
Searching for Build Debt:
Experiences Managing Technical Debt at Google

J. David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali
Google, Inc.

Mountain View, CA
{jdm,gridman,ralucas,bhansali}@google.com

Abstract—With a large and rapidly changing codebase,
Google software engineers are constantly paying interest on
various forms of technical debt. Google engineers also make
efforts to pay down that debt, whether through special Fixit
days, or via dedicated teams, variously known as janitors,
cultivators, or demolition experts. We describe several related
efforts to measure and pay down technical debt found in
Google’s BUILD files and associated dead code. We address
debt found in dependency specifications, unbuildable targets,
and unnecessary command line flags. These efforts often expose
other forms of technical debt that must first be managed.

Keywords-build system; technical debt; monolithic codebase;

I. INTRODUCTION

Google’s source code is big (hundreds of millions
LOC [1]) and for the most part monolithic. This is both
an advantage and a disadvantage for software development.
One of the biggest advantages is that it allows a uniform
development style to be adopted and enforced across the
company. For example, there are written, language-specific
style guides that all engineers follow, a single multi-language
build system to build code for all projects, a single repository
for the source code, a single continuous testing infrastructure
that runs all unit tests, and another single repository for the
results of every build and test run. Software tool writers have
access to and can run analysis on the entire source code and
everyone uses the same tools for code reviews and a single
index to search the codebase.

On the other hand, the large, monolithic size of the
codebase makes it easy to introduce technical debt and very
hard to recover from it. For example, consider the scenario
where someone introduces a low level API. Some time
later, the author realizes that there are flaws in the original
design, and wishes to deprecate the API in favor of a better
design. But by then, there are already hundreds of projects
in our codebase that have taken a dependency (directly or
indirectly) on this API. In a small codebase, if the change
is mechanical, it could be done easily using commonly
available refactoring support in IDEs, e.g., Eclipse. But for
large scale changes that span millions of lines of code, this
can be very challenging. We have found that even simple
changes like renaming a class or moving it from one package

to another can take several days or weeks when operating at
this scale. The problem is not just the size of the codebase
but the rate at which the code changes (on average over a
dozen new commits happen every minute [2]).

In this paper, we present the efforts of our team at
controlling and repaying the technical debt in one part of
our codebase, the build system. Our approach is guided by
the following principles:

• Automation. Use automated techniques to analyze and
(where possible) fix issues that contribute to our most
egregious technical debt. Several teams are working on
tools to make large scale changes easier. Our uniform
development style makes it feasible to do this at scale.

• Make it easy to do the right thing. Many times technical
debt is incurred because people are not aware of it. If
we can analyze changes that developers are about to
make as part of their normal workflow (during editing,
browsing, or code review), we can prevent certain kinds
of debt. The size of the codebase and the rate at which
it changes makes this a non-trivial problem.

• Make it hard to do the wrong thing. This is similar
to the above point, but with a greater emphasis on
introducing stricter checks on the kinds of actions
developers can do. For example, prevent people from
taking a dependency on code that is not ready for prime
time. Another example is to build stricter checks into
the compilation process and make them compile time
warnings or errors.

Our team is part of a common Developer Infrastructure
group and does not own any of the application software
or libraries that the various product teams build. As such,
our focus is on finding and fixing technical debt that is
domain independent and cuts across product boundaries. In
this paper, we describe one such type of technical debt that
we call Build Debt that has accumulated in Google’s build
specifications. We explain the notion of Build Debt, show
why it is a painful debt for us, describe some of our ongoing
efforts to reduce this debt, and results of some of our recent
successes.



