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ABSTRACT
We consider experiments to measure the quality of a web
search algorithm based on how much total time users take
to complete assigned search tasks using that algorithm. We
first analyze our data to verify that there is in fact a neg-
ative relationship between a user’s total search time and a
user’s satisfaction for the types of tasks under considera-
tion. Secondly, we fit models with the user’s total search
time as the response to compare two different search algo-
rithms. The two search algorithms we chose for comparison
are close in quality, but still differ enough that other evalua-
tion methods have had some degree of success in separating
them. We confirm that our methodology is in fact sensi-
tive enough to detect that one of these two algorithms has a
statistically significant speed advantage over the other. Fi-
nally, we propose an alternative experiential design which
we demonstrate to be a substantial improvement over our
current design in terms of variance reduction and efficiency.
The alternative design we use is a type of cross-over design,
which proves to be advantageous since it mitigates the large
variation in task completion times that we observe among
different users carrying out the same task.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and principles; H.3
[Information Systems]: Information storage and retrieval;
G.3 [Mathematics of Computing]: Probability and Statis-
tics

General Terms
Design, Experimentation, Performance, Measurement

Keywords
Experiment design, Evaluation metrics, Interactive IR and
visualization, Question answering

1. INTRODUCTION
Traditional evaluation techniques for Information Retrieval

(IR) systems in general focus on combining relevance judge-
ments from individual documents. Common metrics in this
case are precision, recall, Mean Average Precision (MAP)

*A two page version of this paper was published in Proceedings of
ACM SIGIR, 2009

[6] and binary preference (bpref) [7]. However, these types
of evaluation miss a lot of aspects of the user experience.
Ingwersen and Järvelin [8] discuss some of these problems
in their book, such as the assumption of document indepen-
dence as well as the lack of user interaction. Additionally,
the user interaction aspect will continue to become a larger
issue as modern search engines add more interactive func-
tionality to assist users. For instance, most popular search
engines currently offer tools to assist users with query for-
mulations such as query suggestions, query refinements and
query completions.

For these reasons we believe that there is strong justifi-
cation to continue to develop evaluation methodology using
user-oriented techniques such as in Kagolovsky and Moehr
[10]. Specifically, in this paper we seek to directly address
the question of whether the search algorithm helps the user
complete the task more efficiently. We will use a type of
interactive evaluation in which users are assigned a task and
the metric of interest is the time until the user completes
the task.

Using the time until task completion is attractive as a
metric for evaluating search algorithms since it is a holis-
tic measurement of the user’s interaction with the search
task. However, one may be concerned that there could ex-
ist certain types of tasks in which a better IR system could
lead to users actually spending more time on the task rather
than less time. For that reason, we devote Section 3 of this
paper to verifying that this is generally not the case for the
types of task under consideration. That is, we show that the
user’s self-reported satisfaction has a negative relationship
with the total time spent for the tasks we consider.

We note that other research has also established a neg-
ative relationship between quality and the time spent on
the task. Allan et al. [2] showed that time on task had a
statistically significant negative relationship with system re-
trieval accuracy as measured by bpref. Al-Maskari et al. [1]
observed a statistically significant decrease in the geometric
mean time to find the first relevant document when compar-
ing a system with high average precision to a system with
low average precision. Su [12] identified time as the most fre-
quently mentioned reason given by users as contributing to
their rating of the overall success of the IR system. Turpin
and Scholer [13] found a negative relationship between pre-
cision at rank 1 and the time users took to find their first
relevant document.

The data we use in this paper come from an experiment
in which we compared the task completion times for paid
participants assigned to use two different search algorithms.



The experiment and the data collection are described in de-
tail in Section 2. In order to use this data to compare the
two search algorithms, it is helpful to control for variation
due to user effects as well as task variation. In Section 4 of
the paper we do this by fitting statistical models. Finally,
in the last part of the paper we address the question of the
experimental design. In Section 5 we show that by using
a better design we can improve the overall efficiency of the
experiment dramatically.

