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Abstract

Automatic categorization of videos in a Web-scale un-
constrained collection such as YouTube is a challenging
task. A key issue is how to build an effective training set in
the presence of missing, sparse or noisy labels. We propose
to achieve this by first manually creating a small labeled
set and then extending it using additional sources such as
related videos, searched videos, and text-based webpages.
The data from such disparate sources has different proper-
ties and labeling quality, and thus fusing them in a coherent
fashion is another practical challenge. We propose a fusion
framework in which each data source is first combined with
the manually-labeled set independently. Then, using the hi-
erarchical taxonomy of the categories, a Conditional Ran-
dom Field (CRF) based fusion strategy is designed. Based
on the final fused classifier, category labels are predicted
for the new videos. Extensive experiments on about 80K
videos from 29 most frequent categories in YouTube show
the effectiveness of the proposed method for categorizing
large-scale wild Web videos1.

1. Introduction
On-line services for archiving and sharing personal

videos such as YouTube have become quite popular in re-
cent years. Automatic categorization of videos is important
for indexing and search purposes. However, it is a very chal-
lenging task for such a large corpus of practically uncon-
strained (wild Web) videos. A lot of efforts have been de-
voted to video analysis in the past, but most existing works
use very limited number of videos or focus on specific do-
mains such as news, sports etc. Due to practically un-
bounded diversity of Web videos in both content and qual-
ity (as illustrated in Figure 1), analysis of such data is much

1This work was performed when the first author interned at Google.

Figure 1. Examples of wild YouTube videos showing extremely
diverse visual content.

more challenging than relatively clean videos expected by
most existing techniques. A recent study by Zanetti et al.
showed that most existing algorithms did not perform well
on general Web videos [25]. It also pointed out that one of
the major challenges in Web video categorization is the lack
of sufficient training data. Manually labeling videos is both
time-consuming and labor intensive – on one hand one has
to watch part of a video before (s)he can suggest labels; on
the other, web videos are extremely diverse in nature, thus
even for human experts, summarizing the video content by
using a few keywords is not an easy task.

In this paper, we propose a novel approach that com-
bines multiple data sources for wild YouTube video cat-
egorization. Starting from a small number of manually
labeled samples (as few as 50 per category), we expand
the training set by propagating labels to their co-watched
videos, collecting data by using internet video search en-
gines (such as Google video search), and even incorporat-
ing data from other domains (e.g., text-based webpages).
These additional data sources are first pairwise combined
with manually-labeled data and a classification model is
trained for each combination. For fusing these trained mod-



els, we propose a CRF-based tree-DRF fusion approach,
which views the taxonomy tree as a random field. Each
node (i.e. a category) is associated with a binary label and
the output likelihoods of the trained models (applied on the
training data) are used as local observations for the nodes.
Unlike a traditional fusion strategy that treats each category
independently, tree-DRF makes the final labeling decision
as a whole by explicitly taking the hierarchical relationships
among the categories into consideration. This is crucial to
achieve good performance since the data from additional
sources is usually quite noisy. The hierarchical relation-
ships among categories provides powerful context for alle-
viating the noise. Results from extensive experiments on
80K YouTube videos demonstrate that the proposed solu-
tion outperforms existing methods that either use just a sin-
gle data source or traditional data fusion strategy.

The main contributions of this work can be summarized
as follows: First, to the best of our knowledge, this is the
first work that deals with categorization of unconstrained
Web videos at such a large scale. Second, we propose a
novel approach for integrating data from multiple disparate
sources for classification given insufficient training data. Fi-
nally, we introduce a tree-DRF based fusion strategy that
exploits the hierarchical taxonomy over categories and ef-
fectively deals with noise in multiple data sources. It signif-
icantly outperforms other commonly used fusion strategies
based on SVM and iterative co-training [2, 3, 8].

The rest of the paper is organized as follows. We first
review the related literature in Section 2 followed by the
description of multiple data sources we use in Section 3.
The proposed solution with pairwise data combination and
tree-DRF based fusion strategy is presented in Section 4.
Extensive experimental results, comparisons and analysis
are reported in Section 5. We conclude in Section 6 with a
brief discussion on future work.

