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Abstract—Creating reliable, production-level machine learn-
ing systems brings on a host of concerns not found in
small toy examples or even large offline research experiments.
Testing and monitoring are key considerations for ensuring
the production-readiness of an ML system, and for reducing
technical debt of ML systems. But it can be difficult to formu-
late specific tests, given that the actual prediction behavior of
any given model is difficult to specify a priori. In this paper,
we present 28 specific tests and monitoring needs, drawn from
experience with a wide range of production ML systems to help
quantify these issues and present an easy to follow road-map
to improve production readiness and pay down ML technical
debt.
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I. INTRODUCTION

As machine learning (ML) systems continue to take on
ever more central roles in real-world production settings,
the issue of ML reliability has become increasingly critical.
ML reliability involves a host of issues not found in small
toy examples or even large offline experiments, which can
lead to surprisingly large amounts of technical debt [1].
Testing and monitoring are important strategies for improv-
ing reliability, reducing technical debt, and lowering long-
term maintenance cost. However, as suggested by Figure
1, ML system testing is also more complex a challenge
than testing manually coded systems, due to the fact that
ML system behavior depends strongly on data and models
that cannot be strongly specified a priori. One way to see
this is to consider ML training as analogous to compilation,
where the source is both code and training data. By that
analogy, training data needs testing like code, and a trained
ML model needs production practices like a binary does,
such as debuggability, rollbacks and monitoring.

So, what should be tested and how much is enough?
In this paper, we try to answer this question with a test
rubric, which is based on engineering decades of production-
level ML systems at Google, in systems such as ad click
prediction [2] and the Sibyl ML platform [3].

We present a rubric as a set of 28 actionable tests, and
offer a scoring system to measure how ready for production
a given machine learning system is. This rubric is intended
to cover a range from a team just starting out with machine
learning up through tests that even a well-established team

may find difficult. Note that this rubric focuses on issues
specific to ML systems, and so does not include generic
software engineering best practices such as ensuring good
unit test coverage and a well-defined binary release process.
Such strategies remain necessary as well. We do call out
a few specific areas for unit or integration tests that have
unique ML-related behavior.

How to read the tests: Each test is written as an
assertion; our recommendation is to test that the assertion is
true, the more frequently the better, and to fix the system if
the assertion is not true.

Doesn’t this all go without saying?: Before we enu-
merate our suggested tests, we should address one objection
the reader may have – obviously one should write tests for
an engineering project! While this is true in principle, in a
survey of several dozen teams at Google, none of these tests
was implemented by more than 80% of teams (though, even
in a engineering culture valuing rigorous testing, many of
these ML-centric tests are non-obvious). Conversely, most
tests had a nonzero score for at least half of the teams
surveyed; our tests do represent practices that teams find
to be worth doing.

In this paper, we are largely concerned with supervised
ML systems that are trained continuously online and perform
rapid, low-latency inference on a server. Features are often
derived from large amounts of data such as streaming logs
of incoming data. However, most of our recommendations
apply to other forms of ML systems, such as infrequently
trained models pushed to client-side systems for inference.

A. Related work

Software testing is well studied, as is machine learning,
but their intersection has been less well explored in the
literature. [4] reviews testing for scientific software more
generally, and cites a number of articles such as [5], who
present an approach for testing ML algorithms. These ideas
are a useful complement for the tests we present, which are
focused on testing the use of ML in a production system
rather than just the correctness of the ML algorithm per se.

Zinkevich provides extensive advice on building effective
machine learning models in real world systems [6]. Those
rules are complementary to this rubric, which is more
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Figure 1. ML Systems Require Extensive Testing and Monitoring. The key consideration is that unlike a manually coded system (left), ML-based
system behavior is not easily specified in advance. This behavior depends on dynamic qualities of the data, and on various model configuration choices.

concerned with determining how reliable an ML system is
rather than how to build one.

Issues of surprising sources of technical debt in ML
systems has been studied before [1]. It has been noted that
the prior work has identified problems but been largely silent
on how to address them; this paper details actionable advice
drawn from practice and verified with extensive interviews
with the maintainers of 36 real world systems.

II. TESTS FOR FEATURES AND DATA

Machine learning systems differ from traditional software-
based systems in that the behavior of ML systems is not
specified directly in code but is learned from data. Therefore,
while traditional software can rely on unit tests and integra-
tion tests of the code, here we attempt to add a sufficient
set of tests of the data.

