence x. Note that {ỹi} = ∅ for tokens without
a projected tag. Next, we define a piecewise operator
_ that couples ỹ and Y(x) with respect to every
sentence index, which results in a token- and type-
constrained lattice. The operator behaves as follows,
coherent with the high level description in §2.3:

T̂ (xi, ỹi) = ỹi _ T (xi) =

{
{ỹi} if ỹi ∈ T (xi)

T (xi) otherwise .

We denote the token- and type-constrained lattice as
Ŷ(x, ỹ) = T̂ (x1, ỹ1)×T̂ (x2, ỹ2)×. . .×T̂ (x|x|, ỹ|x|).
Note that when token-level projections are not used,
the dictionary-pruned lattice and the lattice with cou-
pled constraints are identical, that is Ŷ(x, ỹ) = Y(x).

3.1 HMMs with Coupled Constraints
A first-order hidden Markov model (HMM) specifies
the joint distribution of a sentence x ∈ X and a
tag-sequence y ∈ Y(x) as:

pβ(x, y) =

|x|∏
i=1

pβ(xi | yi)︸ ︷︷ ︸
emission

pβ(yi | yi−1)︸ ︷︷ ︸
transition

.

We follow the recent trend of using a log-linear
parametrization of the emission and the transition
distributions, instead of a multinomial parametriza-
tion (Chen, 2003). This allows model parameters β
to be shared across categorical events, which has
been shown to give superior performance (Berg-
Kirkpatrick et al., 2010). The categorical emission
and transition events are represented by feature vec-
tors φ(xi, yi) and φ(yi, yi−1). Each element of the

parameter vector β corresponds to a particular fea-
ture; the component log-linear distributions are:

pβ(xi | yi) =
exp

(
β>φ(xi, yi)

)∑
x′i∈V

exp (β>φ(x′i, yi))
,

and

pβ(yi | yi−1) =
exp

(
β>φ(yi, yi−1)

)∑
y′i∈T

exp (β>φ(y′i, yi−1))
.

In maximum-likelihood estimation of the parameters,
we seek to maximize the likelihood of the observed
parts of the data. For this we need the joint marginal
distribution pβ(x, Ŷ(x, ỹ)) of a sentence x, and its
coupled constraints lattice Ŷ(x, ỹ), which is obtained
by marginalizing over all consistent outputs:

pβ(x, Ŷ(x, ỹ)) =
∑

y∈Ŷ(x,ỹ)

pβ(x, y) .

If there are no projections and no tag dictionary, then
Ŷ(x, ỹ) = T |x|, and thus pβ(x, Ŷ(x, ỹ)) = pβ(x),
which reduces to fully unsupervised learning. The
`2-regularized marginal joint log-likelihood of the
constrained training data D = {(x(i), ỹ(i))}ni=1 is:

L(β;D) =

n∑
i=1

log pβ(x(i), Ŷ(x(i), ỹ(i)))−γ ‖β‖22 .

(1)
We follow Berg-Kirkpatrick et al. (2010) and take a
direct gradient approach for optimizing Eq. 1 with
L-BFGS (Liu and Nocedal, 1989). We set γ = 1 and
run 100 iterations of L-BFGS. One could also em-
ploy the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) to optimize this objective, al-
though the relative merits of EM versus direct gradi-
ent training for these models is still a topic of debate
(Berg-Kirkpatrick et al., 2010; Li et al., 2012).4 Note
that since the marginal likelihood is non-concave, we
are only guaranteed to find a local maximum of Eq. 1.

After estimating the model parameters β, the tag-
sequence y∗ ∈ Y(x) for a sentence x ∈ X is pre-
dicted by choosing the one with maximal joint prob-
ability:

y∗ ← arg max
y∈Y(x)

pβ(x, y) .

4We trained the HMM with EM as well, but achieved better
results with direct gradient training and hence omit those results.



