
Trickle: Rate Limiting YouTube Video Streaming

Monia Ghobadi∗

University of Toronto
monia@cs.toronto.edu

Yuchung Cheng Ankur Jain Matt Mathis
Google

{ycheng, jankur, mattmathis}@google.com

Abstract

YouTube traffic is bursty. These bursts trigger packet
losses and stress router queues, causing TCP’s
congestion-control algorithm to kick in. In this pa-
per, we introduce Trickle, a server-side mechanism that
uses TCP torate limit YouTube video streaming. Trickle
paces the video stream by placing an upper bound on
TCP’s congestion window as a function of the streaming
rate and the round-trip time. We evaluated Trickle on
YouTube production data centers in Europe and India
and analyzed its impact on losses, bandwidth, RTT, and
video buffer under-run events. The results show that
Trickle reduces the average TCP loss rate by up to 43%
and the average RTT by up to 28% while maintaining
the streaming rate requested by the application.

1 Introduction

YouTube is one of the most popular online video ser-
vices. In fall 2011, YouTube was reported to account
for 10% of Internet traffic in North America [1]. This
vast traffic is delivered over TCP using HTTP progres-
sive download. The video is delivered just-in-time to the
video player, so when the user cancels a video, only
a limited quantity of data is discarded, conserving net-
work and server resources. Since TCP is designed to de-
liver data as quickly as possible, the YouTube server,
ustreamer, limits the data rate by pacing the data into
the connection. It does so by writing 64kB data blocks
into the TCP socket at fixed intervals. Unfortunately, this
technique, termedapplication pacing, causes bursts of
back-to-back data packets in the network that have sev-
eral undesirable side effects. These bursts are responsible
for over 40% of the observed packet losses in YouTube
videos on at least one residential DSL provider [2]. This
problem is not specific to YouTube videos. Similar rate

∗Ghobadi performed this work on an internship at Google mentored
by Cheng.

limiting techniques are implemented in other popular
video websites [6], and all are expected to experience
similar side effects. For example, Netflix sends bursts as
large as 1 to 2MB.

As an alternative to application pacing, we present
Trickle to rate limit TCP on the server side. The key idea
in Trickle is to place a dynamic upper bound on the con-
gestion window (cwnd) such that TCP itself limits both
the overall data rate and maximum packet burst size us-
ing ACK clocking. The server application periodically
computes thecwnd bound from the network Round-Trip
Time (RTT) and the target streaming rate, and uses a
socket option to apply it to the TCP socket. Once it is set,
the server application can write into the socket without a
pacing timer and TCP will take care of the rest. Trickle
requires minimal changes to both server applications and
the TCP stack. In fact, Linux already supports setting the
maximum congestion window in TCP.

The main contribution of this paper is a simple and
generic technique to reduce queueing and packet loss by
smoothly rate-limiting TCP transfers. It requires only a
server-side change for easy deployment. It is not a spe-
cial mechanism tailored only for YouTube. As TCP has
emerged to be the default vehicle for most Internet appli-
cations, many of them require certain kinds of throttling.
The common practice, application pacing, may cause
burst losses and queue spikes. Through weeks-long ex-
periments on production YouTube data centers, we found
that Trickle reduces the packet losses by up to 43% and
RTTs by up to 28% compared to the application pacing.

2 Design and Implementation

The YouTube serving infrastructure is complicated, with
many interacting components, including load balancing,
hierarchical storage, multiple client types and many for-
mat conversions. All YouTube content delivery uses the
same server application, calledustreamer, independent
of client type, video format or geographic location. Us-

1

treamer supports progressive HTTP streaming and range
requests. Most of the time, a video is delivered over a
single TCP connection. However, certain events, such
as skipping forward or resizing the screen can cause the
client to close one connection and open a new one.

The just-in-time video delivery algorithm in YouTube
uses two phases: astartup phase and athrottling phase.
The startup phase builds up the playback buffer in the
client, to minimize the likelihood of player pauses due
to the rebuffering (buffer under-run) events. Ustreamer
sends the first 30 to 40 seconds of video as fast as possi-
ble into the TCP socket, like a typical bulk TCP transfer.
In the throttling phase, ustreamer uses a token bucket al-
gorithm to compute a schedule for delivering the video.
Tokens are added to the bucket at 125% of the video
encoding rate. Tokens are removed as the video is de-
livered. The delay timer for each data block (nominally
64kB) is computed to expire as soon as the bucket has
sufficient tokens. If the video delivery is running behind
for some reason, the calculated delay will be zero and the
data will be written to the socket as fast as TCP can de-
liver it. The extra 25% added to the data rate reduces the
number of rebuffering events when there are unexpected
fluctuations in network capacity, without incurring too
much additional discarded video.