Data 1: Feature expectations are captured in a
schema: It is useful to encode intuitions about the data
in a schema so they can be automatically checked. For
example, an adult human is surely between one and ten
feet in height. The most common word in English text is
probably ‘the’, with other word frequencies following a
power-law distribution. Such expectations can be used for
tests on input data during training and serving (see test
Monitor 2).

How? To construct the schema, one approach is to start
with calculating statistics from training data, and then ad-
justing them as appropriate based on domain knowledge. It
may also be useful to start by writing down expectations
and then compare them to the data to avoid an anchoring

1 Feature expectations are captured in a schema.
2 All features are beneficial.
3 No feature’s cost is too much.
4 Features adhere to meta-level requirements.
5 The data pipeline has appropriate privacy controls.
6 New features can be added quickly.
7 All input feature code is tested.

Table I
BRIEF LISTING OF THE SEVEN DATA TESTS.

bias. Visualization tools such as Facets1 can be very useful
for analyzing the data to produce the schema. Invariants to
capture in a schema can also be inferred automatically from
your system’s behavior [8].

Data 2: All features are beneficial: A kitchen-sink
approach to features can be tempting, but every feature
added has a software engineering cost. Hence, it’s important
to understand the value each feature provides in additional
predictive power (independent of other features).

How? Some ways to run this test are by computing
correlation coefficients, by training models with one or two
features, or by training a set of models that each have one
of k features individually removed.

Data 3: No feature’s cost is too much: It is not
only a waste of computing resources, but also an ongoing
maintenance burden to include ε-features that add only
minimal predictive benefit [1].

How? To measure the costs of a feature, consider not
only added inference latency and RAM usage, but also
more upstream data dependencies, and additional expected
instability incurred by relying on that feature. See Rule#22
[6] for further discussion.

Data 4: Features adhere to meta-level requirements:
Your project may impose requirements on the data coming
in to the system. It might prohibit features derived from user
data, prohibit the use of specific features like age, or simply
prohibit any feature that is deprecated. It might require all
features be available from a single source. However, during
model development and experimentation, it is typical to try
out a wide variety of potential features to improve prediction
quality.

How? Programmatically enforce these requirements, so
that all models in production properly adhere to them.

Data 5: The data pipeline has appropriate privacy
controls: Training data, validation data, and vocabulary files
all have the potential to contain sensitive user data. While
teams often are aware of the need to remove personally iden-
tifiable information (PII), during this type of exporting and

1https://pair-code.github.io/facets/



transformations, programming errors and system changes
can lead to inadvertent PII leakages that may have serious
consequences.

How? Make sure to budget sufficient time during new
feature development that depends on sensitive data to allow
for proper handling. Test that access to pipeline data is
controlled as tightly as the access to raw user data, especially
for data sources that haven’t previously been used in ML.
Finally, test that any user-requested data deletion propagates
to the data in the ML training pipeline, and to any learned
models.

Data 6: New features can be added quickly: The
faster a team can go from a feature idea to the feature
running in production, the faster it can both improve the
system and respond to external changes. For highly efficient
teams, this can be as little as one to two months even for
global-scale, high-traffic ML systems. Note that this can
be in tension with Data 5, but privacy should always take
precedence.

Data 7: All input feature code is tested: Feature
creation code may appear simple enough to not need unit
tests, but this code is crucial for correct behavior and so
its continued quality is vital. Bugs in features may be
almost impossible to detect once they have entered the data
generation process, especially if they are represented in both
training and test data.

III. TESTS FOR MODEL DEVELOPMENT

While the field of software engineering has developed a
full range of best practices for developing reliable software
systems, similar best-practices for ML model development
are still emerging.

Model 1: Every model specification undergoes a
code review and is checked in to a repository: It can
be tempting to avoid code review out of expediency, and
run experiments based on one’s own personal modifications.
In addition, when responding to production incidents, it’s
crucial to know the exact code that was run to produce a
given learned model. For example, a responder might need
to re-run training with corrected input data, or compare the
result of a particular modification. Proper version control of
the model specification can help make training auditable and
improve reproducibility.

1 Model specs are reviewed and submitted.
2 Offline and online metrics correlate.
3 All hyperparameters have been tuned.
4 The impact of model staleness is known.
5 A simpler model is not better.
6 Model quality is sufficient on important data slices.
7 The model is tested for considerations of inclusion.

