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Abstract

Detecting coherent and well-connected communities inside
large-scale graphs is an interesting problem that can provide
useful insight into the graph structure and individual com-
munities. It can also serve as the basis for content explo-
ration and discovery within the graph. Clustering is a pop-
ular technique for community detection, however, the two
main categories of clustering algorithms, i.e, global and lo-
cal algorithms, have either scalability or usability issues, e.g,
global algorithms do not scale well, and local algorithms
may cover only a portion of the graph. Such one-stage al-
gorithms typically optimize one objective function and do
not work well in settings where we need to optimize various
coverage, coherence and connectivity metrics. In this paper,
we study large-scale community detection over a real-world
graph composed of millions of YouTube videos. In particular,
we present a multi-stage scalable clustering algorithm, com-
bining a pre-processing stage, a local clustering stage, and a
post-processing stage to generate clusters of YouTube videos
with coherent content. We formalize coverage, coherence,
and connectivity metrics and evaluate the quality of the pro-
posed multi-stage clustering algorithms for YouTube videos.
We also use extracted entities to attach meaningful labels to
our clusters. Our use of local algorithms for global cluster-
ing, and its implementation and practical evaluation on such
a large scale is a first of its kind.

Keywords: Community detection; Graph partitioning;
YouTube; Content discovery.

1 Introduction
Detecting communities or clusters in real-world graphs such
as social networks, web graphs, and biological networks
is an important problem that has been attracting a great
deal of attention in recent years (Clauset, Newman, and
Moore 2004; Fortunato 2009; Girvan and Newman 2002;
Karrer, Levina, and Newman 2008; Lancichinetti and For-
tunato 2009). Many real-world graphs decompose naturally
into communities where nodes are densely connected within
the community and have much sparser connection between
the communities. The communities from large networks

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

carry great scientific and practical value because they typ-
ically correspond to behavior or functional units of the net-
work, such as social groups in a social network. Commu-
nity detection provides us a valuable tool to analyze network
structure and better understand complex networks as well as
provide better exploration and browsing tools for very large
collections. In this paper, we perform community detection
on the YouTube online video community and address chal-
lenging issues of working with such a very large real-world
graph.

By modeling complex networks as graphs, the community
detection problem is typically modeled as a graph partition-
ing problem, where a community or cluster is a set of nodes
in the graph that have more edges linking among its mem-
bers than edges linked to the rest of the graph. Depending
on whether every node in the graph or only a subset of the
nodes are assigned to a cluster at the end, graph partition-
ing algorithms can be roughly divided into two categories:
global and local algorithms. We review some representative
methods below. More extensive survey on the large body of
community detection work can be found at (Fortunato 2009;
Lancichinetti and Fortunato 2009; Schaeffer 2007).

In global clustering, each node of the graph is assigned
a cluster in the output of the method. One intuitive ap-
proach is based on the minimum-cut maximum-flow theo-
rem. A graph can be split into two by identifying and remov-
ing the minimum cut, and a full clustering can be achieved
by applying the procedure recursively. Flake et al. (2000;
2002) have used this idea to identify communities in the
graph of world wide web. The work by Girvan and Newman
(2002) used the concept of betweenness centrality, which
measures the importance of an edge in connecting different
parts of the network. Edges with highest betweenness are
gradually removed to divide the graph into clusters. An-
other popular class of methods (Gkantsidis, Mihail, and Ze-
gura 2003; Newman 2006; Richardson, Mucha, and Porter
2009) are based on spectral graph theory (Chung 1997;
McSherry 2004), where the eigenvectors of the Laplacian
matrix are used as similarity measure to perform clustering.

For large graphs such as social networks and web con-
tent graph, global approaches that require the entire graph
to be accessible simultaneously do not scale well. In such
settings, a more desirable approach is to use local clustering
algorithms (Johnson et al. 1989; Bagrow and Bollt 2005;



Bagrow 2008; Clauset 2005; Andersen, Chung, and Lang
2006; Andersen and Lang 2006) that do not require the full
knowledge of the graph and examine only a subset of the
graph at a time. Local clustering algorithms typically start
from one or a set of seed nodes and examine only the adja-
cency list of the seed nodes at a time. Anderson (2008) pro-
posed a local algorithm for finding dense subgraphs, which
is an approximation to the spectral algorithm by Kannan
and Vinay (1999). Given a starting vertex, a pruned growth
process quickly reveals a dense subgraph around the start-
ing vertex, and the algorithm has complexity independent of
the graph size. Recent work by Andersen and Peres (2009)
improves the computational complexity over previous algo-
rithms by simulating an evolving set process to achieve bal-
anced cut with small conductance.