The just-in-time delivery described above smoothes
the data across the duration of each video, but it has an
unfortunate interaction with TCP that causes it to send
each 64kB socket write as 45 back-to-back packets. The
problem is that bursts of data separated by idle periods
disrupt TCP’s self clocking. For most applications TCP
data transmissions are triggered by the ACKs returning
from the receiver, which provide the timing for the entire
system. With YouTube, TCP typically has no data to send
when the ACKs arrive, and then when ustreamer writes
the data to the socket it is sent immediately, because TCP
has unusedcwnd.1 These bursts can cause significant
losses, e.g., 40% of the measured YouTube losses in a
residential ISP [2]. Similar issues have also been reported
by YouTube network operations and other third parties.
Worse yet, these bursts also disrupt latency-sensitive ap-
plications by incurring periodic queue spikes [11, 17].
The queueing time of a 64kB burst over an 1Mbps link is
512ms. Our goal is to implement just-in-time video de-
livery using a mechanism that does not introduce large
bursts and preserves TCP’s self clocking.

A quick solution to the burst problem is to use smaller
blocks, e.g., 16kB instead of 64kB. However, this would
quadruple the overhead associated with write system
calls and timers on the IO-intensive YouTube servers. A

1In some cases using congestion window validation [13] would
force TCP to do new slow starts after idling over several retransmis-
sion timeouts (RTO). This would not always be useful in YouTube as
the application writes are more frequent.

better solution is to implement a rate limit in TCP itself.
One approach could leverage TCP flow control by fixing
the receiver’s window (rwin) equal to the target stream-
ing rate multiplied by RTT. Once the receiver fixesrwin,
the ustreamer can write the video data into the socket
as fast as possible. The TCP throughput will be limited
by the receive window to achieve the target streaming
rate. However, this receiver-based approach is not prac-
tical because YouTube does control user browsers. Our
solution, in contrast, sets an upper-bound oncwnd of
target rate × RTT, where thetarget rate is the target
streaming rate of a video in the throttling phase. For-
tunately, Linux already provides this feature as a per-
route option calledcwnd clamp. We wrote a small kernel
patch to make it available as a per-socket option.

The above idea encounters two practical challenges:
(1) Network congestion causing rebuffering. Follow-
ing a congestion episode, ustreamer should deliver data
faster than the target rate to restore the playback buffer.
Otherwise, the accumulated effects of multiple conges-
tion episodes will eventually cause rebuffering events
where the codec runs out of data. The current application
pacing avoids rebuffering after congestion events implic-
itly: when TCP slows down enough to stall writes to the
TCP socket, ustreamer continues to accumulate tokens.
Once the network recovers, ustreamer writes data con-
tinuously until the tokens are drained, at which point the
average rate for the entire throttled phase matches the tar-
get streaming rate. On the other hand, clamping thecwnd
will not allow such catch-up behavior. (2)Small cwnd
causing inefficient transfers. For instance, sending at
500kbps on a 20ms RTT connection requires an aver-
age window size of 1250 bytes, which is smaller than the
typical segment size. With such a tiny window all losses
must be recovered by timeouts, since TCP fast recovery
requires a window of at least four packets [5]. Further-
more, using a tiny window increases the ustreamer over-
head because it defeats TCP segmentation offload (TSO)
and raises the interrupt processing load on the servers.

Trickle starts from the basic design of cwnd limitation
and addresses both challenges. Algorithm 1 presents it in
pseudocode.2 After the startup phase, the ustreamer de-
termines the streaming rate,R, based on the video encod-
ing rate. When the data from the cache system arrives,
the ustreamer gets the RTT and the Maximum Segment
Size (MSS) of the connection (using a socket option)
to compute the upper bound of theclamp. But before
applying theclamp on the connection, ustreamer takes
two precautions to address the challenges described pre-
viously. First, to deal with transient network congestion,
ustreamer adds some headroom to theclamp. In the ex-
periments we used 20% headroom but we also get simi-

2An animated demo of Trickle is available at
http://www.cs.toronto.edu/~monia/tcptrickle.html