Table II
BRIEF LISTING OF THE SEVEN MODEL TESTS

Model 2: Offline proxy metrics correlate with actual
online impact metrics: A user-facing production system’s
impact is judged by metrics of engagement, user happiness,
revenue, and so forth. A machine learning system is trained
to optimize loss metrics such as log-loss or squared error.
A strong understanding of the relationship between these
offline proxy metrics and the actual impact metrics is needed
to ensure that a better scoring model will result in a better
production system.

How? The offline/online metric relationship can be mea-
sured in one or more small scale A/B experiments using an
intentionally degraded model.

Model 3: All hyperparameters have been tuned:
A ML model can often have multiple hyperparameters,
such as learning rates, number of layers, layer sizes and
regularization coefficients. Choice of the hyperparameter
values can have dramatic impact on prediction quality.

How? Methods such as a grid search [9] or a more
sophisticated hyperparameter search strategy [10] [11] not
only improve prediction quality, but also can uncover hid-
den reliability issues. Substantial performance improvements
have been realized in many ML systems through use of an
internal hyperparameter tuning service[12]2.

Model 4: The impact of model staleness is known:
Many production ML systems encounter rapidly changing,
non-stationary data. Examples include content recommen-
dation systems and financial ML applications. For such
systems, if the pipeline fails to train and deploy sufficiently
up-to-date models, we say the model is stale. Understanding
how model staleness affects the quality of predictions is
necessary to determine how frequently to update the model.
If predictions are based on a model trained yesterday versus
last week versus last year, what is the impact on the
live metrics of interest? Most models need to be updated
eventually to account for changes in the external world;
a careful assessment is important to decide how often to
perform the updates (see Rule 8 in [6] for related discussion).

How? One way of testing the impact of staleness is with
a small A/B experiment with older models. Testing a range
of ages can provide an age-versus-quality curve to help
understand what amount of staleness is tolerable.

Model 5: A simpler model is not better: Regularly
testing against a very simple baseline model, such as a linear
model with very few features, is an effective strategy both
for confirming the functionality of the larger pipeline and
for helping to assess the cost to benefit tradeoffs of more
sophisticated techniques.

Model 6: Model quality is sufficient on all important
data slices: Slicing a data set along certain dimensions of
interest can improve fine-grained understanding of model
quality. Slices should distinguish subsets of the data that
might behave qualitatively differently, for example, users by

2The service is closely related to HyperTune[13].



Table III
BRIEF LISTING OF THE ML INFRASTRUCTURE TESTS

1 Training is reproducible.
2 Model specs are unit tested.
3 The ML pipeline is Integration tested.
4 Model quality is validated before serving.
5 The model is debuggable.
6 Models are canaried before serving.
7 Serving models can be rolled back.

country, users by frequency of use, or movies by genre.
Examining sliced data avoids having fine-grained quality
issues masked by a global summary metric, e.g. global
accuracy improved by 1% but accuracy for one country
dropped by 50%. This class of problems often arises from
a fault in the collection of training data, that caused an
important set of training data to be lost or late.

How? Consider including these tests in your release
process, e.g. release tests for models can impose absolute
thresholds (e.g., error for slice x must be <5%), to catch
large drops in quality, as well as incremental (e.g. the change
in error for slice x must be <1% compared to the previously
released model).

Model 7: The model has been tested for considera-
tions of inclusion: There have been a number of recent
studies on the issue of ML Fairness [14], [15], which
may arise inadvertently due to factors such as choice of
training data. For example, Bolukbasi et al. found that a
word embedding trained on news articles had learned some
striking associations between gender and occupation that
may have reflected the content of the news articles but
which may have been inappropriate for use in a predictive
modeling context [14]. This form of potentially overlooked
biases in training data sets may then influence the larger
system behavior.

How? Diagnosing such issues is an important step for
creating robust modeling systems that serve all users well.
Tests that can be run include examining input features to
determine if they correlate strongly with protected user
categories, and slicing predictions to determine if prediction
outputs differ materially when conditioned on different user
groups.

Bolukbasi et al. [14] propose one method for ameliorating
such effects by projecting embeddings to spaces that collapse
differences along certain protected dimensions. Hardt et al
propose a post-processing step in model creation to mini-
mize disproportionate loss for certain groups in the manner
of [15]. Finally, the approach of collecting more data to
ensure data representation for potentially under-represented
categories or subgroups can be effective in many cases.

