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Graphical Models of the Visual Cortex

THOMAS DEAN

1 Pivotal Encounters with Judea

Post graduate school, three chance encounters reshaped my academic career, and all
three involved Judea Pearl directly or otherwise. The first encounter was meeting
Judea on a visit to the UCLA campus at a time when I was developing what I called
temporal Bayesian networks and would later be called dynamic belief networks (an
unfortunate choice of names for reasons I'll get to shortly). Judea was writing his
book Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence [1988] and his enthusiasm for the subject matter was positively infectious. I
determined from that meeting that I was clueless about all things probabilistic and
proceeded to read each of Judea’s latest papers on Bayesian networks multiple times,
gaining an initial understanding of joint and marginal probabilities, conditional in-
dependence, etc. In those days, a thorough grounding in probability and statistics
was rarely encouraged for graduate students working in artificial intelligence.

The second encounter was with Michael Jordan at a conference where he asked
me a question that I was at a loss to answer and made it clear to me that I didn’t
really understand Bayesian probability theory at all, despite what I'd picked up
from Judea’s papers. My reaction to that encounter was to read Judea’s book cover
to cover and discover the work of I.J. Good. Despite being a math major and
having met I.J. Good at Virginia Tech where I was an undergraduate and Good
was a professor of statistics, I never took a course in probability or statistics. My
embarrassment at being flummoxed by Mike’s question forced me to initiate a crash
course in probability theory based on the textbooks of Morris DeGroot [1970, 1986].
I didn’t recognize it at the time, but Judea, Mike and like-minded researchers in
central areas of artificial intelligence were in the vanguard of those changing the
landscape of our discipline.

The third encounter was with David Mumford when our paths crossed in the
midst of a tenure hearing at Brown University and David told me of his work on
models of the visual cortex. I read David’s paper with Tai Sing Lee [2003] as well
as David’s earlier related work [1991, 1992] and naively set out to implement their
ideas as a probabilistic graphical model [Dean 2005]. Indeed, I wanted to extend
their work since it did not address the representation of time passing, and I was
interested in building a model that dealt with how a robot might make sense of its
observations as it explores its environment.
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Moreover, the theory makes no mention of how a robot might learn such a model,
and, from years of working with robots, I was convinced that building a model by
hand would turn out to be a lot of work and very likely prove to be unsuccessful.
Here it was Judea’s graphical-models perspective that, initially, made it easy for me
to think about David’s work, and, later, extend it. I also came to appreciate the
relevance of Judea’s work on causality and, in particular, the role of intervention
in thinking about how biological systems engage the world to resolve perceptual
ambiguity.

This chapter concerns how probabilistic graphical models might be used to model
the visual cortex, and how the challenges faced in developing such models suggest
areas where current theory falls short and might be extended. A graphical model is a
useful formalism for compactly describing a joint probability distribution character-
ized by very large number of random variables. We are taking what is known about
the anatomy and physiology of the primate visual cortex and attempting to apply
that knowledge to construct probabilistic graphical models that we can ultimately
use to simulate some functions of primate vision. It may be that the resulting prob-
abilistic model also captures some important characteristics of individual neurons
or their ensembles. For practical purposes, this need not be the case, though clearly
we believe there are potential advantages to incorporating some lessons from biol-
ogy into our models. Graphical models also suggest, but do not dictate, how one
might use such a model along with various algorithms and computing hardware to
perform inference and thereby carry out practical simulations. It is this latter use
of graphical models that we refer to when we talk about implementing a model of
the visual cortex.

2 Primate Visual Cortex

Visual information processing starts in the retina and is routed via the optic tract
to the lateral geniculate nuclei (LGN) and then on to the striate cortex also known
as visual area one (V1) located in the occipital lobe at the rear of the cortex. There
are two primary visual pathways in the primate cortex: The ventral pathway leads
from the occipital lobe into the temporal lobe where association areas in the in-
ferotemporal cortex combine visual information with information originating from
the auditory cortex. The dorsal pathway leads from the occipital to the parietal
lobe which, among other functions, facilitates navigation and manipulation by in-
tegrating visual, tactile and proprioceptive signals to provide our spatial sense and
perception of shape.

It is only in the earliest portion of these pathways that we have any reasonably
accurate understanding of how visual information is processed, and even in the very
earliest areas, the striate cortex, our understanding is spotty and subject to debate.
It seems that cells in V1 are mapped to cells in the retina so as to preserve spatial
relationships, and are tuned to respond to stimuli that appear roughly like oriented
bars. Hubel and Wiesel’s research on macaque monkeys provides evidence for and
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Figure 1. A simple hierarchical model of the ventral visual pathway.

subsequent studies confirm the latter characterization of function in primates [1962,
1968]. That said, there is still a good deal that we don’t know about visual pro-
cessing in V1 [Olshausen and Field 2005], and our understanding gets murkier as
we progress along these pathways.