2. Related Work
Compared to image analysis, research on video analy-

sis has been relatively recent. Most existing approaches
are either limited to some specific domains (e.g. movies
[4, 12], TV videos [5, 21, 24] etc.) or focus on certain
predefined content such as human face [5, 19] and hu-
man activities [14]. However, large scale categorization of
wild Web videos still remains an unsolved problem. The
works of Schindler et al. [20], VideoMule [17] and Zanetti
et al. [25] are among the initial efforts in this direction.
Schindler et al. tried video categorization on 1500 user up-
loaded videos from 15 categories using bag-of-words repre-
sentation. However, the classification performance is very
poor on this general video set (best classification accuracy
is 26.9%). Ramachandran et al. proposed VideoMule, a
consensus learning approach to multi-label YouTube videos
classification using YouTube categories. Specific amount of

data and categories were not reported in their work.
Zanetti et al. explored existing video classification meth-

ods on about 3000 YouTube videos in their recent work
[25]. They pointed out that a major difficulty in Web video
analysis is the lack of enough labeled training data. Semi-
supervised machine learning approaches [27] are useful for
expanding training data in general. However, graph-based
methods used commonly for semi-supervised learning e.g.,
[28] and semi-supervised SVM [1] are inefficient for large
amounts of data with high-dimensional features. Popular
co-training/self-training approaches [2, 3, 8] are also typi-
cally expensive and their performance is quite sensitive to
the amount and quality of the initial training set.

Another possible way of collecting more training data
is to make use of data from other sources including differ-
ent domains. It is worth noting that combining multiple
data sources is more challenging than combining multiple
views of the same data [2, 3, 8], since properties of differ-
ent data sources are typically more diverse. Multiple data
sources can be combined with either early fusion or late fu-
sion strategies [22]. Typically, early fusion assumes that
all the features are available for each video, which is not
valid in our case (e.g. webpage data has only text features).
In late fusion, classifier models are first trained separately;
then the trained models are applied to the training set. At
the fusion stage, obtained likelihoods from different models
are concatenated for each sample and used as a feature vec-
tor. Another round of training is then carried out on the new
’features’. Traditional fusion methods are based on regu-
lar learning algorithms (such as SVM, AdaBoost), which
treat each category independently. On the contrary, given
a hierarchical taxonomy over categories, it is desirable to
exploit such relationships to achieve robust classification.
In this paper, we propose tree-DRF to handle the category
structure while doing late fusion and empirically show the
benefits of such approach.

3. Multiple data sources

As mentioned earlier, lack of labeled training data is
a main bottleneck for general Web video categorization.
To alleviate this problem, we first manually labeled 4345
videos from all the 29 categories as initial seeds. This set is
further expanded by including samples from related videos,
searched videos and cross-domain labeled data (i.e. text
webpages), as illustrated in Figure 2. Details of each data
source are given below.

3.1. Manually-labeled data

To collect the initial seeds for training, we first build a
category taxonomy with the help of professional linguists.
About 1000 categories are defined using a hierarchical tree
of 5 vertical levels (Depth-0 to Depth-4 from top to bottom,



Figure 2. Multiple data sources for YouTube videos including a
small set of manually labeled data, related (e.g. co-watched video
data), searched data collected by using a video search engine with
categories as queries, and cross-domain data (e.g. webpages)
which are labeled with the same taxonomy structure.