IV. TESTS FOR ML INFRASTRUCTURE

An ML system often relies on a complex pipeline rather
than a single running binary.

Infra 1: Training is reproducible: Ideally, training
twice on the same data should produce two identical mod-
els. Deterministic training dramatically simplifies reasoning
about the whole system and can aid auditability and debug-
ging. For example, optimizing feature generation code is a
delicate process but verifying that the old and new feature
generation code will train to an identical model can provide
more confidence that the refactoring was correct. This sort
of diff-testing relies entirely on deterministic training.

Unfortunately, model training is often not reproducible in
practice, especially when working with non-convex methods
such as deep learning or even random forests. This can
manifest as a change in aggregate metrics across an entire
dataset, or, even if the aggregate performance appears the
same from run to run, as changes on individual examples.

Random number generation is an obvious source of non-
determinism, which can be alleviated with seeding. But
even with proper seeding, initialization order can be un-
derspecified so that different portions of the model will be
initialized at different times on different runs leading to
non-determinism. Furthermore, even when initialization is
fully deterministic, multiple threads of execution on a single
machine or across a distributed system [16] may be subject
to unpredictable orderings of training data, which is another
source of non-determinism.

How? Besides working to remove nondeterminism as
discussed above, ensembling models can help.

Infra 2: Model specification code is unit tested: Al-
though model specifications may seem like “configuration”,
such files can have bugs and need to be tested. Unfortunately,
testing a model specification can be very hard. Unit tests
should run quickly and require no external dependencies but
model training is often a very slow process that involves
pulling in lots of data from many sources.

How? It’s useful to distinguish two kinds of model tests:
tests of API usage and tests of algorithmic correctness. We
plan to release an open source framework implementing
some of these tests soon.

ML APIs can be complex, and code using them can
be wrong in subtle ways. Even if code errors would be
apparent after training (due to a model that fails to train
or results in poor performance), training is expensive and
so the development loop is slow. We have found in practice
that a simple unit test to generate random input data, and
train the model for a single step of gradient descent is quite
powerful for detecting a host of common library mistakes,
resulting in a much faster development cycle. Another useful
assertion is that a model can restore from a checkpoint after
a mid-training job crash.

Testing correctness of a novel implementation of an ML
algorithm is more difficult, but still necessary – it is not
sufficient that code produces a model with high quality
predictions, but that it does so for the expected reasons. One
solution is to make assertions that specific subcomputations



of the algorithm are correct, e.g. that a specific part of
an RNN was executed exactly once per element of the
input sequence. Another solution involves not training to
completion in the unit test but only training for a few
iterations and verifying that loss decreases with training. Still
another is to purposefully train a model for overfitting: if one
can get a model to effectively memorize its training data,
then that provides some confidence that learning reliably
happens. When testing models, pains should be taken to
avoid “golden tests”, i.e., tests that partially train a model
and compare the results to a previously generated model –
such tests are difficult to maintain over time without blindly
updating the golden file. In addition to problems in training
non-determinism, when these tests do break they provide
very little insight into how or why. Additionally, flaky tests
remain a real danger here.

Infra 3: The full ML pipeline is integration tested:
A complete ML pipeline typically consists of assembling
training data, feature generation, model training, model
verification, and deployment to a serving system. Although
a single engineering team may be focused on a small part
of the process, each stage can introduce errors that may
affect subsequent stages, possibly even several stages away.
That means there must be a fully automated test that runs
regularly and exercises the entire pipeline, validating that
data and code can successfully move through each stage
and that the resulting model performs well.

How? The integration test should run both continuously
as well as with new releases of models or servers, in order
to catch problems well before they reach production. Faster
running integration tests with a subset of training data or a
simpler model can give faster feedback to developers while
still backed by less frequent, long running versions with a
setup that more closely mirrors production.

Infra 4: Model quality is validated before attempting
to serve it: After a model is trained but before it actually
affects real traffic, an automated system needs to inspect
it and verify that its quality is sufficient; that system must
either bless the model or veto it, terminating its entry to the
production environment.

How? It is important to test for both slow degradations
in quality over many versions as well as sudden drops in
a new version. For the former, setting loose thresholds and
comparing against predictions on a validation set can be
useful; for the latter, it is useful to compare predictions
to the previous version of the model while setting tighter
thresholds.