3.2 CRFs with Coupled Constraints
Whereas an HMM models the joint probability of
the input x ∈ X and output y ∈ Y(x), using locally
normalized component distributions, a conditional
random field (CRF) instead models the probability of
the output conditioned on the input as a globally nor-
malized log-linear distribution (Lafferty et al., 2001):

pθ(y | x) =
exp

(
θ>Φ(x, y)

)∑
y′∈Y(x) exp (θ>Φ(x, y′))

,

where θ is a parameter vector. As for the HMM,
Y(x) is not necessarily the full space of possible
tag-sequences; specifically, for us, it is the dictionary-
pruned lattice without the token constraints.

With a first-order Markov assumption, the feature
function factors as:

Φ(x, y) =

|x|∑
i=1

φ(x, yi, yi−1) .

This model is more powerful than the HMM in that
it can use richer feature definitions, such as joint in-
put/transition features and features over a wider input
context. We model a marginal conditional probabil-
ity, given by the total probability of all tag sequences
consistent with the lattice Ŷ(x, ỹ):

pθ(Ŷ(x, ỹ) | x) =
∑

y∈Ŷ(x,ỹ)

pθ(y | x) .

The parameters of this constrained CRF are estimated
by maximizing the `2-regularized marginal condi-
tional log-likelihood of the constrained data (Riezler
et al., 2002):

L(θ;D) =

n∑
i=1

log pθ(Ŷ(x(i), ỹ(i)) | x(i))− γ‖θ‖22 .

(2)
As with Eq. 1, we maximize Eq. 2 with 100 itera-
tions of L-BFGS and set γ = 1. In contrast to the
HMM, after estimating the model parameters θ, the
tag-sequence y∗ ∈ Y(x) for a sentence x ∈ X is
chosen as the sequence with the maximal conditional
probability:

y∗ ← arg max
y∈Y(x)

pθ(y | x) .

4 Empirical Study

We now present a detailed empirical study of the mod-
els proposed in the previous sections. In addition to
comparing with the state of the art in Das and Petrov
(2011) and Li et al. (2012), we present models with
several combinations of token and type constraints,
additional features incorporating word clusters. Both
generative and discriminative models are explored.

4.1 Experimental Setup

Before delving into the experimental details, we
present our setup and datasets.
Languages. We evaluate on eight target languages
used in previous work (Das and Petrov, 2011; Li et
al., 2012) and on seven additional languages (see Ta-
ble 1). While the former eight languages all belong to
the Indo-European family, we broaden the coverage
to language families more distant from the source
language (for example, Chinese, Japanese and Turk-
ish). We use the treebanks from the CoNLL shared
tasks on dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007) for evaluation.5 The two-
letter abbreviations from the ISO 639-1 standard are
used when referring to these languages in tables and
figures.
Tagset. In all cases, we map the language-specific
POS tags to universal POS tags using the mapping
of Petrov et al. (2012).6 Since we use indirect super-
vision via projected tags or Wiktionary, the model
states induced by all models correspond directly to
POS tags, enabling us to compute tagging accuracy
without a greedy 1-to-1 or many-to-1 mapping.
Bitext. For all experiments, we use English as the
source language. Depending on availability, there
are between 1M and 5M parallel sentences for each
language. The majority of the parallel data is gath-
ered automatically from the web using the method
of Uszkoreit et al. (2010). We further include data
from Europarl (Koehn, 2005) and from the UN par-
allel corpus (UN, 2006), for languages covered by
these corpora. The English side of the bitext is
POS tagged with a standard supervised CRF tagger,
trained on the Penn Treebank (Marcus et al., 1993),
with tags mapped to universal tags. The parallel sen-

5For French we use the treebank of Abeillé et al. (2003).
6We use version 1.03 of the mappings available at http:

//code.google.com/p/universal-pos-tags/.



tences are word aligned with the aligner of DeNero
and Macherey (2011). Intersected high-confidence
alignments (confidence >0.95) are extracted and ag-
gregated into projected type-level dictionaries. For
purely practical reasons, the training data with token-
level projections is created by randomly sampling
target-side sentences with a total of 500K tokens.
Wiktionary. We use a snapshot of the Wiktionary
word definitions, and follow the heuristics of Li et
al. (2012) for creating the Wiktionary dictionary by
mapping the Wiktionary tags to universal POS tags.7