2. DATA

2.1 Search Algorithms A and B
The data we collect will compare task completion times

for two search algorithms which we call search algorithm
A and search algorithm B. These two algorithms were cho-
sen because they show a measurable quality difference using
an nDCG-type metric [9]. Specifically, algorithm A has a
moderate advantage over algorithm B. If our time until task
completion measurement is sensitive enough, we believe we
will be able to confirm this advantage.

2.2 Tasks
In order to create the collection of tasks, we had 150 paid

participants describe a difficult task which they had recently
attempted. Specifically, part of the instructions read

We are looking for a story about some informa-
tion which you have recently tried to find on the
internet but had a difficult time in doing so.

We provided a number of other guidelines including

. . . the information needed to answer the question
must be publicly accessible on the internet.

Six of the resulting 150 tasks had to be removed since they
were not clearly formulated or did not follow the instruc-
tions, and some of the remaining tasks were edited slightly
for readability. From these 144 tasks we randomly sampled
100 final tasks to be used in our experiment. Two examples
which are representative are given below.

Example Task #1:
I once heard a song in the ending credits from a
movie about a group of young lawyers or college
students from back in the 80’s. Jami Gertz and
Kirk Cameron were stars in this movie. I think
the song is called “Forever Young” but I want to
know what the movie is called and who sings the
song.

Example Task #2:
I’m trying to find out what Washington State
governor served the shortest term in the past
hundred years.

2.3 Users
Once the 100 tasks were obtained, another group of 200

paid participants was selected to act as users to attempt
these tasks. The 200 paid participants were randomly split
into 2 groups of 100 each, with one group assigned to use
search algorithm A and the other assigned to use search al-
gorithm B. These participants (which we will call “users”
going forward) acquired tasks until all tasks were completed

by 30 users each. Users were permitted to keep acquiring
tasks until they desired to stop or until there were no more
remaining. Some number of user’s tasks had to be discarded
due to data entry errors, giving slightly less than the 30 users
per task desired. For search algorithm A there was an aver-
age of 28.5 users per task and for search algorithm B there
was an average of 29.1 users per task. Some users in each
group of 100 did not actually have a chance to participate
in the experiment since all tasks had been completed before
they began. Of the 100 users assigned to search algorithm
A, only 93 actually participated giving an average of 30.6
tasks per user. For the 100 users assigned to search algo-
rithm B, only 83 actually participated giving an average of
35.5.

2.4 Time
In the instructions for the project, the users were told to

read the task and then to click a “start searching” button
which would begin the search session by opening the appro-
priate search algorithm. The users were instructed to

. . . keep searching until you believe you have found
the answer or until you think a typical user would
give up.

When finished the users were asked to click a “finish search-
ing” button so that we could record the total task time.

The resulting task times for both search algorithm A and
search algorithm B user groups revealed heavily right skewed
distributions. This would cause trouble for our descriptive
analysis and violate some assumptions for our quantitative
analysis later. The log transformed time, however, generally
follows a normal distribution for each group. Figure 1 shows
the distribution for search algorithm A. The distribution for
algorithm B is similar. Therefore, we use the (natural) log
of the time (in seconds) throughout the entire paper. The
average log time for algorithm A is 5.21 with a standard de-
viation of 1.0, compared to 5.37 with a standard deviation of
0.90 for B. This suggests an advantage for search algorithm
A over B, but in order to correctly quantify the error in the
estimate and determine statistical significance we will need
to control for variation introduced by both users and tasks.
This is done in Section 4. First, however, we examine the
data to visually confirm that there is a negative relationship
between time to completion and satisfaction.

3. RELATIONSHIP BETWEEN TIME AND
SATISFACTION

In order to confirm that our experimental set up yields
a negative relationship between task time and satisfaction,
we asked the users to self report on their satisfaction with
the task immediately upon clicking the “finish searching”
button. Specifically, we asked the participants to indicate
how satisfied they were with their search experience using
the five choices below.

