
Abstract
When we started implementing a refactoring tool for real-world

C programs, we recognized that preprocessing and parsing in
straightforward and accurate ways would result in unacceptably
slow analysis times and an overly-complicated parsing system.
Instead, we traded some accuracy so we could parse, analyze, and
change large, real programs while still making the refactoring
experience feel interactive and fast. Our tradeoffs fell into three
categories: using different levels of accuracy in different parts of
the analysis, recognizing that collected wisdom about C programs
didn't hold for Objective-C programs, and finding ways to exploit
delays in typical interaction with the tool.
Categories and Subject Descriptors D.2.6 [Software Engineer-
ing]: Programming Environments
General Terms Design, Language
Keywords: refactoring, case study, scalability, Objective-C

1. Introduction
Taking software engineering tools from research to develop-

ment requires addressing the practical details of software devel-
opment: huge amounts of source code, the nuances of real lan-
guages, and multiple build configurations. Making tools useful for
real programmers requires either addressing all these sorts of is-
sues, or accepting various trade-offs in order to ship a reasonable
software tool.

In our case, we wanted to add refactoring to Apple’s Xcode IDE
(integrated development environment.) 1 The refactoring feature
would manipulate programs written in Objective-C. Objective-C
is an object-oriented extension to C, and Apple’s primary devel-
opment language [1]. In past research [2], I’d found it acceptable
to take multiple minutes to perform a transformation on a small
Scheme program. The critical requirements for our commercial
tool were quite different:
• Support the most common and useful transformations. Re-

naming declarations, replacing a block of code with a call to a

new function, and moving declarations up and down a class
hierarchy were mandatory features.

• Refactor 200,000 line programs. The feature had to work on
real, medium-sized applications. The actual amount of code to
parse was much larger than the program’s size. Most Mac OS X
compilation units pull in headers for common system libraries,
requiring at least another 60-120,000 lines of code that would
need to be parsed for every compilation unit. Such large sets of
headers are not unique to Mac OS X. C programs using large
libraries like the Qt user interface library would encounter simi-
lar scalability issues.

• Interactive behavior. Xcode’s refactoring feature would be
part of the source code editor. Users will expect transformations
to complete in seconds rather than minutes, and the whole ex-
perience would need to feel interactive [3]. Parsing and analyz-
ing programs of this size in straightforward ways would result
in an unacceptable user experience. In one of my first experi-
ences with a similar product, renaming a declaration in a 4,200
line C program (with the previously-mentioned 60,000 lines of
headers) took two minutes.

• Don't force the user to change the program in order to re-
factor. The competing product previously mentioned could
provide much more acceptable performance if the user speci-
fied a pre-compiled header—a single header included by all
compilation units. However, converting a large existing project
to use a pre-compiled header is not a trivial task, and the addi-
tional and hidden setup step discourages new users.

• Be aware of use of C's preprocessor. The programs being
manipulated would make common use of preprocessor macros
and conditionally compiled code. If we did not fully address
how the preprocessor affected refactoring, we would at least
need to be aware of the potential issues.

• Reuse existing parsing infrastructure. We realized there
wasn’t sufficient time or resources to write a new parser from
scratch. Analysis would need to be done by an existing Objec-
tive C parser used for indexing global declarations.
Refactoring had to work best for our third-party develop-

ers—primarily developers writing GUI applications. It should also
work well for developers within Apple, but not for those writing
low-level operating system or device driver code.

Performance and interactivity were key—we wanted to provide
an excellent refactoring experience. In order to meet these per-
formance and interactivity goals, we attacked three areas: using
different levels of accuracy in different parts of the tool, recogniz-
ing differences between our target programmers and typical C
programmers, and finding ways to exploit delays in the user’s
interaction with the tool.

2. Different Levels of Accuracy
In C, each source file is preprocessed and compiled independ-

ently as a “compilation unit”. Each can include different headers,
or can include the same headers with different inclusion order or

Performance Trade-offs Implementing Refactoring Support for
Objective-C

Robert Bowdidge*

rbowdidge@mac.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.
3rd Workshop on Refactoring Tools '09, Oct. 26, 2009, Orlando, FL.
Copyright © 2009 ACM 978-1-60558-909-1...$10.00

 * This work was performed while the author was at Apple, and discusses
the initial implementation of refactoring for Xcode 3.0. The author is
currently at Google.

mailto:rbowdidge@mac.com
mailto:rbowdidge@mac.com

initial macro settings. As a result, each compilation unit may
interpret the same headers different ways, and may parse different
declarations in those same headers. For correct parsing, the com-
piler needs to compile every source file independently, read in
header files anew each time, and fully parse all headers.