Features. For all models, we use only an identity
feature for tag-pair transitions. We use five features
that couple the current tag and the observed word
(analogous to the emission in an HMM): word iden-
tity, suffixes of up to length 3, and three indicator
features that fire when the word starts with a capital
letter, contains a hyphen or contains a digit. These are
the same features as those used by Das and Petrov
(2011). Finally, for some models we add a word
cluster feature that couples the current tag and the
word cluster identity of the word. These (monolin-
gual) word clusters are induced with the exchange
algorithm (Uszkoreit and Brants, 2008). We set the
number of clusters to 256 across all languages, as this
has previously been shown to produce robust results
for similar tasks (Turian et al., 2010; Täckström et
al., 2012). The clusters for each language are learned
on a large monolingual newswire corpus.

4.2 Models with Type Constraints
To examine the sole effect of type constraints, we
experiment with the HMM, drawing constraints from
three different dictionaries. Table 1 compares the per-
formance of our models with the best results of Das
and Petrov (2011, D&P) and Li et al. (2012, LG&T).
As in previous work, training is done exclusively on
the training portion of each treebank, stripped of any
manual linguistic annotation.

We first use all of our parallel data to generate
projected tag dictionaries: the English POS tags are
projected across word alignments and aggregated to
tag distributions for each word type. As in Das and
Petrov (2011), the distributions are then filtered with
a threshold of 0.2 to remove noisy tags and to create

7The definitions were downloaded on August 31, 2012 from
http://toolserver.org/˜enwikt/definitions/.
This snapshot is more recent than that used by Li et al.

Prior work HMM with type constraints

Lang. D&P LG&T YHMM
proj. YHMM

wik. YHMM
union YHMM

union +C

bg – – 84.2 68.1 87.2 87.9
cs – – 75.4 70.2 75.4 79.2
da 83.2 83.3 87.7 82.0 78.4 89.5
de 82.8 85.8 86.6 85.1 80.0 88.3
el 82.5 79.2 83.3 83.8 86.0 83.2
es 84.2 86.4 83.9 83.7 88.3 87.3
fr – – 88.4 75.7 75.6 86.6
it 86.8 86.5 89.0 85.4 89.9 90.6
ja – – 45.2 76.9 74.4 73.7
nl 79.5 86.3 81.7 79.1 83.8 82.7
pt 87.9 84.5 86.7 79.0 83.8 90.4
sl – – 78.7 64.8 82.8 83.4
sv 80.5 86.1 80.6 85.9 85.9 86.7
tr – – 66.2 44.1 65.1 65.7
zh – – 59.2 73.9 63.2 73.0

avg (8) 83.4 84.8 84.9 83.0 84.5 87.3
avg – – 78.5 75.9 80.0 83.2

Table 1: Tagging accuracies for type-constrained HMM
models. D&P is the “With LP” model in Table 2 of
Das and Petrov (2011), while LG&T is the “SHMM-ME”
model in Table 2 of Li et al. (2012). YHMM

proj. , YHMM
wik. and

YHMM
union are HMMs trained solely with type constraints

derived from the projected dictionary, Wiktionary and
the union of these dictionaries, respectively. YHMM

union +C is
equivalent to YHMM

union with additional cluster features. All
models are trained on the treebank of each language,
stripped of gold labels. Results are averaged over the
8 languages from Das and Petrov (2011), denoted avg (8),
as well as over the full set of 15 languages, denoted avg.

an unweighted tag dictionary. We call this model
YHMM

proj. ; its average accuracy of 84.9% on the eight
languages is higher than the 83.4% of D&P and on
par with LG&T (84.8%).8 Our next model (YHMM

wik. )
simply draws type constraints from Wiktionary. It
slightly underperforms LG&T (83.0%), presumably
because they used a second-order HMM. As a simple
extension to these two models, we take the union
of the projected dictionary and Wiktionary to con-
strain an HMM, which we name YHMM

union . This model
performs a little worse on the eight Indo-European
languages (84.5), but gives an improvement over the
projected dictionary when evaluated across all 15
languages (80.0% vs. 78.5%).