1) Very Dissatisfied
2) Dissatisfied
3) Neutral
4) Satisfied
5) Very Satisfied

We will refer to this measurement as “satisfaction” through-
out this paper. The numeric computations will be based on
1 through 5 coding with 1 being “Very Dissatisfied”.
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Figure 1: The empirical distribution of the log trans-
formed time generally follows a normal distribution.

3.1 Across All User/Task Pairs
We begin by looking at the relationship between the to-

tal task time and satisfaction across all 5756 user/task pairs
(2846 from search algorithm A and 2910 from search algo-
rithm B). Figure 2 provides boxplots for the log time for
each of the 5 satisfaction levels. The median log time (as in-
dicated by the middle bars of the boxplots) clearly decreases
as the satisfaction level increases. The relationship is fairly
strong, with a correlation of -0.42.

3.2 Controlling for User Variation
One of the reasons that the correlation across all user/task

pairs is not even stronger than −0.42 is that there is sub-
stantial variation from user to user with regard to the time
variable. In other words, some users simply consistently take
longer than other users to complete tasks. We can eliminate
some of this variability from our analysis here in a couple of
different ways. One way is to aggregate all of the users for
each task by taking the mean log time and the mean satis-
faction score (again using the 1 though 5 numerical scale).
This is shown in Figure 3 which has a point for each of the
100 tasks on search algorithm A and a point for each of the
100 tasks on search algorithm B. Here we see a very strong
relationship, with a correlation of -0.84 for the search algo-
rithm A group and -0.86 for the search algorithm B group.
Clearly the tasks which take the longest time are those which
lead to the lowest satisfaction scores.

Because the 100 tasks are each done using both search
algorithms A and B, we have drawn line segments in Figure 3
to connect all algorithm A points with their corresponding
algorithm B points. Also note that Figure 3 has a somewhat
non-linear shape at the top end of the scatter cloud, which
can be partially explained by the fact that satisfaction scores
are capped at 5.0.

A second way to analyze this same relationship is to con-
sider the data for each user separately. If we compute each
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Figure 2: The boxplots show the relationship be-
tween log time and satisfaction across all user/task
pairs. The x-axis labels also include the number of
observations for each level.
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Figure 3: Log time and satisfaction are highly corre-
lated after averaging within the tasks. Every pair of
points corresponding to the same task is connected
with a line segment.

user’s correlation between his or her log times and satisfac-
tion scores for the different tasks he or she attempted, we
can see that the majority of these correlations are negative.
The histogram of the correlations for users who have done
at least 10 tasks is shown in Figure 4. Out of these 142
users, 141 had a negative correlation. Also, more than 50%
of these correlations are less than -0.6. Thus we can con-



clude that for most users, the tasks which take them the
longest time are generally those tasks which make them the
most dissatisfied.
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Figure 4: The histogram of correlations between log
time and satisfaction for each user shows that almost
all correlations are negative.

3.3 Delta Time Versus Delta Satisfaction
While it is clear from the analysis so far that tasks which

take users the longest time are the tasks which make them
the most dissatisfied, this does not necessarily mean that
if we change a search algorithm in a way that leads users
to take less time that we should necessarily conclude users
are more satisfied. For this type of inference, we should not
look across different tasks but rather we need to look at the
same task under differing quality conditions. Fortunately,
the data we have allow us to do just that since the same
100 tasks are completed using both search algorithms A and
B. Thus, if we study the relationship between the delta in
the log time and the delta in the satisfaction scores for each
task using the two search algorithms, we can see whether
an increase in time for a task is predictive of a decrease in
satisfaction for the same task.

Looking back to Figure 3 we can believe that this will
likely be the case, since in that figure the line segments join-
ing the pairs of tasks generally seem to have negative slopes
which are similar in magnitude. We can also examine this
relationship directly in Figure 5 which plots the difference
in the mean satisfaction score against the difference in the
mean log time between search algorithms A and B for all
of the 100 tasks. Indeed, the proposed negative relationship
does exist with a correlation of -0.44. Thus we do in fact
have support for the belief that decreases in task time are
predictive of increases in satisfaction.