II. GOOGLE’S BUILD SYSTEM DEBT

The specifications for building software at Google are
encapsulated in BUILD files. BUILD files define modules
of code (either at the library or binary level), list the
source files and dependent libraries the module uses, and
include additional metadata about building the project [3],
[4]. BUILD files are for the most part manually maintained,
and this lack of automation can be a particular pain point for
engineers, requiring non-trival developer effort [5]. Among
other things, these files specify the dependencies between
different libraries or other software components, and over
time these specifications can diverge from the actual de-
pendencies needed to build, test, and execute our software.
Technical debt accumulates unless engineers are diligent to
keep the source code and the dependencies, or deps, of their
build targets synchronized. Along with this build dependency
debt associated with active, buildable targets, abandoned
targets are another form of debt that tends to accumulate.
At the extreme, we call targets that have not successfully
built for several months zombie targets.

The original Google build system was completely open
with no control over target visibility. This allowed any
project to depend on the internal details of another project,
and occasionally led to unwanted coupling between projects.
This coupling creates technical debt when the lower-level
project did not intend to expose these internal details, and
now faces higher costs for any future modifications where
encapsulation has been violated. Because dependencies are
specified in only one direction, the project being depended
on would only find out they had broken someone else when
they received a complaint. At that point the technical debt
would need to be repaid in order for both teams to move
forward.

Although a feature to restrict target visibility was added
to the build system to give projects control, it saw little
use. New projects were in the same situation as legacy
projects, until we tackled the problem of build visibility
debt. Visibility debt is the cost of back-fitting visibility rules
onto the existing build specifications, and re-establishing
appropriate encapsulation. We determined that the first step
to managing visibility debt was to stop the bleeding by
automatically preventing new projects from accumulating it.

Dead code forms another type of technical debt that can
confuse engineers looking for working APIs. We also discuss
dead flags and a recent fixit designed to reduce some of this
debt.

III. DEPENDENCY DEBT

Dependency debt causes two types of pain for engineers.
The first is slowdown of the build and test systems [6] due to
extra work performed building over-declared dependencies,
which are completely unneeded, or underutilized dependen-
cies which are mostly unneeded. The second is brittleness of
a project’s build due to under-declared direct dependencies.

//project:main

//project:direct_dep

//indirect/dependency:rule

?

? ?

Figure 1. Target dependencies

Changes somewhere in the transitive closure of an under-
declared target’s dependences can cause the loss of some
needed, but unspecified, dependency, resulting in a broken
build. Brittleness pain is felt by both the project with the
under-declared dependencies, and the projects on which they
depend.

An example based on two BUILD files shows how this
can happen. The first file consists of the specification to
create a single C++ library named ‘rule.’

/indirect/dependency/BUILD:
cc_library(name = ‘rule’,

srcs = [‘rule.h’, ‘rule.cc’])

The second file contains another library, and a binary tar-
get named ‘main.’ In addition to the declared dependencies
shown in the deps attributes of these targets, main.cc
and direct_dep.h also directly include rule.h.

/project/BUILD:
cc_binary(name = ‘main’,

srcs = [‘main.cc’],
deps = [‘:direct_dep’])

cc_library(name = ‘direct_dep’,
srcs = [‘direct_dep.h’, ‘deps.cc’],
deps = [‘//indirect/dependency:rule’])

As shown graphically in Figure 1, build
target //project:main directly depends on
//project:direct_dep, which in turn directly
depends on //indirect/dependency:rule. The
solid lines represents a direct, declared, dependency between
two targets. The dashed line shows an under-declared
source code dependency from //project:main to
//indirect/dependency:rule. Because transitive
dependencies are allowed, the build works fine until
someone changes the code for //project:direct_dep
to no longer use //indirect/dependency:rule,
and removes the unneeded dependency. This causes
//project:main to break, since it no longer has access
to a required dependency.

Generally speaking, under-declared dependencies in up-
stream libraries can cause breakages when lower level li-



braries remove dependencies. This can occur several levels
away, across project boundaries, particularly given Google’s
single codebase. Teams may consider dependencies as ‘in-
ternal,’ but this can’t currently be expressed in the build
system.