8Our model corresponds to the weaker, “No LP” projection
of Das and Petrov (2011). We found that label propagation was
only beneficial when small amounts of bitext were available.



Token constraints HMM with coupled constraints CRF with coupled constraints

Lang. YHMM
union +C+L ỹHMM+C+L ỹCRF+C+L ŶHMM

proj. +C+L ŶHMM
wik. +C+L ŶHMM

union +C+L ŶCRF
proj. +C+L ŶCRF

wik. +C+L ŶCRF
union+C+L

bg 87.7 77.9 84.1 84.5 83.9 86.7 86.0 87.8 85.4
cs 78.3 65.4 74.9 74.8 81.1 76.9 74.7 80.3** 75.0
da 87.3 80.9 85.1 87.2 85.6 88.1 85.5 88.2* 86.0
de 87.7 81.4 83.3 85.0 89.3 86.7 84.4 90.5** 85.5
el 85.9 81.1 77.8 80.1 87.0 83.9 79.6 89.5** 79.7
es 89.1** 84.1 85.5 83.7 85.9 88.0 85.7 87.1 86.0
fr 88.4** 83.5 84.7 85.9 86.4 87.4 84.9 87.2 85.6
it 89.6 85.2 88.5 88.7 87.6 89.8 88.3 89.3 89.4
ja 72.8 47.6 54.2 43.2 76.1 70.5 44.9 81.0** 68.0
nl 83.1 78.4 82.4 82.3 84.2 83.2 83.1 85.9** 83.2
pt 89.1 84.7 87.0 86.6 88.7 88.0 87.9 91.0** 88.3
sl 82.4 69.8 78.2 78.5 81.8 80.1 79.7 82.3 80.0
sv 86.1 80.1 84.2 82.3 87.9 86.9 84.4 88.9** 85.5
tr 62.4 58.1 64.5 64.6 61.8 64.8 65.0 64.1** 65.2
zh 72.6 52.7 39.5 56.0 74.1 73.3 59.7 74.4** 73.4

avg (8) 87.2 82.0 84.2 84.5 87.0 86.8 84.9 88.8 85.4
avg 82.8 74.1 76.9 77.6 82.8 82.3 78.2 84.5 81.1

Table 2: Tagging accuracies for models with token constraints and coupled token and type constraints. All models use
cluster features (. . . +C) and are trained on large training sets each containing 500k tokens with (partial) token-level
projections (. . . +L). The best type-constrained model, trained on the larger datasets, YHMM

union +C+L, is included for
comparison. The remaining columns correspond to HMM and CRF models trained only with token constraints (ỹ . . .)
and with coupled token and type constraints (Ŷ . . .). The latter are trained using the projected dictionary (·proj.),
Wiktionary (·wik.) and the union of these dictionaries (·union), respectively. The search spaces of the models trained with
coupled constraints (Ŷ . . .) are each pruned with the respective tag dictionary used to derive the coupled constraints.
The observed difference between ŶCRF

wik. +C+L and YHMM
union +C+L is statistically significant at p < 0.01 (**) and p < 0.015

(*) according to a paired bootstrap test (Efron and Tibshirani, 1993). Significance was not assessed for avg or avg (8).

We next add monolingual cluster features to
the model with the union dictionary. This model,
YHMM

union +C, significantly outperforms all other type-
constrained models, demonstrating the utility of
word-cluster features.9 For further exploration, we
train the same model on the datasets containing 500K
tokens sampled from the target side of the parallel
data (YHMM

union +C+L); this is done to explore the effects
of large data during training. We find that training
on these datasets result in an average accuracy of
87.2% which is comparable to the 87.3% reported
for YHMM

union +C in Table 1. This shows that the different
source domain and amount of training data does not
influence the performance of the HMM significantly.