2

Algorithm 1: Trickle algorithm in throttling phase

R = target_rate(video_id)

while (new data available from the cache)

rtt = getsockopt(TCP_INFO)

clamp = rtt * R / MSS

clamp = 1.2 * clamp

goodput = delivered / elapsed

if goodput < R:

clamp = inf

if clamp < 10:

clamp = 10

write_throttle = true

setsockopt(MAX_CWND, clamp)

if write_throttle:

throttles writes at rate R

else:

write all available data

lar results with 5%. If the link is experiencing persistent
congestion and/or does not have enough available band-
width, the ustreamer removes theclamp by setting it to
infinity and let TCP stream as fast as possible. When the
goodput has reachedR, the ustreamer will start clamp-
ing again. Second, the ustreamer never reducesclamp

below 10 MSS to address the second constraint. Stud-
ies have shown that Internet paths can tolerate burst of
this size [7, 9]. However, doing this also increases the
streaming rate beyondR to 10×MSS/RTT. Ustreamer
thus throttles writes to rateR using application pacing.
Unlike the original ustreamer, however, our modified us-
treamer never causes bursts of more than 10 packets. Fi-
nally, the ustreamer clamps thecwnd via a socket option.
If the write throttling is enabled, it throttles the write at
rateR. Otherwise it writes all data into the socket.

3 Experiments

We performed live experiments to evaluate Trickle on
production YouTube data centers. We begin this section
with the methodology to compare Trickle and existing
application pacing, followed by details of the data cen-
ters. Then, we present the measurement results that vali-
date the A/B test setup and Trickle implementation. The
first goal is to evaluate if Trickle reduces burst drops
and queueing delays. The second goal is to ensure the
streaming quality is as good or better than current sys-
tems. This is done by measuring the average stream-
ing rate and the rebuffering events. In addition to com-
paring with current systems, we also compare with the
simplest solution, namely reducing the block size from
64kB to 16kB. We ran 4-way experiments by splitting
the servers into four groups: (1) Baseline1: application

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Retransmission rate (%)

baseline1
baseline2

Trickle
shrunk-block

Figure 1:CDF of retransmission rate in the throttling phase.

pacing with 64kB blocks, (2) Baseline2: application pac-
ing with 64kB blocks, (3) Trickle, and (4) shrunk-block:
application pacing with 16kB blocks. In order to make
an apples-to-apples comparison, new TCP connections
(video requests) are randomly assigned to the servers
in different experiment groups. Thus each experiment
group received similar distributions of users and video
requests. We use two baseline groups to estimate the con-
fidence level of the particular metric evaluated in our
analyses. All servers use the standard Linux 2.6 kernel
with CUBIC [12] congestion control. TCP configuration
details can be found in Dukkipatiet al. [8]. For every
connection, we recorded statistics including video ID, IP
and ports, bytes sent and retransmitted, RTTs, and re-
buffering events in both phases. We further filtered the
connections that never enter throttling phase (short video
playbacks less than 30 seconds). We ran experiments for
15 days during the fall of 2011 in two data centers rep-
resenting relative extremes of user network conditions:
DC1 in Western Europe and DC2 in India. We compare
the statistics in the control variables in the experiments
to validate the A/B test setup. We verified that each ex-
periment group has roughly the same number of flows
within each data center. Moreover, we ensured that flow
sizes, flow completion times, and video streaming rate in
each group are also similar across different groups in the
same data center. Due to lack of space, we refer the inter-
ested reader to our technical report for more details [10].

3.1 Packet Losses

The most important metric is packet loss because Trickle
is designed to reduce burst drops. Since losses can not
be accurately estimated in live server experiments [4],
we use retransmissions to approximate losses. Figure 1
plots the CDF of flow retransmission rate in the throttling
phase for DC1. As shown, the Trickle curve is consis-
tently above all three lines, indicating that it successfully

3

DC1 DC2
BW (Mbps) %

flows
avg.
retrans.
imprv.

%
flows

avg.
retrans.
imprv.

< 0.5 1% 5% 39% 3%
0.5−1 3% 23% 26% 8%
1−2 10% 40% 17% 32%
2−4 28% 53% 9% 47%
4−8 35% 56% 6% 47%
≥ 8 23% 53% 3% 44%

Table 1:The retransmission rate improvement bucketed by
user bandwidth.

lowers the retransmission rate consistently compared to
the other three groups. In Trickle, 90% of connections
experience retransmission rate lower than 0.5%, while
85% have this behavior using shrunk-block and 80% in
baselines. On average, Trickle reduces the average re-
transmission rate by 43% and 28% compared to the base-
lines and shrunk-block experiments groups, respectively.
Overall, Trickle effectively reduces the drop rate com-
pared to application pacing using 64kB or 16kB block
sizes. Unlike the results in DC1, however, we measured
that all four groups in DC2 have similar retransmission
rate distributions. This is because most DC2 users have
insufficient bandwidth to stream at the target rate. As
described in Section 2, Trickle will detect the delivery
is falling behind the target rate and stop clamping the
cwnd. Therefore connections are not rate-limited by the
ustreamer throttling but by the network bandwidth and
behave like bulk download in all experiment groups.