Both of these pain points are felt widely across Google
as each project depends on code from many others. Teams
are not always aware that they are imposing the interest
costs of their dependency debt on both their users and the
teams on which their software depends. Core library teams
in particular do not like to break their users. Under-declared
dependencies in those user’s build targets, though, make
refactoring the internal dependencies of these libraries very
painful due to the possibility of widespread build breakages.
In general, the existence of under-declared dependencies
makes safe removal of over-declared dependencies difficult.

A. Addressing Under- and Over-Declared Dependencies

One potential solution for addressing dependency debt
would be to hold a global fixit day where engineers put
aside their normal work and focus on fixing the build rules
for their projects. This solution has several disadvantages.
It is not automated, potential breakages make it hard for
engineers to do the right thing, and easy for them to do
the wrong thing. Without some way to prevent new debt
from being incurred, whether via awareness, education, or
enforcement, dependency debt will just recur in the future.

Instead, we have developed tools to partially automate the
solution. These tools require language specific knowledge of
the dependencies as expressed by the source code. Our first
step was to find all under-declared dependencies, so that we
could add these missing direct deps to all Google’s BUILD
files. We began with Java, leveraging the javac compiler to
tell the build system the classpath element from which each
referenced class is loaded. We also distinguish classpath
elements that correspond to direct dependencies, as well
as the target that created each element. We then generate
a warning or error each time the source code references a
class from an indirect, transitive dependency, including the
name of that dependency.

This approach works for all Java rules that successfully
build and generates a list of missing direct dependencies
for each rule. We are currently paying down the principal
balance by adding all these missing direct dependencies.
We also created a target attribute to tell the build system
to generate an error if it sees a missing direct dependency
in the future, to make it hard to do the wrong thing.

The next step will be to find all the over-declared de-
pendencies, further leveraging javac. Once under-declared
dependencies are disallowed, the unneeded dependencies can
be automatically and safely removed. The build system can
then generate an error if it finds an unneeded dependency,
effectively preventing this form of technical debt from
recurring.

B. Underutilized Dependencies

A build target may contain lots of code that many of its
clients don’t need. A client’s build is slower than necessary
when these dependencies are poorly utilized. This type
of dependency build debt causes engineers the same pain
as over-declared dependencies. Both result in a transitive
dependency closure for a build target that is larger than
the strict minimum required by that target. However, while
over-declared dependencies can be handled by rewriting
the BUILD files alone, increasing utilization may require
both code and BUILD file refactoring. The solution usually
involves repartitioning large, underutilized libraries and their
build targets. There is less opportunity for a fully automated
solution, since engineers need to make encapsulation de-
cisions when breaking up large libraries. We are instead
working on discovery tools that will help these engineers
find and understand low dependency utilization of their
targets.

Figure 2 shows a screenshot of a dependency refactor-
ing assistant, Clipper, currently under active development.
There has been a lot of work around software visualization
frameworks, see [7], [8] for quality metrics, or [9] for
build performance in particular. Clipper attempts to fill the
gap between the visualization tools and IDEs by giving
engineers refactoring guidance. While Clipper can serve as
a dependency exploration tool to look at the structure of the
dependency graph, an engineer can use it as a refactoring
advisor to suggest specific dependencies that would be good
cleanup candidates.

Given the large number of dependencies in the transitive
closure of an average target in Google’s build system, it
can be challenging to even decide where to begin. Clipper
makes suggestions by ranking dependencies in terms of high
cost and low removal effort. Factors contributing to the
dependency cost are the number of symbols defined by the
target, the cumulative number of symbols in the transitive
closure of target’s dependencies, and the utilization of both
kinds of symbols. Factors contributing to the difficulty of
refactoring are the dependency proximity or depth counted
as the number of hops between the target and its dependency
and dependency interconnectedness or density counted as the
total number of paths leading to the dependency.