4. SEARCH ALGORITHM COMPARISON
We now turn to the question of whether or not our exper-

iment yields sufficient evidence to conclude that one search
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Figure 5: The difference in average log time and
the difference in average satisfaction between search
algorithms A and B are negatively correlated across
the 100 tasks.

algorithm actually leads users to find their results faster than
the other. Recall that in Section 2 we mentioned that the av-
erage log time for search algorithm A was 5.21 compared to
5.37 for search algorithm B. This would suggest search algo-
rithm B is e(5.37−5.21)

− 1 = 17% slower. Similarly, plotting
the average task completion log time using search algorithm
B against the average log time using search algorithm A for
each of the 100 tasks (Figure 6) shows that users take less
time on search algorithm A for 75 out of the 100 tasks. This
seems to confirm results from other metrics which indicate
that A is the preferable algorithm. However, regarding sta-
tistical significance, it would be incorrect to apply a simple
binomial test or even a two-sample t-test on the log time
since the observations are not independent. Any two tasks
completed on the same search algorithm are done by an over-
lapping set of users. Likewise, when comparing the means
of the log time we need to consider the variation in the data
due to users as well as tasks to correctly determine the sta-
tistical significance and the error in the estimation. In fact,
the user variation is of particular concern given the present
experimental design in which the search algorithm A users
are distinct from the search algorithm B users. With this
design, if by chance a few more fast users were assigned to
search algorithm A than B, that could potentially account
for a difference as large as we are seeing.

To conclude whether there is indeed a significant difference
in task time between the two search algorithms, we need an
approach that will account for the correlation and variance
introduced by users as discussed above. We propose to use
an ANOVA model with mixed effects as described in the
following subsection.

4.1 ANOVA Model
Analysis of variance (ANOVA) is a classical method in

statistics to separate out variations due to different explana-
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Figure 6: Users spend a longer average time on
search algorithm B than on search algorithm A for
75 of the 100 tasks. The line plotted is the diagonal
y = x line, and 75 out of the 100 points lie above it.

tory variables. For background on ANOVA, see the book
by Searle et al. [11]. Under our current experimental de-
sign, there are three variables contributing to the variation
in time: the search algorithm effect, the user effect and the
task effect. Because we are not interested in any particu-
lar user nor any particular task in the experiment, we treat
both user and task effects as random in the model. By asso-
ciating common random effects to observations sharing the
same users or tasks, the model flexibly represents the covari-
ance structure in the data. Conversely, the search algorithm
effect is treated as a fixed effect, and it measures the dif-
ference between the two search algorithms after accounting
for the variations in users and tasks. The model has the
following mathematical form:

log(T ime)ij = µ + EB−A + Ui + Tj + ǫij . (1)

Here, µ is the grand mean, EB−A is the fixed effect due
to the difference between the search algorithms A and B,
Ui and Tj are random effects due to the variations across
users and tasks respectively, and ǫij is the error term. We
follow the classical random effect models and suppose that
all of the random terms are independent and are normally
distributed with mean 0 and variances σ2

U , σ2
T and σ2

ǫ for
users, tasks and errors respectively. The normality assump-
tions seem reasonable since the log time is approximately
normally distributed as shown in Figure 1.

4.2 Results
We fit the model in (1) using the lme4 package [4, 5] avail-

able in R, an open source language for statistical computing.
The resulting parameter estimates are given in Table 1. For
reasons beyond the scope of this paper, p-values estimated
directly from t-statistics in a mixed-effects model may not
be accurate [3]. Therefore, we consider the 95% confidence

interval estimated using Markov Chain Monte Carlo sam-
pling (function mcmcsamp in R) instead of the naive p-value
to check whether the search algorithm effect is significant.

The difference between the two search algorithms EB−A is
estimated to be 0.16 with a standard deviation of 0.079 and
a 95% confidence interval of (0.037, 0.290). In other words,
the same user would take about e0.16

− 1 = 17% longer to
complete the same task on search algorithm B than on A
with a 95% confidence interval of (4%, 33%). This result
confirms an advantage for search algorithm A over B for our
task completion time metric, just as we have observed using
an nDCG-type metric.