A clustering algorithm can generate either overlapping
or non-overlapping clusters. The advantage of overlap-
ping clustering over non-overlapping clustering has been
studied in various applications like social network anal-
ysis (Mishra et al. 2007; Ahn, Bagrow, and Lehmann
2009), and inherent multi-assignment clustering (Streichet
al. ). In some settings, like discovering communities in
social networks, the clusters are naturally overlapping and
by restricting our attention to non-overlapping clustering,
we may lose valuable information about the structure of
communities in a social network. The advantage of over-
lapping clustering has also been observed in optimizing
metrics such as density and conductance, and in light of
hardness results, polylogarithmic approximation algorithms
have been developed for these problems (Khandekar, Kort-
sarz, and Mirrokni 2010). Similar graph partitioning prob-
lems are already well-studied in the context of approxi-
mation algorithms, and several approximation algorithms
have been developed for them (Spielman and Teng 1996;
Arora, Rao, and Vazirani 2009; Leighton and Rao 1999;
Andersen 2008; Andersen, Chung, and Lang 2006).

In spite of the rich literature on graph clustering, select-
ing the appropriate algorithm for community detection on a
real-world graph is not straightforward and requires careful
examination of the specific application. The global cluster-
ing methods do not scale well for huge data sets, and the
local clustering methods only focus on local neighborhood
in the graph or finds a good cluster somewhere in the graph
ignoring the rest of the graph. Another drawback of one-
stage clustering is that it may not optimize multiple desired
metrics at the same time. Our goal in this paper is to design
scalable multi-stage clustering algorithms that takes into ac-
count various metrics and also take advantage of scalability
of local algorithms and, at the same time, output clusters that
cover majority of the graph (not only a local neighborhood).
This is important if the resulting clustering is to be used in
exploration and discovery within the graph. In particular,we
study community detection for the YouTube online video
community with the objective of generating named video
clusters such that the videos in the same cluster correspond
to a same topic and have similar content.

The large number of videos on YouTube rules out the pos-
sibility of global clustering methods, which require knowl-
edge of the whole graph and are not easily parallelizable. To

perform clustering over large graphs such as YouTube, lo-
cal algorithms need to be properly adapted to allow efficient
parallel implementation. In particular, we design a multi-
stage clustering algorithm by pre-processing the graph, run-
ning local clustering algorithms in parallel on different parts
of the graph, and then post-processing the output clusters in
order to get more useful results. We will formally define
the multi-stage algorithm and study the algorithmic problem
in each stage separately and combined. In order to evaluate
our results, we consider various metrics capturing coverage,
coherence, and connectivity of those clusters. Using these
metrics, we compare different local clustering algorithms
and design pre-processing and post-processing strategiesto
get coherent video clusters. These auto-generated cluster
of videos can be used to better organize YouTube videos
and help users better discover and browse interesting topics
on YouTube. Our main contribution includes using exist-
ing state-of-the-art clustering as a building block to design a
practical and efficient multi-stage clustering system to detect
communities on a very large real-world graph with specific
challenges and produce useful results. In particular, we ap-
ply the idea of large-scale local algorithms for the purposeof
global clustering. To do so, we find a set of seed nodes in a
careful way, and run the local clustering algorithm in parallel
from all those seed nodes. Finally, we prune the set of clus-
ters computed in the algorithm in the post-processing step.
This approach is appropriate for clustering of large graphs
like this, and this paper is the first to use such a multi-stage
algorithm.

The rest of the paper is organized as follows. In Section
2, we present the overall framework of our system. Section
3 presents preliminaries on various graph metrics. Different
clustering stages, such as pre-processing, local clustering,
and post-processing are discussed in Sections 4, 5, and 6,
respectively. We describe our experiments and present the
results in Section 7. We end with conclusions and avenues
for future work in Section 8.