Depth-0 is the root). Randomly selected YouTube videos
that have been viewed more than a certain number of times
are labeled by professionally-trained human experts based
on the established taxonomy. Each video is labeled from
Depth-0 to the deepest depth it can go. For example, if a
video is labeled as Pop Music, it must be associated with la-
bel Music & Audio and Art & Entertainment as well. Note
that this is a general taxonomy instead of being designed
for YouTube videos specifically. Thus, it is not surprising
that the distribution of manually-labeled videos over all cat-
egories is extremely unbalanced. For example, the Art &
Entertainment category contains close to 90% of all the la-
beled videos, and categories such as Agriculture & Forestry
have only a few videos. In fact, such imbalance reflects the
real distribution of videos in the entire YouTube corpus. In
this paper, we work on 29 categories that had a reasonable
amount of manually-labeled samples, i.e., more than 200 for
Depth-1 categories and more than 100 for Depth-2 to 4 cate-
gories. Manually-labeled samples from these 29 categories
(4345 samples in total) cover close to 80% of all the data we
labeled, roughly implying that the categories we are work-
ing with cover∼80% of all possible videos on YouTube. To
the best of our knowledge, this is the first paper which deals
with general Web video classification on such diverse cate-
gories. In our experiments, 50% randomly selected samples
are used as initial seeds for training (denoted as “M”) and
the remaining 50% are used for testing.

3.2. Related (Co-watched) data

To increase the training samples for each category, we
considered co-watched videos, i.e., the next videos that
users watched after watching the current video. We empiri-
cally noticed if a video is co-watched more than 100 times
with a certain video, they tend to have the same category.
Of course, such labels can be noisy but our tree-DRF based
late fusion method is able to handle such noise robustly. So,
in our experiments, co-watched videos (denoted as “R”) of
all the initial seed videos with co-watch counts larger than
100 (3277 video in total) are collected to assist training.

3.3. Searched data

Another possibility for expanding the training set is by
searching for videos using online video search engines us-
ing a category label as a text query. For example, returned
videos by submitting a query “soccer” may be used as train-
ing samples for the “soccer” category. Constrained by the
quality of existing search engines, searched videos may be
noisy. In our work, we keep about top 1000 videos returned
for each category. Since the categories form a hierarchical
structure, the videos returned for categories at lower levels
are included for their ancestors as well. Querying Google
video search gave us a set of about 71,029 videos (denoted
as “S”).

3.4. Cross-domain labeled data

Compared to video labeling, assigning labels to other
types of data (e.g. text-based webpages) is usually easier.
Although such data comes from a completely different do-
main, it can be helpful for video classification as long as the
samples are labeled using the same taxonomy. This is be-
cause we also use text-based features to describe each video
as explained in Section 4.1. We collected 73,375 manually-
labeled webpages (denoted as “W”) as one of the additional
data sources in our experiments.

4. Learning from multiple data sources

In Section 3, in addition to the manually-labeled data, we
introduced several auxiliary sources which may be useful
for boosting the video classification accuracy. The main
challenge is how to make use of such diverse set of data
with different properties (e.g., video content features are not
available for webpages) and labeling quality (e.g., labels of
searched and co-watched data are fairly noisy).

In this paper, we propose a general framework to in-
tegrating data from mixed sources. As illustrated in Fig-
ure 3, each auxiliary data source is first pairwise combined
with the manually-labeled training set. Initial classifiers
are trained on each such pair. For each pair, two sep-
arate classifiers are learned, one with text-based and an-
other with content-based features. For example, in Figure
3, MSc is a content-based and MSt is a text-based model
for the combination of manually-labeled data and searched
data. Trained models are then fused using a tree-DRF fusion
strategy. Different from traditional methods that fuse mod-
els for each category independently, the proposed tree-DRF
incorporates the hierarchical taxonomy structure exploring
the category relationships effectively.

Next we introduce the features used for training individ-
ual classifiers followed by the description of our tree-DRF
fusion method.



Figure 3. General framework of the proposed solution: Additional
data sources are first combined with manually-labeled data inde-
pendently and classifier models are trained based on either text
or content features for each combination. Individual classifier are
further fused to form the final classifier M .

4.1. Features

It is well known that designing good features is perhaps
the most critical part of any successful classification ap-
proach. To capture the attributes of wild Web videos as
completely as possible, state-of-the-art text and video con-
tent features are utilized in our experiments as briefly sum-
marized below.