The increase in time for algorithm B is statistically signif-
icant after allowing for random user and task effects. How-
ever, the confidence interval (4%, 33%) is considerably wide.
This is largely due to the current experimental design in
which any given user does tasks on either A or B exclu-
sively. We will examine a better experimental design in the
following section.

Interestingly, from Table 1 we note that users seem to
be slightly more variable than tasks, as σ2

U is estimated to
be somewhat larger than σ2

T . The practical interpretation of
this is that two randomly selected users assigned to the same
task will generally differ slightly more than two randomly
selected tasks assigned to the same user. This large user
variation is the main reason for the improvements we will see
using the design proposed in the following section. Finally,
we also note that the likelihood ratio tests show that both
user and task random effects are statistically significant with
p-values less than 10−15.

Parameter Estimation

µ 5.22
EB−A 0.16

σ2
U 0.23

σ2
T 0.20

σ2
ǫ 0.53

Table 1: ANOVA model parameter estimates

5. CROSS-OVER EXPERIMENTAL DESIGN
The results from the current experimental design are en-

couraging. After accounting for the substantial variation in
both users and tasks, we are able to find a significant differ-
ence between the two search algorithms. However, the cur-
rent experimental design may fail to distinguish two search
algorithms which are closer in quality due to the large un-
certainty in the estimation noted in the previous section.

The current experimental design protects against varia-
tion due to tasks since the same tasks are used for both
search algorithms. However, user variation remains a prob-
lem due to the algorithm A users being distinct from the
algorithm B users. Thus, any variation among users directly
leads to increased uncertainty in our estimated search algo-
rithm difference. As we saw in the previous section, this is
a concern since the user variation is estimated to be slightly
larger than the task variation. To overcome this problem, we
propose a cross-over experimental design, where every par-
ticipant uses both search algorithms, as described in detail
in Section 5.2.

In this section, we will take a model-based approach to



compare the current experimental design with this proposed
cross-over design. We first examine analytically the vari-
ance of the estimated search algorithm difference EB−A un-
der both designs in Subsections 5.1 and 5.2. We then pro-
ceed to quantify the improvement from the cross-over design
in terms of variance, power and sample size. Throughout
this section we will assume that our data is generated from
model (1).

5.1 Variance Using Current Design
We will begin with the current design and analyze theo-

retically the variance of the estimated search algorithm ef-
fect under model (1). Suppose there are 2m users and 2n

tasks in the experiment. Without loss of generality we as-
sign users 1 through m to use search algorithm B and users
m + 1 through 2m to use search algorithm A. For our pur-
pose here, we simplify the design a little bit by assuming
every user does all of the 2n tasks. This was not the case
for the data we collected, but the results we show in this
section can be generalized to cases in which users do not do
all tasks as discussed in Section 5.3.

With this design, the search algorithm effect can be com-
puted as

ÊB−A =
1

2mn

( m∑

i=1

2n∑

j=1

log(T ime)ij −

2m∑

i=m+1

2n∑

j=1

log(T ime)ij

)
.

Under model (1), this can be expanded to

ÊB−A =
1

2mn

( m∑

i=1

2n∑

j=1

(µ + EB + Ui + Tj + ǫij)

−

2m∑

i=m+1

2n∑

j=1

(µ + EA + Ui + Tj + ǫij)

)

= (EB − EA) +
1

m

( m∑

i=1

Ui −

2m∑

i=m+1

Ui

)

+
1

2mn

( m∑

i=1

2n∑

j=1

ǫij −

2m∑

i=m+1

2n∑

j=1

ǫij

)
.