2 Overall framework
We consider the YouTube graph, where each video is a ver-
tex and the edge between vertices captures their similarity.
There are different ways to define the similarity of videos.
One approach is to use content-similarity to create the edge,
where either or both of text or audio-visual content can be
used. In this paper we use the graph induced by co-watching
of videos by users in anonymous user sessions. Two videos
that have a higher co-watch value will be considered more
similar. We limit the number of co-watched videos to keep
the graph sparse. Note that we construct the YouTube video
graph based on co-watch statistics but also use text features
to refine the clustering.

The framework for community detection is illustrated in
Fig. 1. Due to the large size of the graph that we are consid-
ering, it is necessary to apply local partitioning algorithms
with efficient parallel implementation. A pre-processing
step is employed to select seed videos from which the local
cluster will be grown. The seed videos are selected to be fur-
ther apart in the sense that seed videos should not appear as
a close neighbor of other seed videos. Such a pre-processing



step ensures that local clusters are grown with small overlap
and thus reduce the amount of overall work.

Figure 1: Framework of community detection on YouTube

After the pre-processing step, local partitioning algo-
rithms are run on the selected seed videos in parallel. Each
seed video is grown into a local cluster independently which
permits overlap among clusters. It is desirable to allow over-
lapping clusters because the rich content of videos allow
them to be related to several topics simultaneously. This is
another advantage of using local clustering algorithms over
global algorithms. To the best of our knowledge, our im-
plementation of finding seed nodes and then local clustering
algorithms is a first combined implementation of this type
for the purpose of global clustering at this scale.

Local algorithms have the advantage of being scalable,
but may not achieve global optima because the algorithm
may not have the knowledge of the whole graph during clus-
tering. For example, the local clustering algorithms used in
this paper generate clusters that have either high density or
small local conductance, but the average conductance and
content coherence of all the clusters may not be optimum.
Therefore, we apply a post-processing step to further refine
the clustering result. In post-processing, each cluster from
the local clustering step is further divided into smaller sets
to optimize text-based coherence metric and then globally
merged to combine duplicate clusters. These newly-formed
clusters have more coherent content and form the final out-
put of our community detection framework. A short name is
suggested for each cluster based on its text features and used
to assist browsing.

3 Preliminaries
In this section, we present formal definitions for the cov-
erage, connectivity and coherence metrics used in evalu-
ating the quality of clusters. Consider a similarity graph1

G(V,E) over the set of videos. Given a clusterC ⊆ V , let
E(C) = {(v, u) ∈ E(G)|v, u ∈ C}, and volume ofC be
vol(C) =

∑
v∈C degree(v). The density of clusterC is

density(C) =
|E(C)|

|C| · (|C| − 1)/2
,

and the conductance of this cluster is the ratio between the
size of the cut outgoing fromC and the volume ofC, i.e.,

conductance(C) =
vol(C)− 2|E(C)|

vol(C)
.

1This could be the co-watched-video graph or similarity graph
based on similarity of features associated with videos.

In addition to graph metrics, we also define the text coher-
ence of the clusterC as

coherence(t) =
|T1 ∪ T2 ∪ · · · ∪ Tt|

|C|
. (1)

Here,Ti is the subset ofC whose videos contain theith most
frequent text term of the cluster. A coherent cluster will have
high coherence(t) for small t, i.e., a few text terms cover
majority of the videos in the cluster. This text coherence
can be considered as an application level metric to evaluate
cluster quality for real-world applications.

The above metrics are defined for each cluster. Now given
a set of clustersC = (C1, C2, . . . , Ck), one can define con-
nectivity metrics for the set of overlapping clusters basedon
the above connectivity metrics. The average-conductance of
clusters inC is

avg-conductance(C) =

∑k

i=1 conductance(Ci)

k
.

Also, the average density of clusters inC is

avg-density(C) =

∑k

i=1 density(Ci)

k
.

In addition, the total coverage of the clusters is the total num-
ber of nodes covered by these clusters, i.e.,

coverage(C) = | ∪ki=1 Ci|.