Text features: For each video, the text words from ti-
tle, description and keywords are extracted. Then, all these
words are weighted to generate text clusters. The text clus-
ters are obtained from Noisy-Or Bayesian Networks [16],
where all the words are leaf nodes in the network and all
the clusters are internal nodes. An edge from an internal
node to a leaf node means the word in the leaf node belongs
to that cluster. The weight of the edge means how strongly
the word belongs to that cluster.

Video content features: color histogram computed using
hue and saturation in HSV color space, color motion defined
as cosine distance of color histograms between two con-
secutive frames, skin color features as defined in [9], edge
features using edges detected by Canny edge detector in re-
gions of interest, line features using lines detected by proba-
bilistic Hough Transform, histogram of local features using
Laplacian-of-Gaussian (LoG) and SIFT [15], histogram of
textons [13], entropy features for each frame using normal-
ized intensity histogram and entropy differences for multi-
ple frames, face features such as number of faces, size and
aspect ratio of largest face region (faces are detected by an
extension of AdaBoost classifier [23]), shot boundary de-
tection based features using difference of color histograms
from consecutive frames [26], audio features such as au-
dio volume and 32-bin spectrogram in a fixed time frame
centered at the corresponding video frame, adult content
features based on a boosting-based classifier in addition to
frame-based adult-content features [18]. We extract the au-
dio and visual features in the same time interval. Then, a 1D
Haar wavelet decomposition is applied to them at 8 scales.

Instead of using the wavelet coefficients directly, we take
the maximum, minimum, mean and variance of them as the
features in each scale. This multi-scale feature extraction is
applied to all our audio and video content features except
the histogram of local features [7].

Note that features are not the main contribution of this
work. Due to space limitation, we skip the details of the
features and refer the reader to the respective references.
For fair comparisons, all the experimental results reported
in this work are obtained based on the same set of features.

4.2. CRF-based fusion strategy

Conditional Random Fields (CRFs) are graph-based
models that are popularly used for labeling structured data
such as text [11] and were introduced in computer vision by
[10]. In this work, we use outputs of discriminative classi-
fiers to model the potentials in CRFs as suggested in Dis-
criminative Random Field (DRF) formulation in [10]. Fol-
lowing the notation in [10], we denote the observations as y
and the corresponding labels as x. According to CRFs, the
conditional distribution over labels given the observations
is defined as a Gibbs field:

p(x|y) = 1

Z
(
∑
i∈S

Ai(xi,y)+
∑
i∈S

∑
j∈Ni

Iij(xi, xj ,y)), (1)

where S is the set of all the graph nodes, Ni is the set of
neighbors of node i, and Z is a normalizing constant called
partition function. Terms Ai and Iij are the unary and pair-
wise potentials sometimes referred to as association poten-
tial and interaction potential respectively [10].

4.3. Tree-DRF

As discussed earlier, in this work we use multiple data
sources that are combined by a late fusion step. We want a
fusion strategy that can combine the classifier outputs from
different sources while respecting the taxonomy over cate-
gories. The DRF framework described above gives a nat-
ural way of achieving that. Formally, Ai learns to fuse the
outputs of independent classifiers while Iij enforces the cat-
egory relationships defined by the hierarchical taxonomy.

In [10], DRF is used for image classification, in which
a graph is built on image entities, i.e., pixels or blocks. On
the contrary, in our case, the graph is defined over the hier-
archical taxonomy (i.e., a tree over categories) and a node
represents a category. Each node i is associated with a bi-
nary label variable xi, i.e., xi ∈ {−1, 1} implying whether
ith category label should be assigned to the input video or
not. The scores from different classifiers for the ith cate-
gory on a given video are concatenated in a feature vector,
which serve as the observation yi. Figure 4 illustrates the
proposed tree-DRF.



Figure 4. Late fusion strategy based on tree-DRF. For each input
video, a tree-structure over categories is defined. The binary label
at the ith node (xi) represents whether that video should be as-
signed the category label Ci. The observation vector (yi) is simply
the concatenation of classifier scores on the video for that category.