It is said that the ventral pathway is responsible for identifying “what” objects
we see, and the dorsal for identifying “where” in our visual field these objects and
their various parts are located and “how” we might interact with them by grasping,
avoiding, etc. This is sufficiently vague that, given our current understanding of
visual processing, it is probably a useful rule of thumb. However, there is ample
evidence [Konen and Kastner 2008] to suggest that the “what”, “where” and “how”
are commingled via a myriad of connections and it is misleading to think of visual
processing as a pipeline that leads in pure feed-forward fashion from simple features
that subtend small portions of the visual field to more complex features that subtend
greater and greater spatial (and temporal) extent. Indeed, there is no conclusive
evidence that the brain is organized as a hierarchy of features, despite this being
an elegant and comforting hypothesis to entertain.

3 Static Graphical Models

Figure 1 depicts a simple graphical model of the ventral visual pathway, where the
nodes in the bottom layer are meant to model retinal ganglion cells. Nodes in the
second layer model cells in the striate cortex which is also known as Brodmann’s
area 17 or V1. The next layer corresponds to Brodmann’s area 18 or V2 which is
responsive to somewhat more complex patterns than V1. The penultimate layer
encodes V4 which is tuned to object features of intermediate complexity, and the
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Figure 2. A schematic of the hierarchical Bayesian framework proposed by Lee and
Mumford [2003]. The regions of the visual cortex are linked together in a Markov
chain. The activity in the ith region is influenced by bottom-up feed-forward data
x;—1 and top-down probabilistic priors P(x;|x;41) representing feedback from region
i+1. The Markov property plays an important computational role by allowing units
to depend only on their immediate neighbors in the Markov chain.

final layer represents inferotemporal cortex or IT which apparently responds to
complex shapes. To get a more realistic picture, imagine that each layer represents
a two-dimensional map with correspondence to the surface of the retina. Let’s
consider several ways in which this simple model falls short of the mark.

The graph in Figure 1 has no edges between nodes in the same layer. We know
adjacent cells within each of V1, V2, V4 and IT communicate via many lateral
connections. Given such connectivity, it would seem that two nodes representing
adjacent cells in a layer are dependent in a statistical sense. However, the model
as it stands has the property that any two nodes in a given layer are independent
of one another when conditioned on the nodes in the layer immediately above. It
turns out that it is very difficult to capture complex spatial relationships among
adjacent regions of images using a graphical model having the intra-layer conditional
independence implicit in model shown in Figure 1.

How might we capture the statistical properties of adjacent cells in the same
cortical layer in a graphical model? First, note that our graphical model, while
more complex than a tree, is simpler than an arbitrary directed graph being acyclic.
Unfortunately, it is difficult to devise a plausible scheme to connect vertices within
layers using directed edges and avoid cycles in the graph, and so we won’t even
attempt this. One possibility is that we model each layer as a Markov random field
with the connectivity of a regular grid, but retain the directional edges between
layers. The advantage of this approach is that the graph as a whole is a Markov
chain and it is relatively simple to write down the joint distribution. Using the chain
rule and the assumption made explicit in the graph shown in Figure 1 that each
variable in the sequence (o, Ty, Tva, Tva, Zrr) is independent of the other variables
given its immediate neighbors in the sequence, we write the equation relating the
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one retinal and three cortical regions as
P(l'()a LTviy Tva, Lyas 171T) = P(Qfo’ xv1)P(xV17 1'\/2)13(1'\/2, $V4)P(zv4a xIT)P(xIT)

where x, represents the retinal or observation layer. Moreover, we know that,
although the edges all point in the same direction, information flows both ways in
the hierarchy via Bayes rule (see Figure 2).

Despite the apparent simplicity when we collapse each layer of variables into a
single, joint variable, exact inference in such a model is intractable. One might
imagine, however, using a variant of the forward-backward algorithm to approxi-
mate the joint distribution over all variables. Such an algorithm might work one
layer at a time, by isolating each layer in turn, performing an approximation on
the isolated Markov network using Gibbs sampling or mean-field approximation,
propagating the result either forward or backward and repeating until convergence.
Simon Osindero and Geoff Hinton [2008] experimented with just such a model and
demonstrated that it works reasonably well at capturing the statistics of patches of
natural images.