Infra 5: The model allows debugging by observing
the step-by-step computation of training or inference on
a single example: When someone finds a case where a
model is behaving bizarrely, how difficult is it to figure
out why? Is there an easy, well documented process for
feeding a single example to the model and investigating
the computation through each stage of the model (e.g. each

Figure 2. Importance of a Model Canary before Serving. It is possible
for models to incorporate new pieces of code that are not live in separate
serving binaries, causing havoc at serving time. Using small scale canary
processes can help protect against this.

internal node of a neural network)?
Observing the step-by-step computation through the

model on small amounts of data is an especially useful
debugging strategy for issues like numerical instability.

How? An internal tool that allows users to enter examples
and see how the a specific model version interprets it can be
very helpful. The TensorFlow debugger [17] is one example
of such a tool.

Infra 6: Models are tested via a canary process
before they enter production serving environments:
Offline testing, however extensive, cannot by itself guarantee
the model will perform well in live production settings,
as the real world often contains significant non-stationarity
or other issues that limit the utility of historical data.
Consequently, there is always some risk when turning on
a new model in production.

One recurring problem that canarying can help catch
is mismatches between model artifacts and serving infras-
tructure. Modeling code can change more frequently than
serving code, so there is a danger that an older serving
system will not be able to serve a model trained from newer
code. For example, as shown in Figure 2, a refactoring
in the core learning library might change the low-level
implementation of an operation Op in the model from Op0.1
to a more efficient implementation, Op0.2. A newly trained
model will thus expect to be implemented with Op0.2; an
older deployed server will not include Op0.2 and so will
refuse to load the model.

How? To mitigate the mismatch issue, one approach
is testing that a model successfully loads into production
serving binaries and that inference on production input data
succeeds. To mitigate the new-model risk more generally,
one can turn up new models gradually, running old and new
models concurrently, with new models only seeing a small
fraction of traffic, gradually increased as the new model is
observed to behave sanely.

Infra 7: Models can be quickly and safely rolled
back to a previous serving version: A model “roll back”
procedure is a key part of incident response to many of
the issues that can be detected by the monitoring discussed
in Section V. Being able to quickly revert to a previous
known-good state is as crucial with ML models as with any
other aspect of a serving system. Because rolling back is
an emergency procedure, operators should practice doing it



Table IV
BRIEF LISTING OF THE SEVEN MONITORING TESTS

1 Dependency changes result in notification.
2 Data invariants hold for inputs.
3 Training and serving are not skewed.
4 Models are not too stale.
5 Models are numerically stable.
6 Computing performance has not regressed.
7 Prediction quality has not regressed.

normally, when not in emergency conditions.

V. MONITORING TESTS FOR ML

It is crucial to know not just that your ML system worked
correctly at launch, but that it continues to work correctly
over time. An ML system by definition is making predictions
on previously unseen data, and typically also incorporates
new data over time into training. The standard approach
is to monitor the system, i.e. to have a constantly-updated
“dashboard” user interface displaying relevant graphs and
statistics, and to automatically alert the engineering team
when particular metrics deviate significantly from expecta-
tions. For ML systems, it is important to monitor serving
systems, training pipelines, and input data. Here we rec-
ommend specific metrics to monitor throughout the system.
The usual sorts of incident response approaches will apply;
one unique to ML is to roll back not the system code but
the learned model, hence our test earlier (test Infra 7) to
regularly ensure that this process is safe and easy.

Monitor 1: Dependency changes result in notifica-
tion: ML systems typically consume data from a wide array
of other systems to generate useful features. Partial outages,
version upgrades, and other changes in the source system can
radically change the feature’s meaning and thus confuse the
model’s training or inference, without necessarily producing
values that are strange enough to trigger other monitoring.

How? Make sure that your team is subscribed to and reads
announcement lists for all dependencies, and make sure that
the dependent team knows your team is using the data.

Monitor 2: Data invariants hold in training and
serving inputs: It can be difficult to effectively monitor
the internal behavior of a learned model for correctness, but
the input data should be more transparent. Consequently,
analyzing and comparing data sets is the first line of defense
for detecting problems where the world is changing in ways
that can confuse an ML system.

How? Using the schema constructed in test Data 1,
measure whether data matches the schema and alert when
they diverge significantly. In practice, careful tuning of
alerting thresholds is needed to achieve a useful balance
between false positive and false negative rates to ensure these
alerts remain useful and actionable.