Naturally, our goal is to find clusters that are internally well-
connected and externally less connected, so we would like to
find clusters with high density, low conductance, high coher-
ence and overall result low average conductance and high ra-
tio of coverage(C)/size(C), where size(C) =

∑
1≤i≤k |Ci|,.

Below, we will describe the three steps of pre-processing,
local clustering, and post-processing in details.

4 Pre-processing
In order to obtain clusters that cover a majority of the en-
tire graph, a pre-processing step can be used to select an
optimum set of seed videos to apply the local partitioning
algorithm. A naive approach is to take every video in the
graph as a seed and grow a cluster around it. Such an
approach is computationally expensive and will generate a
large number of duplicate clusters. Therefore, the objec-
tive of the pre-processing step is to find a set of seed videos
{s1, s2, . . . , sk} such that the clusters{C1, C2, . . . , Ck}
generated around these seed videos can cover majority of
the graph but have small overlap among the clusters.

We can formally define the pre-processing step as select-
ing k nodes from the graphG = (V,E) such that the ratio
coverage(C)

size(C) is maximized. we observe that even with sim-
plification the problem of choosing a set of seed nodes to
maximize the total coverage ofC is NP-hard. In fact, this
problem subsumes the maximum coverage problem which
is not approximable within a factor better than1 − 1

e
under

reasonable complexity theoretic assumptions (Feige 1998).
Furthermore, the local partitioning algorithm that grows a
cluster around a seed node usually has some robustness on



the seed node selection, i.e., the clusters generated from aset
of close-by nodes in the graph will be highly likely to be the
same or have very large overlap. Therefore, instead of at-
tempting to formulate an optimization problem and finding
the optimum set of seed videos, we take a heuristic approach
on seed video selection and use a post-processing step later
on to improve the quality of clustering.

The criterion of seed selection is to select further apart
nodes so that the clusters generated around those seeds will
have small overlap. There is also a higher priority to cover
videos that are more important in the graph. We evaluate
the importance of a video by its popularity, which is com-
puted based on statistics such as number of views, number
of user comments, etc. In our heuristic approach, we rank
the videos in the graph by its popularity and select the most
popular videos as seed videos to expand. To ensure seed
videos are well separated, we will examine the h-hop neigh-
bors of the already selected seed videos and make sure that
a newly added seed video will not appear in the neighbors of
existing seed videos. Here, we proposed a simple greedy al-
gorithm inspired by the greedy algorithm for the maximum
coverage problem. However, the order at which we examine
the videos in the greedy algorithm is based on a popularity
measure (based on the number of video plays). To be more
specific, the seed selection algorithm works as follows:

Heuristic seed selection algorithm
Input: The list of videos in the graph that are ranked by
their popularities as(v1, v2, · · · , vn).
Output: A set of seed videos(s1, s2, · · · , sk).
1. Initialize: s1 = v1, N = N (s1), S = (s1), i = 1

2. While |S| < k

3. i← i+ 1

4. If vi ∈ N

5. Continue
6. Else
7. S ← S ∪ {vi}

8. N ← N ∪N (vi)

Here the functionN (vi) returns the list of videos that
are in the neighborhood ofvi in the graph. The neighbor-
hood might be immediate neighbors orh-hop away. The
largerh we choose, the better separation of the seed videos
but also higher computational complexity. One can also use
other characteristics of the videos other than the co-watched
graph to compute the neighborhood. There is also trade-off
in choosing the parameterk, i.e., the number of seed videos.
A rough estimate ofk can be obtained by dividing the size of
the graph by the average size of a cluster. However, it is nat-
ural for a video to belong to several clusters of related topics
and therefore, it is desirable to allow some overlap among
clusters. Choosing a largerk will give better coverage of the
graph but also more overlap among clusters, while choosing
a smallk may risk not covering enough videos in the graph.
We set the valuek andh empirically in this paper.

In addition to seed selection, in the pre-processing step,
we also compute auxiliary features for each video in the
graph. We use a list of text terms as the auxiliary feature

in this paper. These text terms are extracted from the title,
user-provided tags, and user comments to represent the con-
tent of the video. These text features are used in the graph
clustering step to evaluate the text coherence of the cluster
during its growth process and determine the proper termina-
tion condition. Text coherence is defined in Section 3.