We see here that the random effects due to tasks are canceled
since the same tasks are used for both search algorithms, but

ÊB−A still depends on user effects, which will contribute to
the variance as we will see next. Using the normality and
independence assumptions for the random effects Ui and ǫij ,

we can compute the variance of ÊB−A to be

Var(ÊB−A) =
1

m2
(2mσ

2
U ) +

1

4m2n2
(4mnσ

2
ǫ )

=
2

m
σ

2
U +

1

mn
σ

2
ǫ . (2)

Thus the uncertainty in our estimated search algorithm ef-
fect does not depend on the task variance component σ2

T but
it does depend on the user variance component σ2

U , and the
effect of this component can only be reduced by increasing
the number of users 2m. This is problematic since recruiting
more participants for the study can be time consuming and
expensive.

5.2 Variance Using Cross-over Design
To eliminate the variation due to users as well as tasks, we

desire a design in which we not only use the same tasks for

both search algorithms, but we also use the same users for
both search algorithms. It is not immediately obvious how
to do this since we do not want to permit the same user to
do the same task on both search algorithms, as that would
introduce a learning effect. Not to mention, this would be a
very artificial experience for the users. However, using what
is known as a cross-over design will solve this problem.

In our cross-over design, the same user will be assigned
to both search algorithms A and B, but for different tasks.
Again, we suppose there are 2m users and 2n tasks. Without
loss of generality, we assign the first m users to do the first
n tasks on B and the second n tasks on A, while the second
m users do the second n tasks on B and the first n tasks on
A. Again, every user does all of the 2n tasks, only half on
search algorithm A and the other half on B.

Under this design, the search algorithm effect can then be
computed as

ÊB−A =
1

2mn

( m∑

i=1

n∑

j=1

log(T ime)ij +
2m∑

i=m+1

2n∑

j=n+1

log(T ime)ij

−

m∑

i=1

2n∑

j=n+1

log(T ime)ij −

2m∑

i=m+1

n∑

j=1

log(T ime)ij

)
.

As we did for the current design, we can expand this ex-
pression under model (1) and group the same effects together
to get

ÊB−A = (EB − EA)

+
1

2mn

( m∑

i=1

nUi +
2m∑

i=m+1

nUi −

m∑

i=1

nUi −

2m∑

i=m+1

nUi

)

+
1

2mn

( n∑

j=1

mTj +
2n∑

j=n+1

mTj −

2n∑

j=n+1

mTj −

n∑

j=1

mTj

)

+
1

2mn

( m∑

i=1

n∑

j=1

ǫij +

2m∑

i=m+1

2n∑

j=n+1

ǫij

−

m∑

i=1

2n∑

j=n+1

ǫij −

2m∑

i=m+1

2n∑

j=n+1

ǫij

)

= (EB − EA) +
1

2mn

( m∑

i=1

n∑

j=1

ǫij +

2m∑

i=m+1

2n∑

j=n+1

ǫij

−

m∑

i=1

2n∑

j=n+1

ǫij −

2m∑

i=m+1

2n∑

j=n+1

ǫij

)
.

Now the effects due to both users and tasks are canceled.
Again, using the normality and independence assumptions

for the errors, we can compute the variance of ÊB−A to be

Var(ÊB−A) =
1

4m2n2
(4mnσ

2
ǫ ) =

1

mn
σ

2
ǫ . (3)

Compared with (2) from the current design, (3) from the
cross over design completely removes the user variation, and
hence largely reduces the uncertainty in the estimated search
algorithm effect.

5.3 Variance Comparisons
We would like to quantify the improvement in terms of

variance if we had used the cross-over design in our experi-
ment. To do so, we first match the theoretical variance in (2)



with the empirical variance obtained in Section 4. We then
compute the variance reduction using the cross-over design.

In the analysis for these two experimental designs above,
we assumed that every user does all 2n tasks. We need to
first relax this assumption a bit to more closely resemble the
data we collected, in which users do not need to finish all
tasks. We now suppose that each user does 2k tasks with
2k ≤ 2n and the same task is done by the same number
of users on both algorithms. Using similar computations to
those in the previous sections, we can compute that (2) still
holds, only with n replaced by k. The assumptions for the
cross-over design can be relaxed similarly, with the difference
being that each user does k tasks on both algorithms. Again,
we can get (3) with n replaced by k.