By using Clipper to highlight the low hanging fruit we
hope to encourage engineers to start cleaning up their
projects, which will begin to pay down the dependency debt
and allow us to improve the tool as we learn from our early
adopters. Though our work is still in the very early stages,
the feedback from the initial beta testers is encouraging.

IV. ZOMBIE TARGETS

In a system that changes as much as Google’s (a large
percentage of files change every month [2]), some things
are bound to break. If they are important, broken targets
and tests are quickly fixed. However, older, sometimes



Figure 2. Clipper prototype

abandoned code and the build targets that compile it can slip
under the radar. Because Google’s codebase is monolithic,
these dead targets are visible to everyone. That can cause
pain for anyone attempting a global refactoring or even just
looking for existing functionality to reuse. Depending on
existing code helps projects move faster, but only if an
engineer does not need to repair existing build breakages
to get the unmaintained code running.

This debt adds interest cost to every refactoring that
affects the dead code, as engineers waste time modifying
unused, and perhaps unusable, libraries. Broken targets add
to the burden of testing a global change. There is also
a cognitive cost to understanding a codebase where some
portions are effectively unusable.

Repaying this debt involves first categorizing broken
targets as either transient breakages or long-term zombies.
The results of every build and test run at Google are stored,
indexed, and queryable. We use this query capability to
determine the last time that each target was successfully
built, as well as the last time it was attempted to be built.

Our automation updates this data nightly, and generates a list
of the day’s zombie targets that existed at head in the source
control system at that time. During frequent build system
upgrades, the build team attempts to build every target in
every BUILD file in order to validate the new features,
so these data are even available for completely abandoned
projects. After internal discussions, if all build attempts have
failed for at least 90 days, a target can be officially declared
‘dead.’ Until then, breakages are assumed to be transient and
left to their owners, if any, to handle.

After 90 days, we can ‘terminate’ a zombie target by
deleting its definition from the BUILD file, along with any
source files that are only reachable through that target. All
code changes, including these deletions, must be reviewed
by the project’s owner of record before submission, provid-
ing a final check that prevents the automation from running
amok and wiping out large swaths of Google’s live code.

V. VISIBILITY DEBT

To eliminate unwanted project coupling, where one
project depends on the internal implementation details of



another, we decided to change the existing default visibility
of all targets from public to private. When the visibility
feature was originally added to Google’s build system a
few years ago, no target had a visibility specification, so
it made sense to consider the default, unspecified behavior
as publicly visible, effectively making the new feature opt-
in. Visibility debt is, unfortunately, invisible to a project
until after it becomes a problem. Google’s culture meant that
locking down code wasn’t immediately seen as necessary;
teams only realized that explicitly stating visibility was
useful when it was too late – when clients were unexpectedly
found, and changes either required time-consuming modifi-
cation to previously unknown clients, or couldn’t be made
at all. The idea of controlling visibility was also somewhat
controversial within Google, as we discovered.

We reasoned that if the default was changed to private (or
opt-out) visibility instead of public (or opt-in), awareness,
use and the benefits of this feature would all increase. At
issue were the tens of thousands of BUILD files with no
visibility specification. We devised a plan to mark these files
with a special legacy_public visibility and then change
the default to private in the build system. The idea was to
encourage engineers creating new BUILD files to consider
whether they wanted other engineers to be able to depend on
their new code immediately. In order to use a private target,
potential clients need to communicate with the target’s
owners to agree on whether the API should be shared, and
under what conditions. Teams need to retain the ability to
determine what constitutes the stable, supported API of their
project, and what constitutes private implementation details.

The initial announcement of the upcoming change was
greeted with a fair amount of criticism by engineers. Some
were concerned that visibility was ‘un-Googley,’ that it
would make sharing more difficult and would generate a
large number of code clones when teams refused to allow
others to depend on their code. Others worried widespread
build breakages would result from the change. The breakages
were a possibility, because at first we had asked teams to fix
their own BUILD files, with a hard deadline. The feedback
we received convinced us to reconsider our plan and make
the necessary changes ourselves, adding legacy_public
default visibility to all existing BUILD files. After verifying
the vast majority of targets would build correctly, we were
able to change the default with little drama.