To demonstrate the effect of bandwidth, we show the
average reduction of the retransmission rate between
Trickle and baseline1 bucketed by flows’s BW in Ta-
ble 1. Given that the average target rates are 677kbps
and 604kbps in DC1 and DC2 respectively, the table
shows that users with low bandwidth do not benefit from
Trickle. On the other hand, about half of packet losses
can be avoided in for high-bandwidth users in YouTube
using Trickle.

3.2 Burst Size

The previous results show that Trickle effectively re-
duces the loss rate. In this section, we demonstrate
that the reduction is achieved by Trickle sending much
smaller bursts. We randomly sampled 1% of flows and
collected tcpdump packet traces at the server to inves-
tigate the burstiness behavior. Following the convention
of prior studies [7, 14], we use packets instead of bytes
to measure the burst size. We use the same definition of
micro-burst as Blantonet al. [7]; a burst is a sequence of

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

C
D

F

Burst size (segments)

baseline1
baseline2

Trickle
shrunk-block

Figure 2:CDF of burst size in DC1.

four or more data packets with inter-arrival time less or
equal to 1 millisecond. We use four or more packets be-
cause TCP congestion control, e.g., slow start, naturally
sends bursts up to three packets. Figure 2 plots the burst
sizes in DC1. Intuitively, most bursts in the two baseline
groups should be about 43 packets (64kB) but in reality
only 20% are. This mismatch is due to packet losses and
TCP congestion control. After a packet is lost, TCP con-
gestion control reducescwnd and gradually increases it
while streaming new data. Thesecwnd changes fragment
the intermittent 64kB application writes. The shrunk-
block curve exhibits interesting steps at 12, 23, and 34
packets corresponding to 16, 32, and 48 kB block sizes,
respectively. These steps suggest that either the applica-
tion and/or the kernel (TCP) is bunching up the writes.
We then discovered that the ustreamer token bucket im-
plementation does not pause the write for intervals less
than 100ms to save timers. For a large portion of the
flows, ustreamer continues to write 16kB blocks due to
this special handling. Lastly, in Trickle 94% of bursts are
within 10 packets, because DC1 users have short RTT
such that most videos require less than a 10 packet win-
dow to serve. As described in Section 2, Trickle lower-
bounds the clamp to 10 packets to avoid slow loss recov-
ery. The remaining 6% of bursts over 10 packets are con-
tributed by either high RTT, or high resolution videos, or
other factors that cause Trickle to not clamp thecwnd. In
summary, over 80% of bursts in Trickle are smaller than
the other mechanisms.

3.3 Queueing Delay

Sending smaller bursts not only improves loss rate, it
may also help reduce the maximum queue occupancy
on bottleneck links. It is certainly not uncommon for
users to watch online videos while surfing the Web at
the same time. Since networks today are commonly over-
buffered [22], shorter queue length improves the latency

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

C
D

F

Smoothed RTT (ms)

baseline1
baseline2

Trickle
shrunk-block

Figure 3:CDF of the smoothed RTT (srtt) samples in DC1.

of interactive applications sharing the link. We evaluate
the impact of queue length by studying the RTT mea-
surements in TCP, due to the lack of direct information
of the bottleneck queues. Recall that a RTT sample in
TCP includes both the propagation delay and queueing
delay. Given that the four experiment groups receive sim-
ilar load, the propagation delay distribution in each group
should be close. Each video stream often has hundreds
to thousands of RTT samples partly because Linux sam-
ples RTT per ACK packet. In order to reduce the sample
size, we instead use the smoothed RTT (srtt) variable at
the end of the connection. Sincesrtt is a weighted mov-
ing average of all the RTT samples, it should reflect the
overall queueing delay during the connection.