For small programs, this may not matter, but with Mac OS X,
each source file includes between 60-120,000 lines of code from
header files. Precompiled headers and other optimizations could
speed compile times, but not all developers use precompiled
headers, nor could we demand that developers use such schemes
in order to use refactoring. Naively parsing all source code was
not acceptable; we saw parse times of around five seconds to
parse a typical set of headers, so five seconds minimum per file
per build configuration would be completely unacceptable.

We realized two facts about programs that made us question
whether we needed compilation-unit-level accuracy. We realized
that although programmers have the opportunity for header files
to be interpreted differently in each compilation unit, most pro-
grammers intend for the headers to be processed the same in all
compilation units. (When header files are not processed uni-
formly, it can cause subtle, nasty bugs that can take days to track
down.) We also realized that system header files are not really
part of the project, and not targets for refactoring. We needed to
correctly parse system header files merely for their information on
types and external function declarations. For most refactoring
operations, we didn’t care if the my_integer_t type was 4
bytes long or 8; we just needed to know that the name referred to
a type. We also knew that correct refactoring transformations
shouldn’t change the write-protected system header files.

We thus made two assumptions about headers we parsed. First,
we decided to parse each header file at most once, and would
assume that the files were interpreted the same in each compila-
tion unit. This meant that we could shorten parsing times for at
least five seconds per file to five seconds (for all system header
files), plus the additional time to only parse the source files and
headers in the project.

Second, we gathered less position information for system
header files. We knew that changes in system header files were
both incorrect (because we couldn’t change the existing code in
libraries) and uninteresting (because we couldn’t change all other
clients of the header file.) We gathered less exact position infor-
mation for such files, and would flag errors if a transformation
would change code in a system header file.

We also realized that the user interface needed information
about the source code to identify whether refactoring was possible
for a given selection, which transformations were possible, and
what the default parameters for the transformation would be.
Because we wanted the user interface to make these suggestions
immediately without waiting for parsing to complete, we used
saved information from the Xcode’s declaration index when help-
ing the user propose a refactoring transformation. We did have
some issues where indexer information had inaccuracies (when its
less accurate parser misparsed certain constructs), but in general
we found the information good enough for our first release.

3. The Typical Programmer
Dealing with conditional code and multiple build configura-

tions is another major issue for refactoring and source code analy-
sis of C programs. We realized that many of the assumptions
about C code did not hold for Objective-C programs, and changed
our expectations of what we would implement.

C’s preprocessor supports conditional code—code only com-
piled if certain macros are set. Although some conventions exist
for using conditional directives, the criteria triggering a particular

block of code usually can be understood only by evaluating the
values of the controlling macros at the point the preprocessor
would have interpreted the directive. If source code with condi-
tional code was refactored without considering all potential condi-
tions, syntax errors or changed behavior could be introduced.

Others have proposed various solutions for handling condi-
tional code. Garrido and Johnson expanded the conditional code
to cover entire declarations, and annotated the ASTs to mark the
configurations including each declaration [4]. Vittek suggested
parsing only the feasible sets of configuration macros, parsing
each condition separately, and merging the resulting parse trees
[5]. McCloskey and Brewer proposed a new preprocessor amena-
ble to analysis and change, with tools to migrate existing pro-
grams to the new preprocessor [6].

We instead chose to parse for a single build configuration—a
single set of macros, compiler flags, and include paths. Parsing a
single build configuration appeared reasonable because Objective-
C programs use the preprocessor less than typical C programs,
because occurrences of conditional code were unlikely to be re-
factored, and because remaining uses of conditional code were
insensitive to the refactoring changes.