One major problem with such a graphical model as a model of the visual cortex
is that the Markov property of the collapsed-layer simplification fails to capture the
inter-layer dependencies implied by the connections observed in the visual cortex.
In the cortex as in the rest of the brain, connections correspond to the dendritic
branches of one neuron connected at a synaptic cleft to the axonal trunk of a second
neuron. We are reasonably comfortable modeling such a cellular edge as an edge
in a probabilistic graphical model because for every cellular edge running forward
along the visual pathways starting from V1 there is likely at least one and probably
quite a few cellular edges leading backward along the visual pathways. Not only
do these backward-pointing cellular edges far outnumber the forward-pointing ones,
they also pay no heed to the Markov property, typically spanning several layers of
our erstwhile simple hierarchy. Jin and Geman [2006] address this very problem in
their hierarchical, compositional model, but at a considerable computational price.
Advances in the development of adaptive Monte Carlo Markov chain (MCMC)
algorithms may make inference in such graphical models more practical, but, for
the time being, inference on graphical models of a size comparable to the number
of neurons in the visual cortex remains out of reach.

4 Temporal Relationships

Each neuron in the visual cortex indirectly receives input from some, typically con-
tiguous, region of retinal ganglion cells. This region is called the neuron’s receptive
field. By introducing lags and thereby retaining traces of earlier stimuli, a neuron
can be said to have a receptive field that spans both space and time — it has a
spatiotemporal receptive field. A large fraction of the cells in visual cortex and V1
in particular have spatiotemporal receptive fields. Humans, like most animals, are
very attentive to motion and routinely exploit motion to resolve visual ambiguity,
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Figure 3. A cartoon of the hierarchical hidden Markov model described in [Dean
2006] showing the same basic structure as in Figure 1, but with additional undi-
rected, intra-layer edges, and replicated for some number of time steps to form a
hierarchy of hidden Markov models, so that nodes in a each layer represent different
spatial and temporal extent. Not shown, but present in the full model, are edges
that span the temporal slices thus modeling neural circuits that have spatiotemporal
receptive fields.

and, generally, deal with the four-dimensional, space-time continuum in which we
live.

Figure 3 depicts the obvious temporal analog of Figure 1. Dean [2006] presents
a model of visual cortex based on the Hierarchical Hidden Markov Model of Fine et
al [1998]. In the model described in [2006], nodes have edges that span both nodes
within the layers of individual time slices and nodes that reside within the same
layer of adjacent time slices.

The ability to represent the passage of time is clearly important in enabling us
to make predictions and plan our actions, but it also allows us to expedite learn-
ing. The cortex evolved to take advantage of temporal coherence, the property
that, for the most part, the appearance of the objects present in our visual field,
animate or otherwise, do not change a great deal from one instant to the next.
We can exploit this property to learn about the stable features of our environ-
ment. Foldidk [Foldidk 1991] describes a biologically plausible theory of how neural
circuits might exploit temporal coherence to learn useful features by looking for
signals that change slowly over time. Wiskott and Sejnowski [2002], Hyvérinenet
al [2003], George and Hawkins [2005], Dean [2006] and others have proposed various
algorithms for improving on this same basic idea.

Using proximity in space and time to group similar visual features was recognized
early on by the Gestalt psychologists, and it is one of many characteristics of our
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visual experience that biology has evolved to exploit to its advantage. However, in
this chapter, I want to explore a different facet of how we make sense of and, in some
cases, take advantage of spatial and temporal structure to survive and thrive, and
how these aspects of our environment offer new challenges for applying graphical
models.

5 Dynamic Graphical Models

Whether called temporal Bayesian networks [Dean and Wellman 1991] or dynamic
Bayesian networks [Russell and Norvig 2003], these graphical models are designed
to model properties of our environment that change over time and the events that
precipitate those changes. The networks themselves are not dynamic: the numbers
of nodes and edges, and the distributions that quantify the dependencies among the
random variables that correspond to the nodes are fixed. At first blush, graphical
models may seem a poor choice to model the neural substrate of the visual cortex
which is anything but static. However, while the graph that comprises a graphical
model is fixed, a graphical model can be used to represent processes that are highly
dynamic, and contingent on the assignments to observed variables in the model.
In the remainder of this section, we describe characteristics of the visual system
that challenge our efforts to model the underlying processes required to simulate
primate vision well enough to perform such tasks such as object recognition and
robot navigation.

The retina and the muscles that control the shape of the lens and the position
of the eyes relative to one another and the head comprise a complex system for
acquiring and processing visual information. A mosaic of photoreceptors activate
several layers of cells, the final layer of which consists of retinal ganglion cells whose
axons comprise the optic nerve. This multi-layer extension of the brain performs a
range of complex computations ranging from light-dark adaptation to local contrast
normalization [Brady and Field 2000]. The information transmitted along the optic
tract is already the product of significant computational processing.

Visual information is retinotopically mapped from the retinal surface to area
V1 so as to preserve the spatial relationships among patches on the retina that
comprise the receptive fields of V1 cells. These retinotopic mappings are primarily
sorted out in utero, but the organization of the visual cortex continues to evolve
significantly throughout development — this is particularly apparent when children
are learning to read [Dehaene 2009]. Retinotopic maps in areas beyond V1 are more
complicated and appear to serve purposes that relate to visual tasks, e.g., the map
in V2 anatomically divides the tissue responsible for processing the upper and lower
parts of the visual fields. These retinotopic maps, particularly those in area V1,
have led some computer-vision researchers to imagine that early visual processing
proceeds via transformations on regular grid-like structures with cells analogous to
pixels.

