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Abstract. Leveraging both visual frames and audio has been experi-
mentally proven effective to improve large-scale video classification. Pre-
vious research on video classification mainly focuses on the analysis of
visual content among extracted video frames and their temporal feature
aggregation. In contrast, multimodal data fusion is achieved by simple
operators like average and concatenation. Inspired by the success of bilin-
ear pooling in the visual and language fusion, we introduce multi-modal
factorized bilinear pooling (MFB) to fuse visual and audio representa-
tions. We combine MFB with different video-level features and explore
its effectiveness in video classification. Experimental results on the chal-
lenging Youtube-8M v2 dataset demonstrate that MFB significantly out-
performs simple fusion methods in large-scale video classification.
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1 Introduction

Along with the dramatic increase in video applications and production, better
video understanding techniques are urgently needed. As one of the fundamental
video understanding tasks, multi-label video classification has attracted increas-
ing attentions in both computer vision and machine learning communities. Video
classification requires a system to recognize all involved objects, actions and even
events in any video based on its available multimodal data such as visual frames
and audio.

As deep learning has obtained a remarkable success in image classification
[1–3], action recognition [4–6] and speech recognition [7, 8], video classification
also benefit a lot from these powerful image, snippet, and audio representations.
Since videos are composed of continuous frames, aggregating frame or snip-
pet features into video-level representation also plays an important role during
recognition process. Besides the direct aggregations such as temporal average or
maxpooling, a few sophisticated temporal aggregation techniques are also pro-
posed. For example, Abu-El-Haija et al. [9] proposes deep Bag-of-Frames pooling
(DBoF) to sparsely aggregate frame features by ReLU activation. On the other
hand, recurrent neural networks such as long short-term memeory (LSTM) [10]
and gated recurrent unit (GRU) [11]) are applied to model temporal dynamics
along frames.
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Although much progress has been made in generating video-level visual rep-
resentations, few work lies on integrating multimodal data which can supplement
with each other and further reduce the ambiguity of visual information. There-
fore, developing deep and fine-grained multimodal fusion techniques could be a
key ingredient towards practical video classification systems. In this paper, we
take the first step by introducing multi-modal bilinear factorized pooling into
video classification, which has been extensively adopted in visual question an-
swering [12–14]. We select three popular video-level representations, i.e, Average
pooling, NetVLAD [15] and DBoF [9], to validate its effectiveness. Experimental
results indicate that video classification can achieve a significant performance
boost by leveraging the new pooling mechanism over video and audio features.
In summary, our contributions are twofold:

• We first introduce multi-modal factorized bilinear pooling to integrate visual
information and audio in large-scale video classification.

• We experimentally demonstrate that multi-modal factorized pooling signifi-
cantly outperforms simple fusion methods over several video-level features.

2 Related Work

2.1 Video Classification

Large-scale datasets [16, 17] play a crucial role for deep neural network learning.
In terms of video classification, Google recently releases the updated Youtube-
8M dataset [9] with 8 millions videos totally. For each video, only visual and
audio representations of multiple frames are made public. The approaches for
video classification roughly follow two main branches. On the one hand, several
architectures are introduced to extract powerful frame or snippet representations
similar to image classification. Simonyan and Zisserman et al. first introduces
deep convolutional neural networks to video action classification by performing
frame-level classification [4]. In order to include more temporal information,
3D convolutional neural network and several variants [18–20] are proposed to
generate representations of short snippets. The final video predictions can be
estimated by late fusion or early fusion. On the other hand, researchers also
direct their eyes to how to model long-term temporal dynamics when frame-
level or snippet-level representation available.

Commonly used methods to model long-term temporal dynamics are various
variants of Bag of Visual Words (BoVW) including Vector of Locally Aggre-
gated Descriptors (VLAD) [21], Fisher Vector (FV) [22] and so on. But these
handcrafted descriptors cannot be finetuned for the target task. Therefore, an
end-to-end trainable NetVLAD [15] was proposed where a novel VLAD layer was
plugged into a backbone convolutional neural network. Girdhar et al. proposed
ActionVLAD that performs spatio-temporal learnable aggregation for video ac-
tion classification. On the other hand, temporal models such as LSTM and GRU,
are also widely used to aggregate frame-level features into a single representation
due to its capability of capturing the temporal structures of videos.
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Sum Pooling

Fig. 1. The architecture of multi-modal factorized bilinear pooling.