Monitor 3: Training and serving features compute
the same values: The codepaths that actually generate input
features may differ at training and inference time. Ideally

Figure 3. Monitoring for Training/Serving Skew. It is often necessary
for the same feature to be computed in different ways in different parts
of the system. In such cases, we must carefully test that these different
codepaths are in fact logically identical.

the different codepaths should generate the same values, but
in practice a common problem is that they do not. This
is sometimes called “training/serving skew” and requires
careful monitoring to detect and avoid. As one concrete
example, imagine adding a new feature to an existing
production system. While the value of the feature in the
serving system might be computed based on data from live
user behavior, the feature will not be present in training data,
and so must be backfilled by imputing it from other stored
data, likely using an entirely independent codepath. Another
example is when the computation at training time is done
using code that is highly flexible (for easy experimentation)
but inefficient, while at serving time the same computation
is heavily optimized for low latency.

How? To measure this, it is crucial to log a sample of
actual serving traffic. For systems that use serving input as
future training data, adding identifiers to each example at
serving time will allow direct comparison; the feature values
should be perfectly identical at training and serving time for
the same example. Important metrics to monitor here are
the number of features that exhibit skew, and the number of
examples exhibiting skew for each skewed feature.

Another approach is to compute distribution statistics
on the training features and the sampled serving features,
and ensure that they match. Typical statistics include the
minimum, maximum, or average, values, the fraction of
missing values, etc. Again, thresholds for alerting on these
metrics must be carefully tuned to ensure a low enough false
positive rate for actionable response.

Monitor 4: Models are not too stale: In test Model 4
we discussed testing the effect that an old (“stale”) model has
on prediction quality. Here, we recommend monitoring how
old the system in production is, using the prior measurement
as a guide for determining what age is problematic enough
to raise an alert.

Surprisingly, infrequently updated models also incur a
maintenance cost. Imagine a model that is manually re-
trained once or twice a year by a given engineer. If that
engineer leaves the team, this process may be difficult to
replicate – even carefully written instructions may become
stale or incorrect over this kind of time horizon.



How? For models that re-train regularly (e.g. weekly
or more often), the most obvious metric is the age of the
model in production. It is also important to measure the age
of the model at each stage of the training pipeline, to quickly
determine where a stall has occurred and react appropriately.

Even for models that re-train more infrequently, there
is often a dependence on data aggregation or other such
processes to produce features, which can themselves grow
stale. For example, consider using a feature based on the
most popular n items (movies, apps, cars, etc). The process
that computes the top-n table must be re-run frequently, and
it is crucial to monitor the age of this table, so that if the
process stops running, alerts will fire.

Monitor 5: The model is numerically stable:
Invalid or implausible numeric values can potentially crop
up during model training without triggering explicit errors,
and knowing that they have occurred can speed diagnosis of
the problem.

How? Explicitly monitor the initial occurrence of any
NaNs or infinities. Set plausible bounds for weights and
the fraction of ReLU units in a layer returning zero values,
and trigger alerts during training if these exceed appropriate
thresholds.

Monitor 6: The model has not experienced a dra-
matic or slow-leak regressions in training speed, serving
latency, throughput, or RAM usage: The computational
performance (as opposed to predictive quality) of an ML
system is often a key concern at scale. Deep neural networks
can be slow to train and run inference on, wide linear models
with feature crosses can use a lot of memory; any ML model
may take days to train; and so forth. Swiftly reacting to
changes in this performance due to changes in data, features,
modeling, or underlying compute library or infrastructure is
crucial to maintaining a performant system.

How? While measuring computational performance is
a standard part of any monitoring, it is useful to slice
performance metrics not just by the versions and components
of code, but also by data and model versions. Degradations
in computational performance may occur with dramatic
changes (for which comparison to performance of prior
versions or time slices can be helpful for detection) or in
slow leaks (for which a pre-set alerting threshold can be
helpful for detection)

Monitor 7: The model has not experienced a re-
gression in prediction quality on served data: Validation
data will always be older than real serving input data, so
measuring a model’s quality on that validation data before
pushing it to serving is only an estimate of quality metrics on
actual live serving inputs. However, it is not always possible
to know the correct labels even shortly after serving time,
making quality measurement difficult.

How? Here are some options to make sure that there is
no degradation in served prediction quality due to changes
in data, differing codepaths, etc.