Finally, we train CRF models where we treat type
constraints as a partially observed lattice and use the
full unpruned lattice for computing the partition func-

9These are monolingual clusters. Bilingual clusters as intro-
duced in Täckström et al. (2012) might bring additional benefits.

tion (§3.2). Due to space considerations, the results
of these experiments are not shown in table 1. We ob-
serve similar trends in these results, but on average,
accuracies are much lower compared to the type-
constrained HMM models; the CRF model with the
union dictionary along with cluster features achieves
an average accuracy of 79.3% when trained on same
data. This result is not unsurprising. First, the CRF’s
search space is fully unconstrained. Second, the dic-
tionary only provides a weak set of observation con-
straints, which do not provide sufficient information
to successfully train a discriminative model. How-
ever, as we will observe next, coupling the dictionary
constraints with token-level information solves this
problem.

4.3 Models with Token and Type Constraints

We now proceed to add token-level information,
focusing in particular on coupled token and type



constraints. Since it is not possible to generate
projected token constraints for our monolingual
treebanks, we train all models in this subsection
on the 500K-tokens datasets sampled from the bi-
text. As a baseline, we first train HMM and CRF
models that use only projected token constraints
(ỹHMM+C+L and ỹCRF+C+L). As shown in Table 2,
these models underperform the best type-level model
(YHMM

union +C+L),10 which confirms that projected to-
ken constraints are not reliable on their own. This
is in line with similar projection models previously
examined by Das and Petrov (2011).

We then study models with coupled token and type
constraints. These models use the same three dictio-
naries as used in §4.2, but additionally couple the
derived type constraints with projected token con-
straints; see the caption of Table 2 for a list of these
models. Note that since we only allow projected tags
that are licensed by the dictionary (Step 3 of the trans-
fer, §2.3), the actual token constraints used in these
models vary with the different dictionaries.

From Table 2, we see that coupled constraints are
superior to token constraints, when used both with
the HMM and the CRF. However, for the HMM, cou-
pled constraints do not provide any benefit over type
constraints alone, in particular when the projected
dictionary or the union dictionary is used to derive the
coupled constraints (ŶHMM

proj. +C+L and ŶHMM
union +C+L).

We hypothesize that this is because these dictionar-
ies (in particular the former) have the same bias as
the token-level tag projections, so that the dictionary
is unable to correct the systematic errors in the pro-
jections (see §2.1). Since the token constraints are
stronger than the type constraints in the coupled mod-
els, this bias may have a substantial impact. With
the Wiktionary dictionary, the difference between the
type-constrained and the coupled-constrained HMM
is negligible: YHMM

union +C+L and ŶHMM
wik. +C+L both av-

erage at an accuracy of 82.8%.
The CRF model, on the other hand, is able to take

advantage of the complementary information in the
coupled constraints, provided that the dictionary is
able to filter out the systematic token-level errors.
With a dictionary derived from Wiktionary and pro-
jected token-level constraints, ŶCRF

wik. +C+L performs
10To make the comparison fair vis-a-vis potential divergences

in training domains, we compare to the best type-constrained
model trained on the same 500K tokens training sets.
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Figure 4: Relative influence of token and type constraints
on tagging accuracy in the ŶCRF

wik. +C+L model. Word types
are categorized according to a) their number of Wiktionary
tags (0,1,2 or 3+ tags, with 0 representing no Wiktionary
entry; top-axis) and b) the number of times they are token-
constrained in the training set (divided into buckets of
0, 1-9, 10-99 and 100+ occurrences; x-axis). The boxes
summarize the accuracy distributions across languages
for each word type category as defined by a) and b). The
horizontal line in each box marks the median accuracy,
the top and bottom mark the first and third quantile, re-
spectively, while the whiskers mark the minimum and
maximum values of the accuracy distribution.

better than all the remaining models, with an average
accuracy of 88.8% across the eight Indo-European
languages available to D&P and LG&T. Averaged
over all 15 languages, its accuracy is 84.5%.

5 Further Analysis

In this section we provide a detailed analysis of the
impact of token versus type constraints and we study
the pruning and filtering mistakes resulting from in-
complete Wiktionary entries in detail. This analysis
is based on the training portion of each treebank.