We successfully made this transition in June 2011 and
as of mid-February 2012, the default visibility of the 2000
most recently created BUILD files breaks down as shown in
Table I. Nearly half of the new files start out publicly visible
despite the new default, a reminder of Googler’s attitude
toward openness.

These results show that Google engineers are explicitly
overriding the default private visibility with some appropri-
ate value in over 80% of new BUILD files. Since the default
was changed, we have seen no evidence of widespread code

Table I
PACKAGE VISIBILITIES OF THE LATEST 2000 NEW BUILD FILES

none specified (private by default) 16%

public 40%

selectively visible 32%

private 9%

legacy_public1 3%

copying, nor heard any complaints of teams refusing to allow
other engineers to take dependencies on their code. Lesson
learned: any change will always be opposed by someone and
in a large organization it is important to have an independent
group that is empowered to make decisions based on a global
cost-benefit analysis.

VI. DEAD FLAGS

Google developed its own command-line parsing utilities,
along with custom mechanisms for defining the set of
recognized command-line flags for libraries and binaries.
Core libraries, striving to be as reusable and customizable as
possible, define many more flags than the regular developer
will ever use or know of. Some flags control test-only
behaviors, such as the address of a dummy backend vs. the
real production backend. Others control experimental code,
or protect the addition/removal of such code. Consequently,
there are now more than half a million command-line flags
defined in Google’s code base across C++, Java, and Python
projects. The question is, how many of these are still useful,
and how many can be declared dead and replaced with
constants?

The technical debt incurred by dead flags is perhaps
the hardest to quantify. They won’t slow down execution
or increase the source/binary size enough to be noticed.
However, in many cases they guard dead code, which in turn
depends on other dead code which gets linked into the final
binary unnecessarily. They also complicate refactorings and
make the code harder to understand. To gather more insight
into the possible solutions, we have recently co-organized a
Dead Flag Fixit.

The goals for the fixit were twofold. First, we wanted
to estimate the number of dead flags without expensive
static/dynamic analyses. We developed a simple analysis
pipeline to identify flags that have always been set to the
same value. We looked at the command lines of all the
binaries running in production for the past year and some
of the locally-invoked binaries (i.e., binaries running on
the developers’ workstations), and aggregated these data
sources. We ended up with 150,000 possible candidates,
a surprisingly high number of constant-valued flags. As a

1Intended for existing files only, this is sometimes blindly copied into
new BUILD files – a new form of build debt.



side-effect, the candidate set also includes flags from dead
projects which are still being built and tested but no longer
run in production (otherwise missed by the zombie target
effort). Second, we wanted to observe how dead flags are
typically removed, as their refactoring is non-trivial.

During the Fixit, around 6,000 flags were evaluated and
about 60% of them were marked as ‘not dead.’ Engineers
removed 2,300 flags from the codebase and also deleted
272,000 lines of code as a result. We collected valuable
data, both for refining our definition of a dead flag and
for suggesting automated code fixes. The high ratio of
deleted lines of code per dead flag motivates a refined taint-
like analysis to look for flags that influence control flow,
as replacing them with constant values would make some
code paths unreachable. Flags that are passed verbatim to
underlying libraries, such as server addresses, port numbers,
etc., cannot be removed due to the nature of their data.
We will next try a simple constant folding algorithm to
quantify the amount of dead code per constant-valued flag.
In summary, we seek automation for detecting and ranking
the offending flags; the ultimate decision of deprecating and
killing a flag still belongs to the developer. We believe dead
flags are the coarsest level of dead code identification, and
perhaps the one most readily accessible.