2.2 Multimodal Learning

A simple attempt to integrate multimodal data is performing average or concate-
nation before input to final predictions. However, more fine-grained multimodal
fusion models like bilinear pooling operations have been extensively explored
and validated in visual and language multimodal learning. Lots of work has
focused on addressing the huge number of model parameters and high compu-
tation cost in bilinear pooling. Multi-modal compact bilinear (MCB) [12] was
proposed to employ tensor sketch algorithm to reduce the computation cost and
the amount of parameters. Later, to overcome the high memory usage in MCB,
multi-modal low-rank bilinear pooling (MLB) [13] adopted Hadamard product
to combine cross-modal feature vectors. Furthermore, multimodal tucker fusion
(Mutan) [23] and multi-modal bilinear factorized bilinear pooling (MFB) [14]
were proposed to address rather huge dimensionality and boost training.

In the paper, inspired by the success of MFB in visual and language fusion, we
apply MFB [14] into the video classification task by combining available visual
and audio representations. The most related work to us is probably [24] which
tried multi-modal compact bilinear pooling approach [12] in large-video video
classification but failed to fit training data.

3 Multi-modal Bilinear Fusion

We apply multi-modal factorized bilinear pooling over video-level visual and
audio features. However in practice, only frame-level or snippet-level representa-
tions are available. Therefore as mentioned above, three methods are exploited
to aggregate frame-level features into a single video feature. In this section,
we firstly review the MFB module and temporal aggregation models and then
present our classification framework.
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3.1 Multi-modal Factorized Bilinear Pooling

For any video, let l ∈ RC and a ∈ RM denote its visual feature and audio feature,
respectively. M and C are their corresponding feature dimensions. Then the
output of MFB over l and a is a new vector f with the i-th element formulated
as

fi = lTWia, (1)

where Wi ∈ RC×M . In order to reduce the number of parameters and the
rank of weight matrix Wi, a novel low-rank bilinear model is proposed in [25].
Specifically, Wi is decomposed as the multiplication of two low-rank matrices
Ui and Vi, where Ui ∈ RC×k and Vi ∈ RM×k. k is a predefined constant to
control rank. Therefore,

fi = lTWia = lTUiV
T
i a = 1

T (UT
i l)� (VT

i a), (2)

where 1 ∈ Rk is an all-one vector and � denotes Hadamard product. It is worthy
noting that 1 is essentially a sum pooling operator as shown in Fig. 1. We follow
the same normalization mechanism as in [25] except that the power normaliza-
tion layer is replaced with a ReLU layer in our MFB module implementation.

3.2 Temporal Aggregation Model

In order to validate the general effectiveness of MFB in video classification, we
experiment with video-level visual and audio features of three kinds obtained
by average pooling, DBoF and NetVLAD over respective frame-level features.
Let L ∈ RN×C and A ∈ RN×M denote frame-level visual and audio features
for a given video with N frames, respectively. In our experiment, C = 1024 and
M = 128. L and A are processed separately for each pooling mechanism.

Average Pooling (Avgpooling): The average pooling layer is simply averag-
ing features across N frames, that is,

l =
1

N

n∑
i=1

Li,a =
1

N

n∑
i=1

Ai. (3)

DBoF: Deep Bag-of-Frames pooling extends the popular bag-of-words represen-
tations for video classification [26, 27] and is firstly proposed in [9]. Specifically,
the feature of each frame is first fed into a fully connected layer(fc) to increase
dimension, Max pooling is then used to aggregate these high-dimensional frame-
level features into a fixed-length representation. Following [9], a rectified linear
unit (RELU) and batch normalization layer (BN) is used to increase non-linearity
and keep training stable.
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Fig. 2. The overall architecture of our MFB augmented video classification system.