The fact is that our eyes, head, and the objects that we perceive are constantly
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Figure 4. This graphic depicts a variant of the process of segmentation as proposed
by Tenenbaum and Barrow [1977] in which the low-level features ¢; are used to
construct feature maps that are combined with priors ® derived from context to form
composite maps which produce candidate fragments that suggest the boundaries or
contours o; of objects which in turn guide subsequent interpretation and assignment
of fragments to objects.

in flux. Even with our head fixed while viewing a still image, our eyes quickly
jump or saccade up to 90° of visual angle several times a second, and perform much
smaller adjustments or microsaccades at around 30-50 Hertz. A two-week-old baby
can already track objects by smooth pursuit, thereby keeping an object centered in
the fovea which is the central, high-acuity and high-color-sensitivity portion of the
retina. Both smooth pursuit and (macro) saccades are driven by attentional mecha-
nisms which combine a bottom-up, small-image-patch, data-driven component with
a top-down, whole-image-gist, prior-knowledge component. The important point
here is that how we perceive the visual world has little resemblance — beyond the
earliest processing stages — to a sequence of orderly transformations performed on
a regular grid, and has everything to do with assembling a puzzle out of fragmentary
glimpses snatched as our gaze quickly shifts relative to the frames of reference of
our head, our body and the ground on which we stand.

Even if we concentrate on the hundred milliseconds or so during which the fovea
remains focused on a small patch of a still image between saccades, the representa-
tion of this process as a graphical model becomes complicated as we abstract from
the “pixel” level. Figure 4 depicts a process whereby the responses of low-level fea-
ture detectors are used to construct feature maps. Typically, the feature detectors
report information about intensity, color, texture, etc. These maps are combined so
that every location in an image is summarized by a vector of features. In bottom-up
segmentation, such summaries alone are used to aggregate locations into segments
that correspond to object surfaces or at least respect object boundaries. Tenenbaum
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Figure 5. The graphic in the upper left depicts an over-segmentation of an image
superimposed with a graph whose nodes (depicted as circles) correspond to seg-
ments or superpizels and whose edges (marked with rectangular boxes) correspond
to boundaries between segments. The graphic on the right (adapted from Saxena et
al [2007]) shows a graphical model in the form of multi-layer factor graph where
nodes in the lowest layer correspond to superpixels, those in the second layer to
boundary classes and those in the top to object surfaces.

and Barrow [1977] suggested that this low-level information has to be supplemented
by prior knowledge, which provides a more global context in which to interpret the
low-level information, and combined in an iterative of process of agglomeration.

This process has been realized in a graphical model format using variants of factor
graphs [Saxena, Chung, and Ng 2007] and conditional random fields [Hoiem, Efros,
and Hebert 2007] and hierarchical Dirichlet-process hidden-Markov trees [Kivinen,
Sudderth, and Jordan 2007]. Figure 5 characterizes the basic structure of the algo-
rithm adopted by Saxena et al [2007] and by Hoiem et al [2007]. First, the raw image
is divided into superpizels — regions of pixels homogeneous in their intensity, color
or texture — which correspond to the segments obtained from an over-segmentation
of the image that is assumed to respect image boundaries. Next, the superpixels are
used to construct a graphical model consisting of nodes corresponding superpixels,
information that pertains to their status as object (occlusion) boundaries, and their
relationships vis a vis their contribution to the same objects. Inference serves to
identify boundaries or the absence thereof, some superpixels can be merged, and
the process repeated until no further merging is possible.

In the implementation of this process, the topology of the graphical model is gen-
erated on an image-by-image basis, and the iterative refinement process requires
adjustments to the size and connectivity of the graph that are particular to the
boundaries of object surfaces in the image being observed. Such a process can be
implemented within a fixed-graph structure but the model of a dynamically chang-
ing graph is simple to implement and apply recursively. One advantage, however,
of a graph in which the nodes in a fixed grid of nodes are dynamically assigned to
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segments as part of inference is that this model is potentially more elegant, and
even biologically plausible, in that the recursive process might be represented as a
single hierarchical graphical model allowing inference over the entire graph, rather
than over sequences of ever more refined graphs.