5 Graph clustering
After the set of seed videos are selected in the pre-processing
step, we run local partitioning algorithms on each of the seed
video in a parallel fashion. Local partitioning algorithm gen-
erates a local cluster of high density and/or small conduc-
tance around the seed video. From the computational com-
plexity perspective, finding optimum partitioning problems
are NP-hard, and despite a lot of research in this area no
constant-factor approximation algorithm is known for these
problems (Leighton and Rao 1999; Arora, Rao, and Vazi-
rani 2009; Feige, Peleg, and Kortsarz 2001). In light of
such hardness results, several heuristic and approximation
algorithms have been developed for these problems (Spiel-
man and Teng 1996; Feige, Peleg, and Kortsarz 2001;
Leighton and Rao 1999; Andersen and Peres 2009). Among
these heuristics and approximation algorithms, we chose
two algorithms that are scalable for large data sets and are
suitable for running in a MapReduce-style (Dean and Ghe-
mawat 2004) distributed-processing infrastructure. In par-
ticular, we compare two local partitioning algorithms by R.
Andersen (2008; 2009), which optimize two different graph
metrics, i.e., the density and conductance of the clusters,re-
spectively. Below, we briefly describe the two algorithms
and their adaptations in our work.

The first algorithm by Andersen (2008) is built upon the
spectral technique developed by Kannan and Vinay (1999),
which exploits the close relationship between the densest
subgraph and the largest eigenvalue of the graph’s adjacency
matrix. A deterministic process called ‘pruned growth pro-
cess’ is used to generate a sequence of vectors by succes-
sively multiplying the vector with the adjacency matrix fol-
lowed by pruning. For a graph withn nodes and a starting
nodevi, the initial vectorx0 ∈ Rn is set to be all 0 except
theith position. The pruned growth process is defined as

xt+1 = prune(xt ·A), (2)

whereA is the adjacency matrix of the graph and prune(x)
essentially sets smaller elements inx to be 0. Through it-
erations, neighbors of existing nodes in the cluster will be
added to the cluster and nodes with more neighbors will ac-
cumulate higher values in the corresponding elements ofx.
Therefore, after pruning, only nodes with high degrees are
retained in the resulting dense subgraph.

Given the large number of YouTube videos, we need to
make some adaptations in order to efficiently compute the
pruned growth process. First, in the cowatch video graph
that we use, we consider the top 60 immediate neighbors of
each video ranked by their cowatch frequency. These top
cowatch neighbors of a video are expected to have similar
content. Second, to avoid the exponential growth of the clus-
ter, we expand a fixed number of top weighted nodes from
the current cluster at each iteration. In addition to the above



adaptations of reducing computational complexity, we also
bring some randomness into the growth process by selecting
the top weighted nodes to expand with a probability propor-
tional to its weight. During the growth process, we com-
pute and monitor the quality of the cluster in terms of text
coherence. Once the cluster quality exhibits a desreasing
trend, we revert back to the previously-known best cluster
and restart the growing process from there. Finally, a cluster
is generated once it reaches the desired density or exceeds
the maximum allowed iterations.

In addition to density, conductance is also an important
metric for cluster quality. A small conductance value indi-
cates more edges are within the cluster than going out the
cluster. The second algorithm (Andersen and Peres 2009)
that we use simulates a volume-biased evolving set process
to produce clusters of low conductance. The evolving set
process is a Markov chain on subsets of the vertex setV .
Given the current state of the clusterCt, the next state of
the clusterCt+1 will be updated by the following rule: a
thresholdU is uniformly chosen at random from the inter-
val [0, 1]. Let the setB1 = {v ∈ Ct : p(v, Ct) ≤ U} and
B2 = {v /∈ Ct : p(v, Ct) ≥ U}. The updated cluster will be
Ct+1 = (Ct − B1) ∪ B2. Thep(v, C) denotes the transition
probability of the nodev to the clusterC and is defined as

p(v, C) =
1

2
(
e(v, C)

d(v)
+ 1(v ∈ C)), (3)

wheree(v, C) denotes the number of edges between node
v and clusterC. d(v) is the degree of nodev. The cluster
growth process statistically adds new nodes that have dense
connection to the cluster and remove nodes with few edges
from the cluster. A final cluster is generated if it reaches
the desired conductance or the cluster size is too large. This
local partitioning algorithm based on evolving set has im-
proved computational complexity over the best previous lo-
cal partitioning algorithm by Andersen et al. (2006).

