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Abstract Even in a commercially successful research lab, getting exten-

This paper describes unsupervised strategies for estimating
relative accuracy differences between acoustic models or lan-
guage models used for automatic speech recognition. To test
acoustic models, the approach extends ideas used for unsuper-
vised discriminative training to include a more explicit vali-
dation on held out data. To test language models, we use a
dual interpretation of the same process, this time allowing us to
measure differences by exploiting expected ‘truth gradients’ be-
tween strong and weak acoustic models. The paper shows cor-
relations between supervised and unsupervised measures across
a range of acoustic model and language model variations. We
also use unsupervised tests to assess the non-stationary nature
of mobile speech input.

Index Terms: speech recognition, unsupervised testing, non-
stationary distributions

1. Introduction

Current commercial speech recognition systems can use years
of unsupervised data to train relatively large, discriminatively
optimized, acoustic models (AM). Similarly, web-scale text cor-
pora for estimating language models (LM) are often available
online, and unsupervised recognition results themselves can
provide an additional source of LM training data.

Since there is no human transcription in any of these steps,
the remaining use for manual human transcription is for gen-
erating test sets, as a final sanity check for validating system
parameters and models. In this paper, we augment that strat-
egy with unsupervised evaluations and begin the discussion of
whether eventually we might be able to get rid of the need for
any explicit human transcription.

The motivation for human transcription for testing is ob-
vious. Despite steady advances and relative commercial suc-
cesses, it is generally accepted that humans are much more ac-
curate transcribers than automatic speech recognition systems
[1]. While there are a few notable exceptions where machines
were more accurate than humans [2], human transcription ac-
curacy is so much better, we use it unquiestioningly as our best
approximate for absolute truth.

But there are equally obvious disadvantages to relying on
human transcription. While it may feel premature, accepting
human performance as absolute truth imposes an upper bound
on accuracy. The absolute truth is not absolute, and so we’ll
eventually have to figure out how to beat it. In fact with our
current processes and tasks, below, we show that human tran-
scribers can be only comparable in accuracy to current ASR
systems. Absolute truth is already a problem. In response, we
are improving transcription processes, but also considering un-
supervised ways to augment traditional testing.

Another obvious disadvantage of human transcription is
that the tests themselves have to be limited in size and type.
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sive tests across every combination of speaker and channel type,
recognition context, language, and time period is prohibitive.
But a detailed characterization of those types of variations could
help prioritize efforts. Similarly when tests are unsupervised,
it is easier to update development and evaluation sets to avoid
problems related to stale, over-fit tests.

This is mostly an empirical paper. The next section de-
scribes some of the experiments we ran trying to assess our
existing human transcription accuracy. Then we describe the
generalizations of unsupervised discriminative training that en-
able a new evaluation strategy. Next the paper includes evalu-
ations that show correlations between supervised and unsuper-
vised tests, and concludes with unsupervised tests that start to
characterize the non-stationary distribution of spoken data com-
ing through Google mobile applications.

2. Problems with human transcriptions

Recent efforts have begun to consider human transcription ac-
curacy in the context of increased efficiency. These studies have
generally shown that depending on the amount of effort, and the
task, individual word error rates can vary from 2-15% [3, 4]. Ef-
ficiency pressures on human transcription can lead to transcrip-
tion noise and bias.

2.1. Early experiments

Over the last few years we have seen several simple experiments
not work: we have added matched data to our language mod-
els and seen error rates get worse; we have added unsupervised
acoustic modeling data matched to a new fielded acoustic con-
dition, and seen the error rates on new matched tests go up,
but surprisingly, error rates on an old test, with slightly mis-
matched conditions, go down.

For each of these, after tediously examining errors, we
found the problem was that we typically “seed” our transcrip-
tion process with the recognition result from the field. Mostly
as a matter of expedience; it is easier for the transcriber to hit re-
turn than to type “home depot in palo alto california” yet again,
and it can improve reliability since retyping can be error prone.
But the power of the suggested transcription is also enough to
bias the transcribers into rubber-stamping some of the fielded
recognition results. When the transcriber rubber-stamps an er-
ror we potentially get penalized twice. The baseline gets credit
where it should not, and a new system that corrects that error is
falsely penalized for adding an error.