Ernst’s survey of preprocessor use found that UNIX utilities
varied in their use of preprocessor directives. He found the per-
centage of preprocessor directives to total non-comment, non-
blank (NCNB) lines ranged between 4% and 22% [7]. By con-
trast, only 3-8% of lines in typical Objective-C programs were
preprocessor directives. (Measurements were made on sources for
the Osirix medical visualization application, Adium multi-
protocol chat client, and Xcode itself.)

Within those Objective-C programs, preprocessor directives
and conditional code also occurred much more frequently in the
code unlikely to be refactored. Many were either in third-party
utility code, or in cross-platform C++ code. The utility code was
often public-domain source code intended for multiple operating
systems. Such code is unlikely to be refactored for fear of compli-
cating merges of newer versions. For applications designed for
multiple operating systems, often a core C++ library would be the
basis of all versions, and separate user interface code would be
written for each operating system. Because our first release would
not refactor or parse C++ code, such core code would be irrele-
vant to refactoring. For the Objective-C portions of the projects,
only 2-4% of all lines were preprocessor directives.

The preprocessor directives that do appear in Objective-C code
are often irrelevant to refactoring. Of Ernst’s eleven categories of
conditional code, many are either unlikely to affect the target
audience, or are irrelevant to refactoring in general. Include
guards are less frequently used in Objective-C because a separate
directive (#import) ensures a file is included only once. Condi-
tional directives that always disabled code (“#if (0)”) can be han-
dled in the same way comments are processed. Operating system
-specific conditional code is unlikely in Objective-C code because
the language is used only on Mac OS X.

 However, there are three problematic conditional code direc-
tives that appear in Objective-C programs: code for debugging,
architecture-specific code, and conditional code for enabling and
disabling features in the project.

Conditional code for debugging is unlikely to be troublesome.
The rename transformation will make an incorrect change if a
declaration is referenced in conditional code that is not parsed. If
the condition is parsed, then the conditional code is not a concern.
The most dangerous case occurs when code that needs to be ma-
nipulated exists in two conditionally compiled sections of code
never parsed at the same time. Luckily, most conditional code
controlled by debugging macros only adds code to the debug case,

and does not add code to the non-debug case. As long as we parse
the program with debug macros set (which should be the default
during development), then we should parse all necessary code.

Architecture-specific code is more common at Apple because
we support two architectures (x86 and PowerPC), both in 32 and
64 bit versions. Most of the architecture-specific conditional code
is found in low level system code and device drivers. The external
developers we are targeting with refactoring would be working on
application software, and would be unlikely to have architecture-
specific code.

Project-specific features controlled by conditional compilation
directives represent a larger risk. Some of these may actually be in
use (such as code shared between an iPhone and Mac application),
and others may represent dead code. Code may exist on both sides
of a condition. For the first release, we only changed code in the
current build configuration, and relied on the user to be aware of
and avoid changes in project-specific conditional code.

4. Exploiting Interaction Delays
A final area for optimization was deciding when parsing and

refactoring work would begin during actual use. Even with our
previous decisions, parsing speed still wasn’t acceptable. Our
rough numbers were that we could parse all the system header
files in about 5 seconds, and then could parse an additional ten
files a second on a typical machine. Caching the results of the
header file parsing was an obvious solution, but we weren’t sure
we had the time to implement such caching.

A straightforward implementation would start parsing after the
user specified the transformation to be performed, and only show
results when the transformation was complete. We realized we
could speed perceived performance by starting parsing early, and
showing partial results before the transformation completed.

4.1 Optimistically Starting Parsing
It usually takes a few seconds for a programmer to specify a

refactoring transformation. Even for the simple rename, the user
needs to indicate that he wants to rename a declaration, then needs
to type in the new name. For “extract function”, the additional
choices for parameter name and order requires additional time.

To improve perceived performance, we began parsing the cur-
rently active file and header files as soon as the programmer had
selected the “refactor” menu item. For refactoring transforma-
tions that only affected a single file, this often meant that as soon
as the user specified the parameters for refactoring, the parsing
had already been completed, and the transformation would be
ready immediately.

4.2 Showing Partial Results
When performing transformations changing multiple files, we

similarly exploited how programmers would interact with the
refactoring tool. We knew that most programmers beginning to

use refactoring might want to examine the changes being made to
double-check that the transformation was correct. If we assumed
that most transformations would be successful (because the pro-
grammer was unlikely to try a transformation they thought would
break their code), then we could begin showing partial results
immediately rather than waiting for the entire transformation to be
complete and validated to be safe.