• Measure statistical bias in predictions, i.e. the average
of predictions in a particular slice of data. Generally
speaking, models should have zero bias, in aggregate
and on slices (e.g. 90% of predictions of probability
0.9 should in fact be positive). Knowing that a model
is unbiased is not enough to know it is any good, but
knowing there is bias can be a useful canary to detect
problems.

• In some tasks, the label actually is available immedi-
ately or soon after the prediction is made (e.g. will a
user click on an ad). In this case, we can judge the
quality of predictions in almost real-time and identify
problems quickly.

• Finally, it can be useful to periodically add new training
data by having human raters manually annotate labels
for logged serving inputs. Some of this data can be held
out to validate the served predictions.

However the measure can be done, thresholds must be
set as to acceptable quality (e.g. based on bounds of quality
at the launch of the initial system), and then a responder
should be notified immediately if quality drifts outside
that threshold. As with computational performance, it is
crucial to monitor both dramatic and slow-leak regressions
in prediction quality.

VI. INCENTIVIZING CULTURE CHANGE

Because technical debt is difficult to quantify, it can be
difficult to prioritize paydown or measure improvements.
To address this, our rubric provides a quantified ML Test
Score which can be measured and improved over time. This
provides a vector for incentivizing ML system developers to
achieve strong levels of reliability by providing a clear indi-
cator of readiness and clear guidelines for how to improve.
This strategy was inspired by the Test Certified program
at Google, which provided a scored ladder for overall test
robustness, and which had strong success in incentivizing
teams to adopt best practices.

A. Computing an ML Test Score

The final test score is computed as follows:
• For each test, half a point is awarded for executing the

test manually, with the results documented and distributed.
• A full point is awarded if there is a system in place to

run that test automatically on a repeated basis.
• Sum the score for each of the 4 sections individually.
• The final ML Test Score is computed by taking the

minimum of the scores aggregated for each of the 4 sections.
We choose the minimum because we believe all four

sections are important, and so a system must consider all
in order to raise the score. One downside of this approach
is that it reduces the extent to which an individual’s efforts
are reflected in higher system scores and ranks; it remains
to be seen how this will affect the adoption of our system.



Points Description
0 More of a research project than a productionized system.
(0,1] Not totally untested, but it is worth considering the possibility of serious holes in reliability.
(1,2] There’s been first pass at basic productionization, but additional investment may be needed.
(2,3] Reasonably tested, but it’s possible that more of those tests and procedures may be automated.
(3,5] Strong levels of automated testing and monitoring, appropriate for mission-critical systems.
> 5 Exceptional levels of automated testing and monitoring.

Table V
Interpreting an ML Test Score. THIS SCORE IS COMPUTED BY TAKING THE minimum SCORE FROM EACH OF THE FOUR TEST AREAS. NOTE THAT

DIFFERENT SYSTEMS AT DIFFERENT POINTS IN THEIR DEVELOPMENT MAY REASONABLY AIM TO BE AT DIFFERENT POINTS ALONG THIS SCALE.

All tests are worth the same number of points. This is
intentional, as we believe the relative importance of tests
to teams will vary depending on their specific priorities.
This means that choosing any test to implement will raise
the score, and we feel that is appropriate, as they are each
valuable and often working on one will make it easier to
work on another.

To interpret the score, see Table V. These interpretations
were calibrated against a number of internal ML systems,
and overall have been reflective of other qualitative percep-
tions of those systems.

VII. APPLYING THE RUBRIC TO REAL SYSTEMS

We developed the ML Test Certified program to help
engineers doing ML work at Google. Some of our work has
involved meeting with teams doing ML and evaluating their
performance in a structured interview based on the rubric
detailed above. We met with 36 teams from across Google
working in a diverse array of product areas; their scores on
the rubric are presented in Figure 4. These interviews have
offered some unexpected insights.

A. The importance of checklists

Checklists are helpful even for expert teams [18]. For
example, one team we worked with discovered a thousand-
line code file, completely untested, that created their input
features. Code of that size, even if it contains only simple
and straightforward logic, will likely have bugs, against
which simple unit tests can provide an effective hedge.
Another example we found was a team who realized when
we asked that they had no evaluation or monitoring to
discover if their global service was serving poor predictions
localized to a single country. They also relied heavily on
informal evaluation of performance based on the team’s own
usage of the product, which does not protect users very
different from the team members. Similarly, the interviews
were useful simply as a way of advertising the existing tools
– some teams had not even heard of the Facets tools or of
our unit testing framework mentioned in Infra 2.