The surprising improvement noted on the older, slightly
mis-matched test happened because the transcriptions for the
older test were seeded with transcriptions from an older sys-
tem, decorrelating some of the transcription bias with the cur-
rent baseline. In this case, transcription bias toward the baseline
model was a bigger effect than the change in acoustics.
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2.2. Multiple attempts

To measure the human transcription accuracy more directly we
started sending the same data for multiple attempts at human
transcription, and we intentionally reduced the quality of our
starting seeds to move any bias away from our best systems.
For one test we sent 200K Voice Search utterances to be tran-
scribed twice. Ignoring trivial differences like spaces, apostro-
phes, function words, and others, half of the transcripts agreed,
which implies a sentence transcription accuracy of 71%, assum-
ing independence of the attempts.

Similarly when we sent the remaining 100K utterances,
where transcriptions did not agree, back for two more attempts,
we were still left with about 10% of the original set with 4 dis-
tinct human transcriptions. Again assuming independence, 10%
disagreement in 4 attempts is consistent with 68% accuracy for
each attempt. But we believe our system has a sentence accu-
racy higher than 70%.

Looking through the errors many of the problems are re-
lated to cultural references, popular names, and businesses that
are not obvious to everyone. The cultural and geographic re-
quirements of the voice search task may be unusually difficult.
It combines short utterances and wide open semantic contexts
to generate surprisingly unfamiliar sounding speech. Finding
ways to bring the correct cultural context to the transcriber is
another obvious path to pursue.

3. Generalizing unsupervised
discriminative training

While some published results considered unsupervised maxi-
mum likelihood estimation of model parameters [5], many sys-
tems use unsupervised discriminative optimization, directly us-
ing recognizer output as input [6]. Cynically we might ask what
we are learning if we are using the recognition result as truth for
discriminatively optimizing its parameters. It is hard to imagine
that we can fix the errors it makes, when we use the model to
generate truth.

But when we look into the details of commonly used dis-
criminative training techniques based on maximum mutual in-
formation, we see that the LM used to generate competing hy-
potheses is not the same LM used to generate truth. To improve
the generalization of discriminative training, we use a unigram
to describe the space of potential errors [7], but a trigram or
higher to give us transcription truth with unsupervised training.

One interpretation of unsupervised discriminative training
for acoustic models is that we are using the difference between
a weak unigram and a relatively stronger trigram to give us a
known improvement in relative truth. We do not know that the
strong-LM (trigram) result is absolutely correct, we only know
that it is better than the result with the weak LM (unigram).
When there is a difference, if we can move toward the results of
the strong-LM system by changing acoustic model parameters,
then we are building a more accurate AM, that also helps with
the final system using a stronger LM. With this interpretation,
the AM learns from the ‘truth gradient’ between the strong and
weak LMs.

3.1. Unsupervised AM testing

Extending unsupervised discriminative AM training to unsuper-
vised AM testing involves retesting the criterion used during
training in a new test context. More prescriptively, we sample a
new set of live data from production logs, and take the recogni-
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tion result from the fielded system using a strong AM and LM
as assumed truth. Then we re-recognize the same data using
multiple strong acoustic models and a weak LM. If one of the
systems using a weak LM can better approximate the system
using a strong LM, then at a minimum, we can say that it is do-
ing a better job of generalizing our training criteria to new data.
More directly, we have evidence that one of the strong acoustic
models could be more accurate than the rest.

For scoring we are assuming truth from the fielded system,
not a human transcriber. Therefore, when reporting unsuper-
vised testing results, we count traditional word error rates, but
because there is no human transcription, we report it as a word
difference rate (WDR), to highlight that, for example, in the
case of unsupervised AM tests, it is the word differences be-
tween the systems with the strong and weak LM.

3.2. Unsupervised LM testing

To use the same strategy for LM testing we reverse the roles
of the AM and the LM. For better generalization of discrimina-
tive AM testing, we used a weak LM to generate more compet-
ing alternates. That establishes a truth gradient that generally
changes around 1/3 of the words. The dual for LM testing is to
use a weak AM instead. To get a truth gradient of a similar mag-
nitude with our systems, we backed off to a context-dependent
acoustic model that uses around 1/10th the number of parame-
ters of our strong models, and only uses maximum likelihood
training.

Then as above, we test with multiple strong LMs and as-
sume that the LM that can move the results of the system using
the weak AM closest to the results of the production system
(with the strong AM), is the most accurate LM. With unsuper-
vised LM testing we again report WDR and not WER, where
the magnitude of the difference is now from the difference be-
tween the strong AM and the weak AM.

3.3. Relative measures

In this paper we are ignoring the harder problem of measuring
absolute accuracy. Instead we focus on relative differences be-
tween different acoustic or language models. Others have pre-
dicted absolute error measures using statistics from the training
set as represented in the final acoustic models [8], without look-
ing at testing data. But here we are interested in estimating rela-
tive performance across production data that was unseen during
training. Our goal is to assess whether new models or new ap-
proaches are helping on new data, and whether the data might
be changing from the distributions used during training.