Most descriptions of refactoring break each transformation into
two parts: the pre-conditions (which indicate the requirements that
must be met before a transformation may be performed) and the
changes to the source code (which are only performed after the
change is believed safe. [8]) Because parse times are liable to be
longer than a few seconds, the “check, then perform” approach
would not have been interactive. The user would have to wait
until all source code was parsed and all refactoring complete be-
fore examining any results. Similarly, parse trees for all functions
would need to be generated before any refactoring work could
begin. If the project being manipulated was particularly large, then
the parse trees could consume huge amounts of memory.

To make refactoring more palatable on large projects, we de-
signed our transformations to work in several phases so that
changes could be presented shown after only some of the code
had been parsed and portions of the transformation performed.
(See Figure 1). We also could dispose of some parse trees as soon
as that code has been analyzed. The seven phases for our trans-
formations are:
• check user input: precondition checks that could be done with

the initial inputs to the transformation only.
• check first file: precondition checks to do after the file contain-

ing the selection is parsed. Generally, the analysis performed in
this phase only performs initial sanity checks requiring parse
trees. For the rename transformation, the phase checks that the
declaration can be renamed, if the name is a valid C identifier,
and if the declaration is not in a system header file.

• perform first file: apply any changes that can be determined
after the first file is parsed. Few transformations do work in this
phase.

• check per-file: precondition checks to do after parsing each
compilation unit.

• perform per-file: changes to apply after parsing each compila-
tion unit. Most transformations do the bulk of their work in the
per-file category. The check and perform parts both look at
newly found uses of relevant declarations, and make appropri-
ate changes. Each transformation specifies if the memory for
parsed representations of function bodies can be freed before
beginning the next file.

• check final: precondition checks to do after parsing all files.
The after-parsing checks tend to involve existence tests or non-
existence tests—whether any situations exist that indicate the
transformation is unsafe such as “did we ever see any declara-

parse b.c

check per-file

perform per-file

check per-file

perform per-file

check per-file

perform per-fileperform first file

check first file

parse a.c parse c.c

perform final

check final

Process a.c Process b.c Process c.c

Figure 1: Order of processing of interleaved refactoring transformation on three source files a.c, b.c, and c.c. Results of
the transformation are incrementally updated after each perform- phase is complete.

tions with this name already?” Some of these checks could be
done incrementally as each file is parsed.

• perform final: changes to apply after parsing all files. The
perform final phase is typically used for edits that cannot be
constructed until all sources have been parsed. For example,
when converting references to a structure’s field to call getter or
setter functions, the transformation needs to determine where to
place the new accessor functions. The accessors need to be
placed in a source file (rather than a header), preferably near
existing references to the field or the definition of the structure.
Typically, the transformation can place the functions as soon as
a likely location is found. If no appropriate location for the new
code is found in any source file, the perform final phase
chooses an arbitrary location.
By breaking up each transformation in this way, the user expe-

rience of refactoring becomes more interactive. The refactoring
user interface can show the list of files which must be parsed for a
transformation. As each file is parsed and changes are identified,
the user interface indicates completion and notes the number of
changes in that file. Selecting the filename shows a side-by-side
view of the source before and after the change. As the transforma-
tion progresses, more files and edits are displayed. The user can
examine proposed changes as soon as each file is processed.
While examining the changes, the user can also choose not to
include some changes, or can make additional edits to the changed
source code. In this way, the user can both measure progress and
can be working productively as the transformation progresses.

The interleaved transformation approach has the risk of declar-
ing a transformation unsafe after the user has already examined
some changes. This turned out not to be a problem in actual use.
Programmers weren’t bothered by the delayed negative answer.
We also found very few transformations where we could outright
refuse to do a transformation. We might warn the result is incor-
rect, but we found programmers often wanted the chance to apply
those incorrect changes and then fix remaining problems with
straight edits.