As another example, when we asked one team about ML
inclusiveness, they confidently answered that they had given
the matter some thought and concluded that there was no
way for their system to be biased since they were only
dealing with speech waveforms (“we just get vectors of

numbers”). When we asked if they had done any work to
ensure their system performed well for African American
Vernacular English or had taken steps to ensure diversity
in the population of human raters they hired for scoring,
they paused at length and then agreed that this question
opened up new possibilities for debiasing which they had
not considered and would address.

Finally, the context of our interview provided additional
motivation for getting around to implementing tests - one
team was motivated to implement feature code tests because
of the clear danger of training/serving skew, while others
were spurred to automate previously manual processes to
make them more frequent and testable.

B. Dependency issues
Data dependencies can lead to outsourcing responsibility

for fully understanding it. Multiple teams initially suggested
that since their features were produced by an upstream,
much larger service, any problems in their data would be
discovered by the other team. While this can certainly be
some protection, it may still be that the smaller team has
different requirements for the data that would not be caught
by the larger team’s validation.

In the other direction, multiple teams initially suggested
that their system did not require independent monitoring, as
their serving was done via a larger system whose reliability
engineers would notice any problems downstream. Again,
this can be some protection, but it’s also quite possible that
the smaller system’s errors may be masked in the noise of
the larger system. In addition, it’s crucial in that regime that
the larger system know how to find the appropriate contact
person from the smaller one.

For the data tests, several teams indicated a key distinction
between features that represent new combinations of existing
data sources, and features based on new data sources. The
latter requires significantly more time and introduces more
risk. Depending on a new data source can mean time spent
negotiating with the owning team to ensure the data is
properly treated. Or if the data come from newly logged
information, the existing training data must be backfilled, or
thrown away to wait for new logs including the data.

C. The importance of frameworks
Integration testing (Infra 3) stood out as a test with

much lower adoption than most. When implemented, it often



Figure 4. Average scores for interviewed teams. These graphs display the average score for each test across the 36 systems we examined.

included serving systems but not training. This is in part
because training is often developed as an ad hoc set of scripts
and manual processes. A training pipeline platform like the
TFX system[19] can be beneficial here as it then allows
building a generic integration test.

Model canarying (Infra 6) was frequently implemented by
many teams, and cited as a key part of their testing plan. But
this masks two interesting issues. First, canarying can indeed
catch many issues like unservable models, numeric instabil-
ity, and so forth. However, it typically occurs long after the
engineering decisions that led to the issue, so it would be
much preferable to catch issues earlier in unit or integration
tests. Second, the teams that implemented canarying usually
did so because their existing release framework made it easy
– and one team lacking such a framework reported the one
time they did canary it was so painful they’d never do it
again.

Perhaps the most important and least implemented test
is the one for training/serving skew (Monitor 3). This sort
of error is responsible for production issues across a wide
swath of teams, and yet it is one of the least frequently

implemented tests. In part this is because it is difficult, but
again, building this into a framework like TFX allows many
teams to benefit from a single investment.

To test TFX, we evaluated a hypothetical system that
used TFX along with its standard recommendations for
introductory data analysis and so forth. We found that this
hypothetical system already scored as “reasonably tested”
according to our criterion. TFX is quite new, however, and
we haven’t yet measured real world TFX systems.

D. Assessing the assessment

We also conducted some meta-level assessment, asking
teams what was useful or non-useful about this rubric.

One interesting theme was that teams using purely image
or audio data did not feel many of the Data tests were
applicable. However, methods like manual inspection of raw
data and LIME-style importance analysis [20] remain im-
portant tools in such settings. For example, such inspection
can reveal skew in distributions or unrealistically consistent
background effects correlated with the training target.

Supervised ML requires labeled data, but a number of
groups are working in domains where labels are either not



present or extremely expensive to acquire. One group had
an extremely large data set that was so diverse that using
human raters to generate training labels proved infeasible.
So they built a simple heuristic system and then used that to
train an ML system (“The ML experts told us that training
a model like this was crazy and would never work but they
were wrong!”). Human raters consistently rate the heuristic
system as good but the ML system trained from it as much
better – however, this exposes a need for a level of testing
of the base heuristic system that is not covered in our
rubric. Expensive labels also mean that quality evaluation
of a learned model is difficult, which impacts the ability of
teams to implement several tests like Model 4 and Infra 4.
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