4. Correlating supervised and unsupervised
measures

First we show that the performance on unsupervised offline tests
for the AM and for the LM correlate with more traditional su-
pervised tests. Our production data started with primarily Voice
Search queries intended for google.com, but over time has in-
cluded increasing amounts of general Voice Input traffic which
includes a large fraction of short person-to-person messages. To
start the analyses, we consider these data streams separately.
For Voice Search, our traditional supervised test is built
from the 200K utterance set that we sent for multiple transcrip-
tions. For this test we exclude the 10% of the utterances where
we got 4 distinct human transcriptions and sample a test set ran-
domly from the remaining 90%. Similarly for the supervised



Voice Input test, we sent utterances twice and selected from the
utterances with at least 80% agreement between human tran-
scriptions. On the utterances where not all the words agreed,
we randomly chose one of the human transcriptions as truth.
This led to a test that excluded about 28% of the utterances.

Both of these supervised tests are biased in that they only
include the utterances that we could reliably transcribe. The
Voice Search test has 27K utterances and 87K words. The Voice
Input test has 49K utterances and 320K words.

For the first unsupervised tests here, we sampled production
logs for a single day of traffic. We found the median recognizer
confidence for each task and then randomly selected a few hun-
dred thousand utterances that were above median confidence for
each task. For all unsupervised experiments we used the recog-
nition results from the field as truth.

Our recognition configuration for both systems is fairly
standard and described in the literature. Specifically we use
a PLP front-end [11] together with LDA and STC [12], and
optimize our acoustic models using BMMI [13] on mostly un-
supervised data mixed from both tasks. Our language models
are n-grams, with Katz interpolation and entropy pruning, and
the fielded Voice Input system also includes dynamic interpola-
tion [14]. The Voice Search system used trigrams and the Voice
Input system included 4-grams.

4.1. AM experiments

The AM experiments use a weak LM (in this case a unigram)
for each task estimated from the few hundred thousand high
confidence utterances sampled for that day’s test. All the utter-
ances in the test were also used to train the LM, so there is no
OOV. This step is consistent with the matched unigram we train
for discriminative acoustic model training. For Voice Search,
the resulting unigram had 17K words, and for Voice Input there
were 18K unique words.

The acoustic models we tested here were trained using 11M
(mostly unsupervised) utterances from a mix of both tasks. The
parameter we vary for these experiments is the size of the acous-
tic models. We use the same decision tree and context state def-
initions for all models, but we vary the number of Gaussians
assigned to each state. Each model is trained with the same
number of iterations through all the data. The final model sizes
range from 100K to 1M Gaussians. Decoder parameters are
set in production mode, which generally means we lose around
0.5% absolute from the best possible accuracy to have faster
than real-time search.

# Gauss | Sup VS | Unsup VS | Sup VI | Unsup VI

100K 16.0 36.0 14.5 24.8
200K 153 344 13.6 22.8
340K 14.6 339 13.4 22.7
500K 14.3 333 13.2 223

M 13.9 33.0 12.9 21.8

Table 1: WER in % on supervised (Sup) and WDR in % on
unsupervised (Unsup) AM tests for Voice Search (VS) and Voice
Input (VI).

4.2. LM experiments

For the LM experiments we vary the number of n-grams used
for the Voice Input task from around 2M to 30M by varying our
final entropy pruning threshold. Unlike the production system
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used to generate truth for the unsupervised tests, for these tests
the LM is a static n-gram.

We show results with two different weak acoustic models
(A/B). Condition A is a context-dependent model estimated us-
ing maximum likelihood criteria with 2 Gaussians per state for
a total of 16K Gaussians. Condition B uses a similar model with
a variable number of Gaussians across model states, and a to-
tal of 40K Gaussians. On supervised tests, these weak acoustic
models have around two to three times the error rates of final
strong production models.

n-grams | Sup PPL | Sup WER | Unsup A/B WDR

1.9M 109 15.2 38.1/25.9
3.8M 98 14.4 36.8/24.5
7.6M 92 14.1 36.0/23.8
1M 87 139 35.5/23.2
30M 85 13.7 35.1/22.8

Table 2: Comparing supervised (Sup) and unsupervised (Un-
sup) LM tests for Voice Input. WER/WDR are in %, PPL is
perplexity. Unsup A and B are for different sized AMs.

The relative improvement in both AM and LM experiments
is consistently around 10% for a 10x increase in model size.
Correlations between supervised and unsupervised tests range
between 0.98 and 0.99.