Figure 3 plots the CDF of thesrtt samples for DC1.
On average, thesrtt of connections in the Trickle group
is 28% and 10% smaller than the connections in the base-
lines and shrunk-block groups, respectively. In DC2, the
improvement over baseline is only 7% and 1%. The rea-
son is similar to the analysis in Section 3.1: throttling
is seldom activated on the slow links in DC2. We mea-
sured that the links in India are alarmingly over-buffered:
20% of thesrtt samples were over 1 second while 2%
were over 4 seconds. While these videos are likely being
streamed in the background, the interactive applications
sharing the same bottleneck queue certainly will suffer
extremely high latency. In summary, for fast networks,
Trickle connections experience much lower queueing de-
lays, which should improve interactive application laten-
cies. For slow users, the solution is to use Trickle but
serve at a lower rate (lower resolution video).

3.4 Rebuffering

Rebuffering happens when a reduction in throughput
within a TCP streaming session causes receiver buffer
starvation. When this happens, the video player stops
playing video until it receives enough packets. Rebuffer-

DC1 DC2
rebuff.
freq.
(1/s)

rebuff.
chance
(%)

rebuff.
freq.
(1/s)

rebuff.
chance
(%)

baseline1 0.0005 2.5% 0.005 26%
baseline2 0.0005 2.5% 0.005 26%
Trickle 0.0005 2.5% 0.005 26%

shrunk-block 0.0005 2.5% 0.005 27%

Table 2:A comparison of rebuffering frequency and rebuffer-
ing chance.

ing rate is an important metric in video streaming as it
reflects user experience watching videos. YouTube has a
built-in mechanism to provide real-time monitoring of
video playbacks. During a playback, the video player
sends detailed information about user interactions to the
server. The information includes the timestamps of all re-
buffering events in each TCP connection. To quantify the
user perceived performance of video streaming, we use
rebuffering chance and rebuffering frequency suggested
by previous works [18]. The rebuffering chance mea-
sures the probability of experiencing rebuffering events
and is defined by percentage of flows that experience at
least one rebuffering event. Rebuffering frequency mea-
sures how frequent the rebuffering events occur and is
defined byr/T , wherer is the number of rebuffering
events andT is the duration of a flow.

Table 2 shows the average of rebuffering metrics in
DC1 and DC2. DC2 users clearly have much worse expe-
rience than DC1 users. However, in both data centers the
rebuffering frequency and rebuffering chance are similar
between all four groups, suggesting Trickle has negligi-
ble impact on the streaming quality. Initially the results
puzzled us as we expected Trickle to improve rebuffering
by reducing burst drops. To explain the results, we stud-
ied the correlation of rebuffering and various network
metrics. We found that the bandwidth deficit, the dif-
ference between the target streaming rate and the band-
width, is the key factor for rebuffering. In both DC1 and
DC2, among the flows that do not have sufficient band-
width (positive deficit), 55% to 60% of them have ex-
perienced at least one rebuffering event. Another major
factor is when a user requests a different resolution by
starting a new connection.

4 Discussions and Related Work

Trickle is motivated by Alcocket al.’s work [2], which
identified a YouTube burst drops problem in residen-
tial broadband and university networks. Further, Ash-
win et al. showed that popular browsers also throttle the

5

video streaming in addition to server side throttling in
YouTube and Netflix [6]. The bilateral throttling mech-
anisms sometimes result in packet bursts up to several
MBs. Blantonet al. studied the correlation between burst
size and losses in TCP [7]. They discovered that bursts
less than 15 packets rarely experience loss but large (over
100) bursts nearly always do. Allmanet al. evaluated
several changes to mitigate bursts created by TCP [3].

We have also considered other solutions to rate limit
video streaming. A similar idea that requires no ker-
nel TCP change is to set the TCP send socket buffer
size [19]. In the case of YouTube, the ustreamer TCP
send buffer remains auto-tuned [20] during the startup
phase in order to send data as fast as possible. Upon
entering the throttling phase, the buffer usually is al-
ready larger than the intended clamp value. Setting a new
send buffer size is not effective until the buffered amount
drops below the new size, making it difficult to imple-
ment the throttling. Some previous work control the rate
by dynamically adjusting the TCP receive window at the
receiver or the gateway [15, 16, 21]. Instead, Trickle is
server-based making it easier to deploy in a CDN. An-
other approach is TCP pacing [23], i.e., pacingcwnd
amount of data over the RTT. While this may be the best
TCP solution to suppress bursts, it is also more complex
to implement. Moreover, studies have shown that Inter-
net paths can absorb small amount of packet bursts [7,9].
Our goal is to reduce large burst drops caused by disrup-
tions to the TCP self clocking. It is not to eliminate any
possible burst completely.