The above discussion of segmentation is but one example in which nodes in a
graphical model might serve as generic variables that are bound as required by
circumstances. But perhaps this view is short sighted; why not just assume that
there are enough nodes that every possible (visual) concept corresponds to a unique
combination of existing nodes. In this view, visual interpretation is just mapping
visual stimuli to the closest visual “memory”. Given the combinatorics, the only way
this could be accomplished is to use a hierarchy of features whose base layer consists
of small image fragments at many different spatial scales, and all subsequent layers
consist of compositions of features at layers lower in the hierarchy [Bienenstock and
Geman 1995; Ullman and Soloviev 1999; Ullman, Vidal-Naquet, and Sali 2002].
This view accords well with the idea that most visual stimuli are not determined
to be novel and, hence, we construct our reality from bits and pieces of existing
memories [Hoffman 1998]. Our visual memories are so extensive that we can almost
always create a plausible interpretation by recycling old memories. It may be that
in some aspects of cognition we have to employ generic neural structures to perform
the analog of binding variables, but for much of visual intelligence this may not be
necessary given a large enough memory of reusable fragments. Which raises the
question of how we might implement a graphical model that has anywhere near the
capacity of the visual cortex.

6 Distributed Processing at Cortex Scale

The cortex consists of a layered sheet with a more-or-less uniform cellular structure.
Neuroanatomists have identified what are called columns corresponding to groups of
local cells running perpendicular to the cortical surface. Vernon Mountcastle [2003]
writes “The basic unit of cortical operation is the minicolumn [...] [containing] on
the order of 80-100 neurons [...] The minicolumn measures of the order of 40-50u
in transverse diameter, separated from adjacent minicolumns by vertical cell-sparse
zones which vary in size in different cortical areas.” These minicolumns are then
grouped into cortical columns which “are formed by the binding together of many
minicolumns by common input and short-range horizontal connections.”

If we take the cortical column — not the minicolumn — as our basic compu-
tational module as in [Anderson and Sutton 1997], then the gross structure of the
neocortex consists of a dense mat of inter-columnar connections in the outer-most
layer of the cortex and another web of connections at the base of the columns. The
inter-columnar connectivity is relatively sparse (something on the order of 10*® con-
nections spanning approximately 10*! neurons) and there is evidence [Sporns and
Zwi 2004] to suggest that the induced inter-columnar connection graph exhibits the
properties of a small-world graph [Newman, Watts, and Strogatz 2002]. In partic-
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ular, evidence suggests the inter-columnar connection graph has low diameter (the
length of the longest shortest path separating a pair of vertices in the graph) thereby
enabling relatively low-latency communication between any two cortical columns.

It is estimated that there are about a quarter of a billion neurons in the primary
visual cortex — think V1 through V4 — counting both hemispheres, but probably
only around a million or so cortical columns. If we could roughly model each cortical
column with a handful of random variables, then it is at least conceivable that we
could implement a graphical model of early vision.

To actually implement a graphical model of visual cortex using current technol-
ogy, the computations would have to be distributed over many machines. Training
such a model might not take as long as raising a child, but it could take many
days — if not years — using the current computer technology, and, once trained,
we presumably would like to apply the learned model for much longer. Given such
extended intervals of training and application, since the mean-time-til-failure for
the commodity-hardware-plus-software that comprise most distributed processing
clusters is relatively short, we would have to allow for some means of periodically
saving local state in the form of the parameters quantifying the model.

The data centers that power the search engines of Google, Yahoo! and Microsoft
are the best bet that we currently have for such massive and long-lived computa-
tions. Software developed to run applications on such large server farms already
have tools that could opportunistically allocate resources to modify the structure of
graphical model in an analog of neurogenesis. These systems are also resistant to
both software and equipment failures and capable of reallocating resources in the
aftermath of catastrophic failure to mimic neural plasticity in the face of cell death.

In their current configuration, industrial data centers may not be well suited to
the full range of human visual processing. Portions of the network that handle very
early visual processing will undoubtedly require shorter latencies than is typical in
such server farms, even among machines on the same rack connected with high-
speed Ethernet. Riesenhuber and Poggio [1999] use the term immediate recognition
to refer to object recognition and scene categorization that occur in the first 100-
200ms or so from the onset of the stimuli. In that short span of time — less
than the time it takes for a typical saccade, we do an incredibly accurate job of
recognizing objects and inferring the gist of a scene. The timing suggests that only
a few steps of neural processing are involved in this form of recognition, assuming
10—20ms per synaptic transmission, though given the small diameter of the inter-
columnar connection graph, many millions of neurons are likely involved in the
processing. It would seem that at least the earliest stages of visual processing will
have to be carried out in architectures capable of performing an enormous number
of computations involving a large amount of state — corresponding to existing
pattern memory — with very low latencies among the processing units. Hybrid
architectures that combine conventional processors with co-processors that provide
fast matrix-matrix and matrix-vector operations will likely be necessary to handle
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even a single video stream in real-time.