5. Additional experiments

Varying model size is a controlled way to generate accuracy
differences. Here we include additional unsupervised measure-
ments that show expected differences in the context of other AM
and LM modeling efforts.

5.1. CMLLR

To evaluate an implementation of constrained maximum likeli-
hood linear regression [9] for adaptation, we started by testing
with read speech corpora from several data collections [10] used
to initialize acoustic models in a new context. With a large and
regular amounts of acoustic data per speaker, we see the typical
improvements of 6-10% relative, over a matched discriminative
baseline.

To estimate the accuracy impact of CMLLR on the produc-
tion system, (where the actual distributions of amount of data
per user is not imposed by the strict specifications of a data col-
lection) we used unsupervised testing. Here we sampled all per-
sonalized users over a 30 day period, and measured the change
in WDR with a weak LM and either the production AM or the
production AM with CMLLR. Further we break the differences
in WDR down by the amount of data available for each speaker.

#Utts | No Adapt | Adapt

1-20 25.7 254
20-50 26.6 25.6
50-100 25.8 24.6
100-200 23.5 22.5

Table 3: WDR in % on adaptation tests. Input is binned by the
number of utterances for a given user.

From the table, it is clear that we are seeing a similar rel-
ative difference as we saw with more traditional read speech
tests, and we are further able to characterize the expected satu-



ration of the relatively small number of parameters in CMLLR
after around 20 voice input utterances.

5.2. LM update

At one point we updated our language model to include a rescor-
ing pass more explicitly matched to recent Voice Search queries.
By testing this update with recent unsupervised tests we are able
to show the expected win on new voice search type utterances.

# Model Config | Sup VS | Unsup VS
Original 14.6 30.0
Updated 14.6 28.6

Table 4: WER in % on supervised (Sup) and WDR in % unsu-
pervised (Unsup) LM tests for Voice Search.

One interpretation of these results is that we are updating
the LM to better represent the recent query data which itself is
better matched to the recent unsupervised test. It also suggests
that the distribution of our data might be moving.

5.3. Estimating non-stationary distributions

Finally we ran two sweeps of AM tests to estimate how sta-
tionary the acoustics for our system have been over the last 14
months. The first system is trained using the Voice Search su-
pervised data available at the beginning of the 14 months, and
the second uses only unsupervised data sampled from the last
3 months. Therefore, one model represents our initial estimate
of the distribution, and the other approximates a most recent
distribution. Both systems use around 350K gaussians. To eval-
uate the AM performance, we use a weak LM estimated from a
year’s worth of production data.

Drifting Acoustics
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Figure 1: Change in WDR over time with two different AMs.

Both lines show that the distribution of the data has shifted
away from the original supervised data, and toward the recent
unsupervised data. Additional unsupervised tests will illumi-
nate the causes of this change in more detail. We currently sus-
pect an increase in the fraction of voice input recognition, but it
is already obvious that the distribution of the acoustics for this
data is changing. The plot also suggests that with a single AM
the change of WDR across conditions may also be informative.

Note that since we are generalizing from the same criteria
we used for AM training, and we are getting rid of some of
the necessity of human transcription, we are concerned about
converging away from reality. The ground is a little firmer for
the LM side, since our current LM processes are in fact not
yet learning from AM truth gradients the same way our unsu-
pervised AM training learns from LM truth gradients. From
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the AM side, our current unsupervised tests are simply check-
ing whether the training optimizations extend to unseen data.
Pragmatically, because it is unsupervised we also have the op-
portunity to test that generalization with a range of weak LMs
and with a range of input data, and thereby to increase our con-
fidence in the generalization. Moreover, reducing the accuracy
improvement provided by a strong LM seems like a safe re-
quirement to impose on AM training. But from an experiment
perspective, we have to remember what gradient we are exploit-
ing and not cheat. In other words, augmenting the AM with
features directly related to the strong LM would not lead to
improvements. We also monitor coarse signals related to ap-
plication use (counts of user actions in response to recognition
results) to give us additional complimentary evidence of suc-
cessful generalization.

6. Conclusions

This paper extends unsupervised discriminative training to an
unsupervised testing strategy suitable for evaluating AM and
LM changes. We show strong correlations with traditional test-
ing strategies when we change AM or LM model size. We also
show expected gains on unsupervised measures with other types
of AM and LM changes, and use the unsupervised measures to
begin to characterize the stationarity of the input data to Google
mobile. Together with unsupervised training, unsupervised test-
ing enables development paths that no longer impose human
performance as the upper bound for accuracy.
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