5. Conclusions
Overall, our progress on refactoring matched effort described

on similar projects. Our first prototype was completed in three
months by one person, and our first release required two years and
three people. We found the transformations tended to be easy to
write. Most of our parsing effort focused on scalability - getting
parsing performance and memory use low, and making sure it
worked well inside the IDE. We also found that implementing a
polished user interface took the majority of the overall effort, with
two of the engineers working full time on refactoring workflow
and on making the file comparison view as polished as possible.

With the trade-offs described here, we met our performance
goals. Our goal at the beginning of the project was to permit re-
factoring on 200,000 line projects, and be able to rename a
frequently-referenced declaration within 30 seconds. On a 2.2
GHz Dual Xeon PowerMac with 1 GB of memory, we renamed
declarations in a 270,000 line Objective-C project. We found we
could rename a class referenced in 382 places through 123 files in
28 seconds. We could rename a class used in 65 files in 15 sec-
onds. Operations involving only a single file took around 8 sec-
onds; this time was irrespective of the source file because parsing
the headers dominated. Most transformations only require parsing
a small subset of source files in a project. However, one of the
transformations searches all code for iterators that can be con-
verted to use a new language feature. Parsing the entire 270,000
line project for this transformation takes around 90 seconds. This
is not acceptable for the interactive transformations, but is ade-
quate for an infrequently run transformation that changes all

source files. The refactoring feature as described shipped as part
of Xcode 3.0 and Mac OS X 10.5.

Building software development tools in industry requires mak-
ing tradeoffs in both requirements and design. Some are driven
by the expected needs of users such as the size of programs to be
refactored, or response times expected. Some are driven by scal-
ability issues such as whether to save pre-processed header files in
the IDE between refactorings, or whether to re-parse headers from
scratch each time. Other tradeoffs occur for business, timing, or
staffing reasons, affecting whether a feature might even be im-
plemented, or whether a new parser is written from scratch.

As described in this paper, our requirements strongly affected
what we could and did implement. The particular tradeoffs we
made may not appear to be the "right" or "perfect" decision in all
cases, but they are representative of the sorts of decisions that
must be made during the process of commercial development.
Our three themes of trade-offs—identifying where different levels
of accuracy were acceptable, recognizing differences between
"our typical user" and "a typical user", and exploiting delays in
user interaction to improve responsiveness—suggest ways that
other tools can meet their own goals.

Acknowledgements
Thanks to Michael Van De Vanter and Todd Fernandez for their

feedback on a previous version of this paper. Dave Payne origi-
nally suggested applying the transformations file-by-file. Andrew
Pontious and Yuji Akimoto implemented the refactoring user in-
terface, and kept us focused on an interactive experience.

Our approach for incrementally showing refactoring results is
also described in U.S. Patent Application 20080052684, “ Step-
wise source code refactoring”.

References
[1] Apple, "Apple Developer Documentation: Objective-C Pro-

gramming Language," Cupertino, CA 2007.
[2] R. W. Bowdidge and W. G. Griswold, "Supporting the Re-

structuring of Data Abstractions through Manipulation of a Pro-
gram Visualization," ACM Transactions on Software Engineering
and Methodology, vol. 7(2), 1998.

[3] D. Bäumer, E. Gamma, and A. Kiezun, "Integrating refac-
toring support into a Java development tool," in OOPSLA 2001
Companion, 2001.

[4] A. Garrido and R. Johnson, "Analyzing Multiple Configura-
tions of a C Program," in 21st IEEE International Conference on
Software Maintenance (ICSM), 2005.

[5] M. Vittek, "Refactoring Browser with Preprocessor," in 7th
European Conference on Software Maintenance and Reengineer-
ing, Benevento, Italy, 2003.

[6] B. McCloskey and E. Brewer, "ASTEC: a new approach to
refactoring C," in 13th ACM SIGSOFT international symposium
on Foundations of Software Engineering ESEC/FSE-13, 2005.

[7] M. D. Ernst, G. J. Badros, and D. Notkin, "An Empirical
Analysis of C Preprocessor Use," IEEE Transactions on Software
Engineering, vol. 28, pp. 1146-1170, December 2002.

[8] W. F. Opdyke, "Refactoring: A Program Restructuring Aid
in Designing Object-Oriented Application Frameworks," Univer-
sity of Illinois, Urbana-Champaign, 1991.