Following [10], association potential is defined as,

Ai(xi,y) = log
1

1 + exp(−xiwT
i hi(y))

, (2)

where wi is a parameter vector and hi(y) is a feature vector
at site i. Following [10], we define hi(y) to include the
classifier scores and their quadratic combinations.

Note that unlike the homogeneous form used in [10], the
association potential in our tree-DRF model is inhomoge-
neous. There is a separate association parameter w for each
node. The reason is that since a different set of classifiers
is learned for each category (i.e, a node), forcing the weight
vectors defining combinations of such disparate sets of clas-
sifiers to be the same for all the nodes is too harsh. Thus,
we allow the model to chose a different weight vector for
each category. Of course, it leads to more parameters in the
model but since our graph is fairly small (just 29 nodes), and
the size of observation vector, i.e., the number of classifiers,
is also small, the computational overhead was negligible.
Moreover, overfitting is also not a concern since we have
enough training data for such small number of parameters.

The interaction potential in tree-DRF is defined as,

Iij(xi, xj ,y) = xixjv
Tµij(y), j ∈ Ni, (3)

where v are the model parameters and µij(y) is a pairwise
feature vector for nodes i and j. In this work, we only ex-
plored data-independent smoothing by forcing µij(y) to be
a constant. Similarly, the parameter v was kept to be the
same for all the node pairs. One can easily relax this to
allow directional (anisotropic) interactions between parents
and children which can provide more powerful directional
smoothing. We plan to explore this in the future.

We used the standard maximum likelihood method for
parameter learning in tree-DRF. Since the graph structure is
a tree, exact unary and pairwise marginals were computed
using Belief Propagation (BP). For inference, we used site-
wise Maximum Posterior Marginal (MPM), again using BP.
Results of tree-DRF fusion and comparisons to regular fu-
sion strategy based on SVM and Co-training are presented
in Section 5.

5. Experiments and results
In order to verify the effectiveness of the proposed solu-

tion, we performed extensive experiments with about 80K
YouTube videos and about 70K webpages. We first intro-
duce the experimental data and settings in the next section
followed by a brief description of the evaluation metric.

5.1. Experimental data and setting

As described in Section 3, four different data sources and
29 major categories are used in our experiments. The cate-
gories followed by their path in the taxonomy tree are: “Arts
& Entertainment” (1), “News” (2), “People & Society” (3),
“Sports” (4), “Celebrities & Entertainment News” (1, 5),
“Comics & Animation” (1, 6), “Events and Listings” (1, 7),
“Humor” (1, 8), “Movies” (1, 9), “Music & Audio” (1, 10),
“Offbeat” (1, 11), “Performing Arts” (1, 12), “TV & Video”
(1, 13), “Team Sports” (4, 14), “Anime & Manga” (1, 6, 15),
“Cartoons” (1, 6, 16), “Concerts & Music Festivals” (1, 7,
17), “Dance & Electronic Music” (1, 10, 18), “Music Ref-
erence” (1, 10, 19), “Pop Music” (1, 10, 20), “Rock Music”
(1, 10, 21), “Urban & Hip-Hop” (1, 10, 22), “World Music”
(1, 20, 23), “TV Programs” (1, 13, 24), “Soccer” (4, 14, 25),
“Song Lyrics & Tabs” (1, 10, 19, 26), “Rap & Hip-Hop” (1,
10, 22, 27), “Soul & R&B” (1, 10, 22, 28), and “TV Reality
Shows” (1, 13, 24, 29).

In our experiments, binary classifiers are trained for each
category respectively. Content features and text features are
trained separately by using AdaBoost and SVM, respec-
tively. LibLinear [6] is used to train SVMs when training
samples exceed 10K. Trained models are then integrated
using regular SVM based late fusion strategy [22]. Since
webpage data has only text features (no content features),
only a single model is learned for this set. The training data
from two sources (i.e., manually-labeled data plus one ad-
ditional data source) is combined before training the clas-
sifiers. After all the data sources are leveraged, fusion is
performed for content and text features for three pairwise
combinations, represented by five individual classifiers. In
the training process, negative training samples for each cat-
egory are randomly selected from other categories with a
negative-positive ratio of 3:1.