Geoff Hinton [2005, 2006] has suggested that a single learning rule and a rela-
tively simple layer-by-layer method of training suffices for learning invariant features
in text, images, sound and even video. Yoshua Bengio, Yann LeCun and others
have also had success with such models [LeCun and Bengio 1995; Bengio, Lamblin,
Popovici, and Larochelle 2007; Ranzato, Boureau, and LeCun 2007]. Hyvérinen et
al [2003], Bruno Olshausen and Charles Cadieu [2007, 2008], Dean et al [2009] and
others have developed hierarchical generative models to learn sparse codes resem-
bling the responses of neurons in the medial temporal cortex of the dorsal pathway.
In each case, the relevant computations can be most easily characterized in terms
of linear algebra and implemented using fast vector-matrix operations best carried
out on a single machine with lots of memory and many cores (graphics processors
are particularly well suited to this sort of computation).

A more vexing problem concerns how we might efficiently implement any of the
current models of Hebbian learning in an architecture that spans tens of thousands
of machines and incurs latencies measured in terms of milliseconds. Using super
computers at the national labs, Eugene Izhikevich and Gerald Edelman [2008] have
performed spike-level simulations of millions of so-called leaky integrate and fire
neurons with fixed, static connections to study the dynamics of learning in such
ensembles. Paul Rhodes and his team of researchers at Evolved Machines have
taken things a step further in implementing a model that allows for the dynamic
creation of edges by simulating dendritic tree growth and the chemical gradients
that serve to implement Hebbian learning. In each case, the basic model for a neuron
is incredibly simple when compared to the real biology. It is not at all surprising
that Henry Markram and his colleagues at EPFL (Ecole Polytechnique Fédérale
de Lausanne) require a powerful supercomputer to simulate even a single cortical
column at the molecular level. In all three of these examples, the researchers use
high-performance computing alternatives to the cluster-of-commodity-computers
distributed architectures that characterize most industrial data warehouses. While
the best computing architecture for simulating cortical models may not be clear,
it is commonly believed that we either how have or soon will have the computing
power to simulate significant portions of cortex at some level of abstraction. This
assumes, of course, that we can figure out what the cortex is actually computing.

7 Beyond Early Visual Processing

The grid of columnar processing units which constitutes the primate cortex and
the retinotopic maps that characterize the areas participating in early vision, might
suggest more familiar engineered vision systems consisting of frame buffers and
graphics processors. But this analogy doesn’t even apply to the simplest case in
which the human subject is staring at a static image. As pointed out earlier, our
eyes make large — up to 90° of visual angle — movements several times a second
and tiny adjustments much more often.
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A typical saccade of, say, 18° of visual angle takes 60-80ms to complete [Harwood,
Mezey, and Harris 1999], a period during which we are essentially blind. During
the subsequent 200-500ms interval until the next saccade, the image on the fovea is
relatively stable, accounting for small adjustments due to micro saccades. So even
a rough model for the simplest sort of human visual processing has to be set against
the background of two or three fixations per second, each spanning less than half a
second, and separated by short — less than 1/10 of a second — periods of blindness.

During each fixation we have 200-500ms in which to make sense of the events
projected on the fovea; simplifying enormously, that’s time enough to view around
10-15 frames of a video shown at 30 frames per second. In most of our experience,
during such a period there is a lot going on in our visual field; our eyes, head
and body are often moving and the many objects in our field of view are also in
movement, more often than not, moving independent of one another. Either by
focusing on a small patch of an object that is motionless relative to our frame
of reference or by performing smooth pursuit, we have a brief period in which
to analyze what amounts to a very short movie as seen through a tiny aperture.
Most individual neurons have receptive fields that span an even smaller spatial and
temporal extent.

If we try to interpret movement with too restrictive a spatial extent, we can
mistake the direction of travel of a small patch of texture. If we try to work on
too restrictive a temporal extent, then we are inundated with small movements
many of which are due to noise or uninteresting as they arise from the analog of
smooth camera motion. During that half second or so we need to identify stable
artifacts, consisting of the orientation, direction, velocity, etc., of small patches
of texture and color, and then combine these artifacts to capture features of the
somewhat larger region of the fovea we are fixating on. Such a combination need
not entail recognizing shape; it could, for example, consist of identifying a set of
candidate patches, that may or may not belong to the same object, and summarizing
the processing performed during the fixation interval as a collection of statistics
pertaining to such patches, including their relative — but not absolute — positions,
velocities, etc.

In parallel with processing foveal stimuli, attentional machinery in several neural
circuits and, in particular, the lateral intraparietal cortex — which is retinotopically
mapped when the eyes are fixated — estimates the saliency of spatial locations
throughout the retina, including its periphery where acuity and color sensitivity
are poor. These estimates of “interestingness” are used to decide what location to
saccade to next. The oculomotor system keeps track of the dislocations associated
with each saccade, and this locational information can be fused together using
statistics collected over a series of saccades. How such information is combined and
the exact nature of the resulting internal representations is largely a mystery.