NetVLAD: The NetVLAD [15, 6] employed the VLAD encoding [21] in deep
convolutional neural networks. The whole architecture can be trained in an end-
to-end way. Compared to VLAD encoding, the parameters of clusters are learned
by backpropagation instead of k-means clustering. Assuming K clusters are used
during training, NetVLAD assigns any descriptor hi in L or A to the cluster k
by a soft assignment weight

αk(hi) =
wT

k hi + bk∑K
k′=1 e

wT
k′hi+bk′

, (4)

where wk′ and bk′ are trainable cluster weights. Compared to the hard as-
signment, αk(·) measures the distance between descriptors with the cluster k
and thus maintains more information. With all assignments for descriptors, the
final NetVLAD representation is a weighted sum of residuals relative to each
cluster. For the cluster k:

V LAD[k] =

N∑
i=1

αk(hi)(hi − ck), (5)

where ck corresponds to the learnable center of the k-th cluster.

3.3 Video-level Multi-modal Fusion

In this section we will illustate that MFB module can be a plug-and-play layer
to fuse aggregated visual and audio features. Fig. 2 shows the overall video-level
fusion architecture. It mainly contains three parts. Firstly, the pre-extracted
visual features L and audio features A are fed into two temporal aggregation
modules separately. Each module outputs a single compact video-level repre-
sentation and can be any one of the mentioned three aggregating mechanisms
shown in the right side of figure. Next, MFB module fuse aggregated visual and
audio features into a fixed-length representation. Finally, the classification mod-
ule takes the resulting compact representation as input and outputs confidence
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scores of each semantic label. Following [9], we adopt Mixture-of-Experts [28]
as our classifier. The Mixture of Experts [28] classifier layer consists of m “ex-
pert networks” which take the global multimodal representation f as input and
estimate a distribution over c classes. The final prediction d is defined as

d =

m∑
i=1

softmax(gi)� sigmoid(ei), (6)

gi = fWg,i + λ||Wg,i||2, (7)

ei = fWe,i + λ||We,i||2, (8)

where Wg,i,We,i, i ∈ {1, ...,m} are trainable paramters and O ∈ Rc. λ is the L2
penalty with the default value 1e-6. All our models are trained with 2-mixtures
MoE.

4 Experiments

4.1 Implementation details

We implement our model based on Google starter code1. Each training is per-
formed on a single V100 (16Gb) GPU. All our models are trained using Adam
optimizer [29] with an initial learning rate set to 0.0002. The mini-batch size is
set to 128. We found that cross entropy classification loss works well for maxi-
mizing the Global Average Precision (GAP). All model are trained with 250 000
steps. In order to observe timely model prediction, we evaluate the model on a
subset of validate set every 10 000 training steps. For the cluster-based pooling,
the cluster size K is set to 8 for NetVLAD and 2000 for DBoF. To have a fair
comparison, 300 frames are sampled before aggregation. In addition, the dropout
rate of MFB module is set to 0.1 in all our expriements.

4.2 Datasets and evaluation metrics

We conduct experiments on the recently updated Youtube-8M v2 dataset with
improved machine-generated labels and higher-quality videos. It contains a total
of 6.1 million videos, 3862 classes, 3 labels per video averagely. Visual and audio
features are pre-extracted per frame. Visual features are obtained by Google
Inception convolutional neural network pretrained on ImageNet [16], followed by
PCA-compression to generate a vector with 1024 dimensions. The audio features
are extracted from a VGG-inspired acoustic model described in [8]. In the official
split, training, validataion and test have equal 3844 tfrecord shards. In practice,
we use 3844 training shards and 3000 validation shards for training. We randomly
select 200 shards from the rest of 844 validation shards (around 243 337 videos)
to evaluate our model every 10 000 training steps. Results are evaluated using
the Global Average Precision (GAP) metric at top 20 as used in the Youtube-8M
Kaggle competition.