5.2. Evaluation metrics

While testing, since binary classifiers are trained for each
category, each test sample receives 29 classification deci-
sions (either “yes” or “no”). Multiple labels for a single
sample are allowed. As the category labels form a taxon-
omy structure, predicted categories/labels are also propa-
gated to their ancestors as done while generating ground-
truth labels for the training data. For example, if a test sam-
ple has a ground-truth label “Art & Entertainment” / “TV
& Video” / “TV Programs”, it is treated as a true positive



Table 1. Classification accuracy of each data source, including
manually labeled data (M), related data (R), searched data (S) and
webpage data (W). Webpage data achieved the best performance
except for Depth-2.

F-score Depth-1 Depth-2 Depth-3 Depth-4
M 0.80 0.60 0.45 0.41
R 0.74 0.53 0.37 0.34
S 0.73 0.51 0.37 0.31
W 0.84 0.54 0.48 0.45

sample for “Art & Entertainment” category if it is classified
by any of these three classifiers. For the quantitative evalua-
tion, we compute Precision, Recall and F-score. To perform
aggregate assessment of the classification performance, we
also compute F-scores for each depth level of the taxonomy.

5.3. Results and analysis

The objective of the proposed approach is to improve
video classification performance by making use of data
from multiple sources of varied quality. Table 1 lists classi-
fication accuracy of each data source (due to space limita-
tion, we only show F-score in all tables and figures). Per-
formance with just the related videos (R) or the searched
videos (S) is much worse than that from manually-labeled
data (M). It shows that neither related videos or searched
videos are sufficient for training a reliable classifier. Web-
page data (W) obtained from a completely different domain,
which does not even contain video content, works better
than manually-labeled data for most taxonomy depths. This
is possible since even noisy text based features for videos
are usually more reliable than video content features.

In order to achieve better results, we combine each of
the additional data sources pairwise with manually-labeled
training data. As shown in Table 2, for related video source,
pairwise combination achieves significant improvements
over just using related videos and even better than training
on manually-labeled data. For the searched videos, perfor-
mance of pairwise combination is also better than that for
just the searched data, but worse than that of the manually-
labeled data. In terms of the webpage data, pairwise combi-
nation is not always superior to the single sources. Overall,
there are two observations: 1) Pairwise combination with
manually-labeled data can improve classification accuracy
of any single additional source in most cases; 2) Introduc-
ing additional data sources by simply merging them with
the manually-labeled data does not guarantee improvement
for all cases over the baseline configuration, i.e., using just
the manually-labeled data for training.

Next, we fuse the single classifier models trained from
pairwise combinations to further boost the classification
performance. First row of Table 3 shows the results of us-
ing regular SVM late fusion strategy. Compared to the best

Table 2. Classification accuracy of each combination of manually-
labeled data with one additional data source. The combination
with related data achieves significant improvements over just using
the related data and even outperforms using only manually-labeled
data. But the later observation is not true for the other two cases
(i.e. combination with searched data or webpage data).

F-score Depth-1 Depth-2 Depth-3 Depth-4
M + R 0.86 0.63 0.47 0.49
M + S 0.78 0.57 0.43 0.37
M + W 0.84 0.55 0.45 0.39

Table 3. Classification accuracy of fusing pairwise combinations
of data using different fusion strategies. The proposed tree-DRF
approach outperforms any single data source or their pairwise
combinations. It is also superior to the traditional SVM fusion
strategy with the same features.