In our experiment, every user did not do the same number
of tasks with each search algorithm. However, on average
we have roughly m = 90 and k = 15. Using the estimated
values in Table 1, m = 90 and k = 15 give a theoretical stan-
dard deviation of 0.074 as computed by (2) (with n replaced
by k). We note that this is close to the actual estimate of
0.079 in Section 4. From (3) we can compute that the cross-
over design reduces this standard deviation to 0.020, which
is a 73% reduction. We can further compute the (theoreti-
cal) 95% confidence interval for the search algorithm effect
using the cross-over design as (12.8%, 22.0%), which is sub-
stantially narrower than we reported in Section 4 for the
current design.

Design Var(ÊB−A) Sd(ÊB−A)

current design 0.00551 0.074
cross-over design 0.00039 0.020

Table 2: Theoretical variance comparison between
the two designs

5.4 Power Comparisons
In addition to considering the reduction in variance re-

sulting from the cross-over design, we can also quantify the
improvement in terms of the power. The term power has
to do with the probability of detecting a statistically signif-
icant difference assuming one exists. For our purposes, we
assume ranking algorithm B is truly slower than ranking al-
gorithm A. We hence define our power to be the probability
of a design correctly detecting B’s loss at a (two-sided) 95%
confidence level, which can be written as

1 − Φ

(
Φ−1(.975) Sd(ÊB−A) − EB−A

Sd(ÊB−A)

)

, (4)

where Φ is the standard normal cumulative distribution func-
tion and Φ−1 is its inverse.

From (4), we can observe that the power will increase as

Sd(ÊB−A) decreases, which is intuitive since less uncertainty
in our estimate will increase the likelihood of detecting a true
difference. Specifically, when the true value of EB−A is in
fact 0.16, the standard deviation of 0.074 from our current
design (as in Table 2) leads to a power of 0.58. For the cross-
over design the smaller standard deviation of 0.020 increases
the power to 1.00 to 2 decimals of accuracy.

Equation (4) also shows that the power monotonically in-
creases with EB−A, which is intuitive since larger differences
are easier to detect. Figure 7 plots the power as a function
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Figure 7: Power comparison for current design and
cross-over design

of EB−A for both the cross-over design and the current de-
sign. From this graph we can see that the cross-over de-
sign is powerful enough to detect differences on the order of
EB−A = 0.06 with probability close to .85. For perspective,
a difference of EB−A = 0.06 implies a e0.06

− 1 = 6% differ-
ence in time until task completion. The current design has
a very small (roughly 13 percent) chance of detecting such
a small difference. The vertical line on the plot shows the
power for EB−A = 0.16 under both designs as discussed in
the previous paragraph.

5.5 Sample Size Comparisons
One final way to compare the efficiency of the cross-over

design to that of the current design is in terms of sample
size. Specifically, we can ask the following question. If we
wanted to achieve the same variance (and thus power) as the
cross-over design using the current design, how many more
users would we need? Section 5.3 shows that with m = 90
and n = 15, the cross-over design gives a variance of 0.00039.
With the same n = 15, the current design needs m = 1, 270
users to achieve the same variance, computed by solving (2)
for m. Thus we can say that the cross-over design reduces
the amount of users (paid participants) needed by more than
a factor of 10 in this case.

6. CONCLUSIONS
There are two main results in this paper. First, we con-

firmed that time until task completion has a negative cor-
relation with user satisfaction on all levels. This general
relationship has been observed in other studies, and our
contribution has been to add more evidence in support of
this.

Secondly, we have demonstrated that time until task com-
pletion can be used as a metric to differentiate ranking algo-
rithms of moderately different quality in a reasonably sized
experiment. However, because there is substantial variation



in different user’s task completion times for the same tasks,
we have shown that using a cross-over design provides con-
siderable gains in efficiency. We note that this user variation
is a natural challenge with a metric such as time until task
completion since certain users simply spend more time than
others for the same task.
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