Both the two algorithms grow a local cluster from a given
vertex, which makes it possible for parallel implemenation.
Since the set of seed videos are generated by a heuristic ap-
proach from the most popular videos, it is possible that some
seed videos may produce highly overlapping clusters. To
avoid generating largely duplicate clusters, we maintain a
status table recording nodes that have already been included
in some clusters. During cluster generation, if a seed video
or its close neighbors are already included in other clusters,
we stop growing a cluster around this seed video to avoid
doing duplicate computations.

6 Post-processing
The local partitioning algorithms in the previous section pro-
duce clusters of high density or low conductance around
the seed videos. The cluster generation process in both al-
gorithms grow the cluster by adding neighbors of existing
nodes and shrink the cluster by removing nodes with small
degrees. The advantage of such a process is that it is com-
putationally efficient and requires only local knowledge of
the graph. The disadvantage is that there is no capability
of splitting a cluster during its generation. This is a problem

when two videos of different topics are added into the cluster
in the early stage of cluster generation, these two videos will
attract their neighbors into the cluster to form two subclus-
ters that may have few edges connecting them. An example
is given in Fig. 2, where the top 500 videos with highest
degrees in one of the generated clusters are shown. In the
figure, the nodes with the same color seem to form dense
subclusters within the cluster. By further looking into the
corresponding videos, we do observe that in many cases,
videos within the same subcluster correspond to the same
topic, while videos in different subclusters are related todif-
ferent topics.

Figure 2: Top 500 videos with highest degrees in one of the
generated clusters from the local partitioning algorithm.The
colors represent different modularity classes of the cluster.

The existence of subclusters in the generated clusters im-
plies that there might be several topics within the same clus-
ter and therefore, the coherence of the cluster should be
further improved. We take one of the generated clusters
and compute its most popular text terms associated with the
videos in the cluster. The table with the top 8 text terms and
their occurrence frequency is show below.

Text term Occurrence Text term Occurrence
Pocoyo 719 Dog 123
Baby 539 Charlie 122

Donald duck 493 Song 98
Mickey mouse 360 Discovery 94

Funny 161 Laughing 94

Although the cluster seems to be generally related to car-
toon animation and babies, there are clearly several topics
within the cluster and it is desirable to separate those topics
to generate more coherent clusters.

Given the above observations, we apply post-processing
on the clusters from the local partitioning step to obtain
more coherent and useful clusters. The first step of post-
processing is to split the cluster into subclusters that have
dense connection within the same subcluster and fewer con-
nections among different subclusters. At this step, we use
the text coherence measure to guide the process of dividing



a potentially diverse cluster into several smaller but more
coherent subclusters. Higher coherence makes it easier to
suggest a good name for each cluster and better browsing ex-
perience. After splitting all the clusters into more coherent
subclusters, we apply an iterative global algorithm to com-
bine highly overlapping clusters and remove clusters that are
too small to stand on their own. Below we describe in more
detail these two steps of post-processing.

Cluster refinement using text coherence As discussed
above, a cluster generated from the local partitioning algo-
rithm might still contain diverse content due to the grow-
ing nature of the clustering. To identify denser subclusters
within a cluster, we first compute text statistics over the clus-
ter. More specifically, we extract the most representative
text terms for each video based on its title and descriptions,
then compute the occurrence frequency for each of the text
terms over the entire cluster. Denote the top occurring text
terms for the clusterC by t1, t2, · · · , tk, we can obtaink sets
of videos{S1, S2, · · · , Sk} that contain each of the topk
terms, i.e.,Si is a set of videos in the cluster that all contain
the text termti. The sets{Si} can be considered as coherent
clusters each related to a certain topic and serve as a good
first-step partitioning of a potentially larger and diverseclus-
ter. However, considering only single text term has the lim-
itation that it might ignore bigrams or semantically similar
terms. For example, a cluster of Micky Mouse is interesting
but further dividing it into two subclusters containing Micky
and Mouse separately is not desirable. To identify bigrams,
we iteratively compare every two setsSi andSj to compute
their overlap, a large overlap indicates the two text termsti
andtj typically appear together, therefore it is highly likely
that they are bigrams. We then combine the two setsSi and
Sj into one cluster. To identify semantically similar terms
such as Cars and Automobiles, we compute the semantic
similarity between two text terms or two sets of text terms,
and then merge two clusters if their text similarity is larger
than a threshold (the text similarity is obtained from latent-
topic modeling over a large corpus of text data and is not es-
sential to this description). After merging bigrams and simi-
lar terms, we obtain the final set of subclusters that have high
text coherence and each corresponds to a different topic.