The main point of the above discussion is that, while human visual processing
may begin early in the dorsal and ventral pathways with something vaguely related
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to computer image processing using a fixed, spatially-mapped grid of processing and
memory units, it very quickly evolves into a process that requires us to combine
disjoint intervals of relatively stable imagery into a pastiche from which we can infer
properties critical to our survival. Imagine starting with a collection of snapshots
taken through a telephoto lens rather than a single high-resolution image taken with
a wide-angle lens. This is similar to what several popular web sites do with millions
of random, uncalibrated tourist photos.

The neural substrate responsible for performing these combinations must be able
to handle a wide range of temporal and spatial scales, numbers and arrangements
of inferred parts and surfaces, and a myriad of possible distractions and clutter
irrelevant to the task at hand. We know that this processing can be carried out on
a more-or-less regular grid of processors — the arrangement of cortical columns is
highly suggestive of such a grid. We are even starting to learn the major pathways
— bundles of axons sheathed with myelin insulation to speed transmission — con-
necting these biological processors using diffusion-tensor-imaging techniques. What
we don’t know is how the cortex allocates its computational resources beyond those
areas most directly tied to the peripheral nervous system and that are registered
spatially with the locations of the sensors arrayed on the periphery.

From a purely theoretical standpoint, we can simulate any Turing machine with a
large enough Boolean circuit, and we can approximate any first-order predicate logic
representation that has a finite domain using a propositional representation. Even
so, it seems unlikely that even the cortex, with its 10'! neurons and 10'® connections,
has enough capacity to cover the combinatorially many possible arrangements of
primitive features that are likely inferred in early vision. This implies that different
portions of the cortex must be allocated dynamically to perform processing on very
different arrangements of such features.

Bruno Olshausen [1993] theorized that neural circuits could be used to route
information so that stimuli corresponding to objects and their parts could be trans-
formed to a standard scale and pose, thereby simplifying pattern recognition. Such
transformations could, in principle, be carried out by a graphical model. The neu-
ral circuitry that serves as the target of such transformations — think of it as a
specialized frame buffer of sorts — could be allocated so that different regions are
assigned to different parts — this allocation being an instance of the so-called sym-
bol binding problem in connectionist models [Rumelhart and McClelland 1986] of
distributed processing.

8 Escaping Retinotopic Tyranny

While much of the computational neuroscience of primate vision seems mired in the
first 200 milliseconds or so of early vision when the stimulus is reasonably stable and
the image registered on the fovea is mapped retinotopically to areas in V1 through
V4, other research on the brain is revealing how we keep track of spatial relationships
involving the frames of reference of our head, body, nearby objects, and the larger
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world in which we operate. The brain maintains detailed maps of the body and
its surrounding physical space in the hippocampus and somatosensory, motor, and
parietal cortex [Rizzolatti, Sinigaglia, and Anderson 2007; Blakeslee and Blakeslee
2007]. Recall that the dorsal — “where” and “how” — visual pathway leads to the
parietal cortex, which plays an important role in visual attention and our perception
of shape. These maps are dynamic, constantly adapting to changes in the body as
well as reflecting both short- and long-term knowledge of our surroundings and
related spatial relationships.

When attempting to gain insight from biology in building engineered vision sys-
tems, it is worth keeping in mind the basic tasks of evolved biological vision sys-
tems. Much of primate vision serves three broad and overlapping categories of tasks:
recognition, navigation and manipulation. Recognition for foraging, mating, and a
host of related social and survival tasks; navigation for exploration, localization and
controlling territory; manipulation for grasping, climbing, throwing, tool making,
etc.

The view [Lengyel 1998] that computer vision is really just inverse graphics ig-
nores the fact that most of these tasks don’t require you to be able to construct an
accurate 3-D representation of your visual experience. For many recognition tasks
it suffices to identify objects, faces, and landmarks you’ve seen before and associate
with these items task-related knowledge gained from prior experience. Navigation
to avoid obstacles requires the ability to determine some depth information but
not necessarily to recover full 3-D structure. Manipulation is probably the most
demanding task in terms of the richness of shape information apparently required,
but even so it may be that we are over-emphasizing the role of static shape memory
and under-emphasizing the role of dynamic visual servoing — see the discussion
in [Rizzolatti, Sinigaglia, and Anderson 2007] for an excellent introduction to what
is known about how we understand shape in terms of affordances for manipulation.