5 Conclusions

The current throttling mechanism in YouTube sends
bursts that cause losses and large queues. We presented
Trickle, which removes these large bursts by doing rate-
limiting in TCP. Trickle dynamically sets a maximum
cwnd to control the streaming rate and strictly limit the
maximum size of bursts. Through large-scale real user
experiments, Trickle has effectively reduced the retrans-
missions by up to 50% in high bandwidth networks. It
also reduces the average RTT by up to 28%.

References

[1] Sandvine global Internet report, Oct. 2011.

[2] A LCOCK, S.,AND NELSON, R. Application flow control
in YouTube video streams.CCR 41 (April 2011), 24–30.

[3] A LLMAN , M., AND BLANTON , E. Notes on burst miti-
gation for transport protocols.CCR (Apr. 2005), 53–60.

[4] A LLMAN , M., EDDY, W. M., AND OSTERMANN, S. Es-
timating loss rates with TCP.SIGMETRICS 31 (Decem-
ber 2003), 12–24.

[5] A LLMAN , M., PAXSON, V., AND BLANTON , E. TCP
congestion control, September 2009. RFC 5681.

[6] A SHWIN, R., ARNAUD, L., YEON, L., DON, T.,
CHADI , B., AND WALID , D. Network characteristics of
video streaming traffic.CoNEXT (Dec. 2011), 1–12.

[7] BLANTON , E., AND ALLMAN , M. On the impact of
bursting on TCP performance.PAM (March 2005), 1–12.

[8] DUKKIPATI , N., MATHIS, M., CHENG, Y., AND

GHOBADI , M. Proportional rate reduction for TCP.IMC
(November 2011), 155–170.

[9] DUKKIPATI , N., REFICE, T., CHENG, Y., CHU, J., HER-
BERT, T., AGARWAL , A., JAIN , A., AND SUTIN , N. An
argument for increasing TCP’s initial congestion window.
CCR 40 (2010), 26–33.

[10] GHOBADI , M., CHENG, Y., JAIN , A., AND

MATHIS, M. Trickle: Rate limiting YouTube video
streaming. Tech. rep., Google Inc., January 2012.
https://developers.google.com/speed/protocols/trickle-
tech-report.pdf.

[11] GRINNEMO, K., AND BRUNSTROM, A. Impact of traffic
load on SCTP failovers in SIGTRAN.ICN (2005), 774–
783.

[12] HA , S., RHEE, I., AND XU, L. CUBIC: a new TCP-
friendly high-speed TCP variant.SIGOPS’08 42, 64–74.

[13] HANDLEY, M., PADHYE , J.,AND FLOYD , S. TCP con-
gestion window validation, June 2000. RFC 6298.

[14] JIANG , H., AND DOVROLIS, C. Source-level IP packet
bursts: causes and effects.IMC (October 2003), 301–306.

[15] KARANDIKAR , S., KALYANARAMAN , S., BAGAL , P.,
AND PACKER, B. TCP rate control.CCR 30 (January
2000), 45–58.

[16] LOMBARDO, A., PANARELLO , C.,AND SCHEMBRA, G.
Applying active window management for jitter control
and loss avoidance in video streaming over TCP connec-
tions. IEEE Globecom (December 2010), 1–6.

[17] MOHAMMAD , R., AND ANNA , B. On the Effectiveness
of PR-SCTP in Networks with Competing Traffic.ISCC
(2011), 898–905.

[18] MOK, R., CHAN , E., AND CHANG, R. Measuring the
quality of experience of HTTP video streaming.IFIP
(May 2011), 485–492.

[19] PRASAD, R., JAIN , M., AND DOVROLIS, C. Socket
buffer auto-sizing for high-performance data transfers.
Journal of GRID computing 1, 4 (2004), 361–376.

[20] SEMKE, J., MAHDAVI , J.,AND MATHIS, M. Automatic
TCP buffer tuning.CCR 28 (October 1998), 315–323.

[21] SPRING, N., CHESIRE, M., BERRYMAN, M., SAHAS-
RANAMAN , V., ANDERSON, T., AND BERSHAD, B. Re-
ceiver based management of low bandwidth access links.
INFOCOM (March 2000), 245–254.

[22] TAHT, D., GETTYS, J., AND TURNER, S. The
bufferbloat problem, 2011. http://www.bufferbloat.net/.

[23] ZHANG, L., SHENKER, S., AND CLARK , D. Observa-
tions on the dynamics of a congestion control algorithm:
The effects of two-way traffic.CCR 21 (August 1991),
133–147.

6