F-score Depth-1 Depth-2 Depth-3 Depth-4
All, SVM 0.84 0.65 0.46 0.49

All, Tree-DRF 0.87 0.72 0.57 0.52
M+R, Tree-DRF 0.85 0.66 0.48 0.45

cases in Table 2, fusing all data sources does not achieve any
obvious improvement (for Depth-1 and Depth-3, results are
even worse). It is because, for SVM, when the feature di-
mension increases but not the amount of training data, the
test performance may degenerate due to overfitting. This
observation underscores our previous assertion that an inap-
propriate fusion strategy for adding unreliable data sources
may even harm the classification accuracy.

Results of the proposed tree-DRF fusion strategy are re-
ported in Table 3-second row. For all taxonomy depths,
tree-DRF outperforms regular SVM fusion. Especially for
Depth-2 and Depth-3, in which the categories can ben-
efit from both parent categories and child categories, it
achieves 0.07 (11%) and 0.11 (24%) improvements in F-
scores. Compared to the baseline performance (Table 1-
first row), it gains 0.07 (9%), 0.12 (20%), 0.12 (27%), 0.11
(27%) F-score improvements for Depth-1 to Depth-4 re-
spectively. Such significant improvements are due to the
taxonomy tree based learning of tree-DRF. In other words,
since interactions between parent and child nodes are con-
sidered, noise in the additional data sources can be largely
filtered. This is because useful information is typically con-
sistent for neighboring nodes and thus can be emphasized
by the interaction potential in tree-DRF.

For analyzing the effectiveness of including additional
data sources, we applied tree-DRF on the pair of manually-
labeled data and related data (which gave the best results
among all pairwise combinations with regular fusion of
content models and text models) in the third row of Table 3.
Compared to tree-DRF on all data (second row in Table 3),
results are worse, which demonstrates the gain from multi-
ple data sources by using tree-DRF. For easy comparison,



accuracies from all experiments are summarized in Figure
5.

To analyze the results for individual categories, we il-
lustrate F-scores for the baseline method (i.e., using only
manually-labeled data for training), and SVM and tree-
DRF based fusion with all data sources in Figure 6. For
most of the categories, tree-DRF outperforms the other two
methods, especially for the categories with small amount of
training samples but relatively large number of neighbors.

In addition to SVM and tree-DRF based fusion, we also
conducted experiments with co-training on different combi-
nations of the four data sources with different settings (e.g.
by varying the number and weights of new training sam-
ples added in each iteration, and the stopping criteria). In
the best case, F-scores for Depth-1 to Depth-4 were 0.82,
0.61, 0.44 and 0.40 respectively, which are much lower than
the proposed tree-DRF method and even lower than regular
SVM fusion strategy.

Regarding computational complexity of tree-DRF, since
the graph is built on the taxonomy, it results in a very small
graph having just 29 nodes connected with very sparse
edges. Also, since the outputs of individual classifiers are
used as features, it leads to very low-dimensional features.
Hence, overall the tree-DRF is extremely fast in training as
well as testing.

6. Conclusion and future work
In this paper, we proposed a novel solution to wild web

video categorization on a large-scale dataset (more than 80
thousand YouTube videos). Our approach provides an ef-
fective way of integrating data from diverse sources, which
largely alleviates a major problem of lack of labeled train-
ing data for general web video classification. Tree-DRF
was proposed for fusing models trained from individual data
sources when combined with small amount of manually-
labeled data in a pairwise fashion. Compared to traditional
fusion strategies, the proposed tree-DRF takes the taxon-
omy tree of category labels into account, resulting in sig-
nificant improvement in classification performance. Ex-
perimental results on a large-scale YouTube dataset show
that the proposed approach is effective for categorizing wild
videos on the Web.

Currently we only consider undirected relationships be-
tween parent and child categories in tree-DRF. More so-
phisticated anisotropic formulations of interaction potential
for parent or child neighbors, and siblings may further im-
prove the labeling performance. In addition, it is also pos-
sible to make use of unsupervised learning methods (e.g.
clustering) for assigning weights to noisy labeled samples
and adjusting their contributions accordingly while training
classifiers. Integrating an iterative co-training framework
of incrementally adding additional unlabeled data is also a
possible way of further expanding the training data set and

improving the classification performance.
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