But when it comes right down to it, we don’t know a great deal about how
the visual system handles shape [Tarr and Biilthoff 1998] despite some tantalizing
glimpses into what might be going on the inferotemporal cortex [Tsunoda, Yamane,
Nishizaki, and Tanifuji 2001; Yamane, Tsunoda, Matsumoto, Phillips, and Tanifuji
2006]. Let’s suppose for the sake of discussion that we can build a graphical model
of the cortex that handles much of the low-level feature extraction managed by the
early visual pathways (V1 through V4) using existing algorithms for performing
inference on Markov and conditional random fields and related graphical models.
How might we construct a graphical model that captures the part of visual memory
that pools together all these low-level features to provide us with such a rich visual
experience? Lacking any clear direction from computational neuroscience, we’ll take
a somewhat unorthodox path from here on out.

As mentioned earlier, several popular web sites offer rich visual experiences that
are constructed by combining large image corpora. Photo-sharing web sites like
Flickr, Google Picasa and Microsoft Live Labs PhotoSynth are able to combine
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Figure 6. Graphical model with vertices corresponding to image patches and
edges representing various relationships among the image patches (after Jing and
Baluja [2008]).

multiple snapshots to construct views of popular landmarks from viewpoints not
represented by any one snapshot. Google StreetView stitches together video and
high-resolution wide-angle images to provide a seamless experience of virtually driv-
ing down a street in your home town. Google Earth combines images from satellite,
aircraft, ground-based vehicles and, now, sonar-equipped ships and submersibles to
allow us explore extensive regions of the planet. These applications are possible due
to fast structure-from-motion algorithms that use reliably recoverable and locally
distinctive features called keypoints extracted from pairs of images to align the im-
ages and stitch them together, blending the shared portions and adjusting the color
and contrast of the composite to create the illusion of a single image. It is worth
noting that these popular web sites facilitate the basic tasks of biological vision that
were listed earlier: find me images of a particular famous face, show me a photo of
Mount Rainier taken from a site in Tacoma, Washington, tell me what my hotel in
New York would look like if I approached it from the direction of Penn Station.

What if the cortex simply memorizes every novel fixated foveal patch that spans
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some fixed-width receptive field and relates them by using low-level features ex-
tracted in V1 through V4 as keypoints to estimate geometric and other meaningful
relationships among patches? The use of the word “novel” in this context is meant
to convey that some method for statistical pooling of similar patches is required
to avoid literally storing every possible patch. This is essentially what Jing and
Baluja [2008] do by taking a large corpus of images, extracting low-level features
from each image, and then quantifying the similarity between pairs of images by
analyzing the features that they have in common. The result is a large graph whose
vertices are images and whose edges quantify pair-wise similarity (see Figure 6). By
using the low-level features as indices, Jing and Baluja only have to search a small
subset of the possible pairs of images, and of those only the ones that pass a specified
threshold for similarity are connected by edges. Jing and Baluja further enhance
the graph by using a form of spectral graph analysis to rank images in much the
same way as Google ranks web pages. Torralba et al [2007] have demonstrated that
even small image patches contain a great deal of useful information, and further-
more that very large collections of images can be quickly and efficiently searched
to retrieve semantically similar images given a target image as a query [Torralba,
Fergus, and Weiss 2008].

In principle, such a graph could be represented as a probabilistic graphical model
and the spectral analysis reformulated in terms of inference on graphical models.
The process whereby the graph is grown over time, incorporating new images and
new relationships, currently cannot be formulated as inference on a graphical model,
but it is interesting to speculate about very large, yet finite graphs that could evolve
over time in response to new evidence. Learning the densities used to quantify the
edges in graphical models can can be formulated in terms of hyper-parameters
directly incorporated into the model and carried out by traditional inference algo-
rithms [Buntine 1994; Heckerman 1995]. Learning graphs whose size and topol-
ogy change over time is somewhat more challenging to cast in terms of traditional
methods for learning graphical models. Graph size is probably not the determining
technical barrier however. Very large graphical models consisting of documents,
queries, genes, and other entities are now quite common, and, while exact inference
in such graphs is typically infeasible, approximate inference is often good enough
to provide the foundation for industrial-strength tools.

Unfortunately, there is no way to tie up the many loose ends which have been
left dangling in this short survey. Progress depends in part on our better under-
standing the brain and in particular the parts of the brain that are further from
the periphery of the body where our senses are directly exposed to external stimuli.
Neuroscience has made significant progress in understanding the brain at the cel-
lular and molecular level, even to the point that we are now able to run large-scale
simulations with some confidence that our models reflect important properties of
the biology. Computational neuroscientists have also made considerable progress
developing models — and graphical models in particular — that account for fea-
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tures that appear to play an important role in early visual processing. The barrier
to further progress seems to be the same impediment that we run into in so many
other areas of computer vision, machine learning and artificial intelligence more
generally, namely the problem of representation. How and what does the brain rep-
resent about the blooming, buzzing world in which we are embedded? The answer
to that question will take some time to figure out, but no doubt probabilistic graph-
ical models will continue to provide a powerful tool in this inquiry, thanks in no
small measure to the work of Judea Pearl, his students and his many collaborators.
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