5.1 Influence of Token and Type Constraints

The empirical success of the model trained with cou-
pled token and type constraints confirms that these
constraints indeed provide complementary signals.
Figure 4 provides a more detailed view of the rela-
tive benefits of each type of constraint. We observe
several interesting trends.

First, word types that occur with more token con-
straints during training are generally tagged more
accurately, regardless of whether these types occur
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Figure 5: Average pruning accuracy (line) across lan-
guages (dots) as a function of the number of hypotheti-
cally corrected Wiktionary entries for the k most frequent
word types. For example, position 100 on the x-axis cor-
responds to manually correcting the entries for the 100
most frequent types, while position 0 corresponds to ex-
perimental conditions.

in Wiktionary. The most common scenario is for a
word type to have exactly one tag in Wiktionary and
to occur with this projected tag over 100 times in
the training set (facet 1, rightmost box). These com-
mon word types are typically tagged very accurately
across all languages.

Second, the word types that are ambiguous accord-
ing to Wiktionary (facets 2 and 3) are predominantly
frequent ones. The accuracy is typically lower for
these words compared to the unambiguous words.
However, as the number of projected token con-
straints is increased from zero to 100+ observations,
the ambiguous words are effectively disambiguated
by the token constraints. This shows the advantage
of intersecting token and type constraints.

Finally, projection generally helps for words that
are not in Wiktionary, although the accuracy for these
words never reach the accuracy of the words with
only one tag in Wiktionary. Interestingly, words that
occur with a projected tag constraint less than 100
times are tagged more accurately for types not in the
dictionary compared to ambiguous word types with
the same number of projected constraints. A possible
explanation for this is that the ambiguous words are
inherently more difficult to predict and that most of
the words that are not in Wiktionary are less common
words that tend to also be less ambiguous.
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Figure 6: Prevalence of pruning mistakes per POS tag,
when pruning the inference search space with Wiktionary.

5.2 Wiktionary Pruning Mistakes

The error analysis by Li et al. (2012) showed that the
tags licensed by Wiktionary are often valid. When
using Wiktionary to prune the search space of our
constrained models and to filter token-level projec-
tions, it is also important that correct tags are not
mistakenly pruned because they are missing from
Wiktionary. While the accuracy of filtering is more
difficult to study, due to the lack of a gold standard
tagging of the bitext, Figure 5 (position 0 on the x-
axis) shows that search space pruning errors are not
a major issue for most languages; on average the
pruning accuracy is almost 95%. However, for some
languages such as Chinese and Czech the correct tag
is pruned from the search space for nearly 10% of all
tokens. When using Wiktionary as a pruner, the upper
bound on accuracy for these languages is therefore
only around 90%. However, Figure 5 also shows that
with some manual effort we might be able to remedy
many of these errors. For example, by adding miss-
ing valid tags to the 250 most common word types in
the worst language, the minimum pruning accuracy
would rise above 95% from below 90%. If the same
was to be done for all of the studied languages, the
mean pruning accuracy would reach over 97%.

Figure 6 breaks down pruning errors resulting from
incorrect or incomplete Wiktionary entries across
the correct POS tags. From this we observe that,
for many languages, the pruning errors are highly
skewed towards specific tags. For example, for Czech
over 80% of the pruning errors are caused by mistak-
enly pruned pronouns.



6 Conclusions

We considered the problem of constructing multilin-
gual POS taggers for resource-poor languages. To
this end, we explored a number of different models
that combine token constraints with type constraints
from different sources. The best results were ob-
tained with a partially observed CRF model that ef-
fectively integrates these complementary constraints.
In an extensive empirical study, we showed that this
approach substantially improves on the state of the
art in this context. Our best model significantly out-
performed the second-best model on 10 out of 15
evaluated languages, when trained on identical data
sets, with an insignificant difference on 3 languages.
Compared to the prior state of the art (Li et al., 2012),
we observed a relative reduction in error by 25%,
averaged over the eight languages common to our
studies.
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