VII. UNCOVERING ADDITIONAL DEBT

Each of the above efforts also uncovered additional tech-
nical debt in the build system itself. Adding thousands
of missing dependencies is a task best automated, and in
principle, that should be easy. However, BUILD files can
be automatically edited only if they meet certain syntactic
criteria. When originally deploying the current build system,
there were a few BUILD files that did not meet these
criteria, and to speed adoption, the new system had to
build these, too. This was handled by using a preprocessor
which performs a one-way transformation on the files. As
no mechanism existed to enforce these criteria, over time a
larger and larger proportion of BUILD files failed to comply
and required preprocessing. Managing this debt became a
prerequisite for cleaning up dependencies, zombie targets,
and dead flags.

VIII. CONCLUSION

We have described a type of technical debt found in
Google’s build system artifacts that we call Build Debt.
We have explained how this debt hurts the company in
terms of a) lower productivity of engineers — slower builds,
more brittle targets, maintenance of abandoned, or broken
libraries and b) increased computation costs for our build
and test infrastructure — building and running unnecessary
code and tests. We described some of our efforts to reduce
this debt, including dependency debt, visibility debt, and
zombie targets, along with their results. We also described a

fixit organized to delete dead command line flag definitions
and the dead code they often guard.

Our experience has suggested that prioritizing and dealing
with technical debt cannot always be left to individual teams,
since many engineers resist these efforts on the grounds that
it would slow them down or encourage code duplication.
In addition, as the size of a codebase increases, the cost
of recovering from technical debt increases non-linearly.
Therefore, it is imperative to pay attention to these debts
early and invest in tools, policies, and mechanisms that make
an organization aware of the debt being incurred and make
it easy to continually repay/avoid the debt as part of each
engineer’s normal workflow.

ACKNOWLEDGMENT

The authors would like to thank many of our co-workers
for help getting our efforts off the ground. For help editing
this paper, we thank Ulf Adams, Robert Bowdidge, and Russ
Rufer.

REFERENCES

[1] N. York. (2011, June) Build in the cloud:
Accessing source code. Google Engineering Tools.
[Online]. Available: http://google-engtools.blogspot.com/2011/
06/build-in-cloud-accessing-source-code.html

[2] A. Kumar. (2010, December) Development at the speed
and scale of Google. QCon. [Online]. Available: http:
//www.infoq.com/presentations/Development-at-Google

[3] C. Kemper. (2011, August) Build in the cloud: How
the build system works. Google Engineering Tools.
[Online]. Available: http://google-engtools.blogspot.com/2011/
08/build-in-cloud-how-build-system-works.html

[4] M. Barnathan, G. Estren, and P. Lebeck-Jobe. (2012, March)
Building software at google scale tech talk. Google. [Online].
Available: http://www.youtube.com/watch?v=2qv3fcXW1mg

[5] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan,
“An empirical study of build maintenance effort,” in Pro-
ceedings of the 33rd International Conference on Software
Engineering (ICSE). ACM, 2011, pp. 141–150.

[6] P. Gupta, M. Ivey, and J. Penix. (2011, June) Testing at
the speed and scale of Google. Google Engineering Tools.
[Online]. Available: http://google-engtools.blogspot.com/2011/
06/testing-at-speed-and-scale-of-google.html

[7] J. Bohnet and J. Döllner, “Monitoring code quality and de-
velopment activity by software maps,” in Proceedings of the
2nd Workshop on Managing Technical Debt. ACM, 2011, pp.
9–16.

[8] R. Wettel and M. Lanza, “Visualizing software systems as
cities,” in Proceedings of the 4th IEEE International Work-
shop on Visualizing Software for Understanding and Analysis.
Society Press, 2007, pp. 92–99.

[9] A. Telea and L. Voinea, “A tool for optimizing the build
performance of large software code bases,” in Proceedings of
the 12th European Conference on Software Maintenance and
Reengineering (CSMR), 2008, pp. 323–325.