Global cluster merging Given that each clusterCi has
been divided into a set of subclusters̃Ci1, C̃i2, · · · , C̃ik,
the last step in our post-processing is to combine dupli-
cate subclusters from different clusters, i.e., comparing
C̃i∗ and C̃j∗ for i 6= j, and remove subclusters that are
too small to stand on their own. To combine duplicate
clusters, we iteratively compare any two clustersC̃i∗ and
C̃j∗. If their overlap is larger than certain threshold, i.e.,
|C̃i∗ ∩ C̃j∗|/min(|C̃i∗|, |C̃j∗|) > t, these two clusters will be
merged into one. The final set of clusters will have higher
text coherence, smaller overlap, and high coverage of the
whole YouTube graph. In the next section, we evaluate the
quality of clustering using different metrics.

7 Experiments
Experiment Setup We carry out the multi-stage cluster-
ing algorithm on a co-watch graph of tens of millions of
YouTube videos (the system can scale to larger graphs as
well). In the pre-processing step, we sequentially select the
top 50,000 popular videos that are not neighbors of exist-
ing seeds as seed videos. The local clustering algorithms
grow clusters around each seed video in parallel. Each lo-
cal clustering process terminates whenever a cluster has ei-
ther reached a specified density or conductance value or ex-
ceeded a maximum allowed cluster size of 30,000.

Cluster statistics In Fig. 3, we show the number of clus-
ters obtained after local clustering, post-processing splitting,
and the final merging step. DP stands for the dense partition
clustering and ES stands for the evolving set algorithm.

Figure 3: Number of clusters after each step of the algorithm

After local clustering, we have a relatively small num-
ber of clusters, most of which are large. After splitting
each cluster based on text features, the cluster number is
greatly increased and each cluster becomes smaller in size
and more coherent in content. The evolving set algorithm
produces many more clusters after splitting than the dense
partitioning algorithm. This could be an indication that the
ES algorithm tends to generate more diverse clusters in the
first place. However, compared to the DP algorithm, such a
high number of clusters after splitting may also indicate that
there are many overlapping clusters that need to be merged.
Therefore, the global merging step is important to combine
overlapping clusters and related clusters that correspondto
bi-grams or similar text terms. After merging, the number
of clusters is greatly reduced to a few thousands. This num-
ber is a reasonable approximation to the number of popular
topics on YouTube.

Comparison of local clustering algorithms We now
compare the two local clustering algorithms more closely
using different metrics. After the local clustering stage,the
average cluster sizes for the DP and ES algorithms are 10190



and 33450, respectively. Each node appears in 8.2 and 11.9
clusters on average for DP and ES, respectively. From our
observation, the ES algorithm runs faster than the DP algo-
rithm, but it tends to generate clusters of larger size and more
overlapping clusters. The average density is 0.0196 for ES
and 0.00056 for DP, while the average conductance is 0.488
for ES and 0.813 for DP. Higher density and lower conduc-
tance indicate better clustering. Since average value may
be dominated by a few large items, we also look at the me-
dian of both metrics. In this case, DP has better density than
ES, while ES has better conductance than DP. At this stage,
many clusters have large size and potentially diverse con-
tent, mixed from more than one topics. To improve cluster
coherence, the post-processing step splits clusters basedon
text features and merges the resulted smaller clusters based
on their overlaps.