1 https://github.com/google/youtube-8m
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Table 1. Comparision study on Avgpooling feature

Model GAP

Avgpooling + Audio Only 38.1
Avgpooling + Video Only 69.6
Avgpooling + Concatenation 74.2
Avgpooling + FC + Concatenation 81.8
Avgpooling + MFB 83.3

Table 2. Comparision study on NetVLAD feature

Model GAP

NetVLAD + Audio Only 50.7
NetVLAD + Video Only 82.3
NetVLAD + Concatenation 85.0
NetVLAD + FC + Concatenation 84.6
NetVLAD + MFB 85.5

4.3 Results

In this section, we verify the effectiveness of MFB module by comparing its
performance on the validation set with the simple concatenation fusion. We also
conduct two comparative tests with single-modality input (only video or audio).
To prove that the improvement of performance does not come from increasing
parameters, we add another comparison with the same number of parameters as
MFB. Specifically, the temporal aggregated video and audio representations are
first projected using a fully connected layer respectively and then the projected
video and audio vectors are concatenated to feed into the MoE classifier (For
convenience, we call it FC Concatenation module later). The fully connected
layers have the same parameter settings with those in MFB module. The superior
GAP performance of MFB module on three temporal aggregation models is
shown as follows.

Table 3. Comparision study on DBoF feature

Model GAP

DBoF + Audio Only 48.9
DBoF + Video Only 81.8
DBoF + Concatenation 84.0
DBoF + FC + Concatenation 84.1
DBoF + MFB 85.9



8 Jinlai Liu, Zehuan Yuan, Changhu Wang

(a) (b) (c)

Fig. 3. (a) The GAP Performance of Avgpooling feature with different fusion modules
(Concantenation, FC Concantenation, MFB). (b) The GAP Performance of DBoF
feature. (c) The GAP Performance of NetVLAD feature.

The detailed results of MFB with Avgpooling features are shown in Tab 1.
Firstly, the GAP performance of two modal fusion is far superior to single modal-
ity input (Video Only or Audio Only). In the NetVLAD and DBof video fea-
tures, we can draw the same conclusion. Secondly, we can observe a significant
increase in performance with the MFB module, which achieves a 9.1% higher
GAP compared with the concatenation fusion baseline. Even if the concatena-
tion is augmented with the same number of parameters as MFB, there is still a
1.5% gap. The main reason is probably that the simple fusion can not leverage
high-order information across modalities.

In terms of NetVLAD video features, the MFB module improves the GAP
from 85.0% to 85.5% compared to the concatenation module as shown in Tab 2.
However surprisingly, adding fully connected layers performs worse, indicating
that NetVLAD has been a quite good temporal model for single modal data ag-
gregation. In some sense, increasing parameters will lead to overfitting . There-
fore, it also proves that MFB contributes to the performance boost. For DBoF,
the results are consistent with Avgpooling and NetVLAD, MFB module achieves
the best GAP of 85.9%, around 1.8% higher than another two methods. We con-
clude that MFB encourages abundant cross-modal interactions and thus reduce
the ambiguity of each modal data.

In order to give an intuitive observation on the advantage of MFB over simple
fusion baselines, we illustrate the training processes of three fusion modules in
Fig. 3, which shows the GAP performance on validation dataset as the training
iteration increases. It is worthy noting that the experiment with the MFB module
and NetVLAD features is early stopped at around 13 000 steps due to overfitting.
Obviously, MFB module can not only increase the capability of video and audio
fusion but also speed-up training.

5 Conclusions

In this paper, we first apply the multimodal factorized blinear pooling into
large-scale video classification task. To validate its effectiveness and robustness,
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we experiment on three kinds of video-level features obtained by Avgpooling,
NetVLAD and DBoF. We conduct experiments on large-scale video classifica-
tion benchmark Youtube-8M. Experimental results demonstrate that the care-
fully designed multimodal factorized bilinear pooling can achieve significantly
better results than the popular fusion concatenation operator. Our future work
mainly lies on directly combining multimodal factorized bilinear pooling with
multimodal frame-level data.
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