In Figures 4 and 5, we report the distribution of density
and conductance for DP and ES both before and after post-
processing. ES outperforms DP in both density and con-
ductance. After post-processing, the coherence of clusters is
greatly improved. The average percentage of videos in each
cluster covered by the top 50 terms is 94% for DP and 99.6%
for ES after post-processing. While optimizing the text co-
herence measure, we observe that the post-processing step
increases the average and median conductance for both ES
and DP. In terms of density, post-processing decreases the
average but increases the median density for ES, increases
both the average and median density for DP. The overall ef-
fect of post-process tends to increase the conductance, but
improves the density and text coherency. This comparison
of cluster metrics before and after post-processing demon-
strate the effect of post-processing and also the advantageof
multi-stage algorithm over single-stage ones.

Figure 4: Density of clusters

Cluster naming Generating clusters of a large graph only
aids in exploration and discovery if these clusters are suit-
ably named. Finding a good name for a large group of videos
is not trivial. One possible approach is to choose the most

Figure 5: Conductance of clusters

frequently occurring tag in the cluster. This resulted in fairly
poor names in our experiments, as the most frequent tag is
often a very short word such as ”2L” in a cluster about small
sporty (2-liter) cars. As an alternative approach we use en-
tities extracted from the titles of the videos in a cluster to
name the cluster. The entities used are based on the Freebase
structured data repository (Metaweb Inc. ). We extract en-
tities and use the top few entities in a cluster by occurrence
to name the cluster. This worked well for many clusters.
The table below shows some sample clusters with their size,
some sample video titles, and the name assigned based on
entity annotation. This approach does not work as well for
clusters that, while thematically coherent, do not correspond
to something as easily identifiable as an entity. An example
is the last line in the table where the cluster has videos show-
casing different places of the world at different times, which
is a concept not easily captured by an entity.

Size Sample titles Annotation Name
3823 16V Turbo 4Motion, Renault Megane-Coupe-

Renault Clio 1.6 16V 110hp, Volkswagen Golf Mk2-
megane 2.0 16v vs civic vti.avi, Volkswagen Golf,

Golf V 1,4 16v 80 PS 0-100
434 J.S Bach prelude from suite, Sebastian-Johann

BWV 1007, Bach - Cello Suite Sebastian Bach
BWV 1007 on Bass

1383 1968 Red Camaro Big Block Plymouth-Chevrolet Camaro,
4spd Fully restored, 1968 Camaro RS/SS,

1971 Plymouth Cuda Convertible Burnouts
716 Salsa Aerobic, Dance Special Aerobic exercise-Aerobics,

Rdesheim with schweppy!!!, Dance Aerobic -
Choreography - Latino, Aerobic - Mambo

4727 The WORLD LIVE - 08:00 GMT on Germany-United States
September 23, 2008, The WORLD LIVE of America-Greenwich

- 21:00 GMT on January 31, 2010 Mean Time-Europe

More results and sample clusters can be found on the web
at http://sites.google.com/site/ytcommunity. We have built
a cluster browser to allow us to explore YouTube using the
named clusters. Both the name and the top weighted videos
of each cluster are sufficient to glean the content of a clus-
ter for browsing purposes. Subjective evaluation of the re-
sulting clusters indicates that they have good content coher-
ence.



8 Conclusions
In this paper, we propose a multi–stage community detec-
tion algorithm for large–scale YouTube video graphs. Local
partitioning algorithms implemented in a parallel fashionare
used to efficiently generate clusters that cover large portions
of the graph. Pre-processing and post-processing steps are
used to optimize multiple graph–connectivity and coherence
metrics, such as conductance, coverage, and a new text co-
herence measure. We perform clustering over tens of mil-
lions of YouTube videos, scalable to larger graphs, and pro-
duce very coherent clusters with good coverage. We label
clusters using entities extracted from the titles of constituent
videos. These named clusters can be used to improve con-
tent discovery on YouTube.

Avenues for future work include: clustering content-
similarity video graphs; better naming and representation
of clusters—while adequate, entity-based annotation has
some limitations; and topic clustering—during clustering
and post-processing, we obtain relations between different
clusters in terms of the number of edges between related
clusters. If we assume each cluster corresponds to a topic,
such relations form a super-graph with topics as nodes and
their relations as edges. Given the relatively small size of
this super-graph, a global clustering algorithm could be used
to discover topic structure.
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