
Improved Techniques for Preparing Eigenstates of Fermionic Hamiltonians

Dominic W. Berry,1 Mária Kieferová,1, 2 Artur Scherer,1 Yuval R. Sanders,1

Guang Hao Low,3 Nathan Wiebe,3 Craig Gidney,4 and Ryan Babbush5, ∗

1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
2Institute for Quantum Computing and Department of Physics and Astronomy,

University of Waterloo, Waterloo, ON N2L 3G1, Canada
3Microsoft Research, Redmond, WA 98052, United States of America

4Google Inc., Santa Barbara, CA 93117, United States of America
5Google Inc., Venice, CA 90291, United States of America

(Dated: December 22, 2017)

Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions
and material properties and is one of the most anticipated applications of quantum computing. We
present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using
phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing
the initial states required for simulation of fermions in first quantization. This is an exponential
improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to
repeated state preparation in phase estimation when the goal is to prepare the ground state to high
precision and one has knowledge of an upper bound on the ground state energy that is less than
the excited state energy (often the case in quantum chemistry). Finally, we explain how one can
perform the time evolution necessary for the phase estimation based preparation of Hamiltonian
eigenstates with exactly zero error by using the recently introduced qubitization procedure.

INTRODUCTION

One of the most important applications of quantum
simulation (and of quantum computing in general) is
the Hamiltonian simulation based solution of the elec-
tronic structure problem. The ability to accurately model
ground states of fermionic systems would have significant
implications for many areas of chemistry and materials
science and could enable the in silico design of new so-
lar cells, batteries, catalysts, pharmaceuticals, etc. [1, 2].
The most rigorous approaches to solving this problem
involve using the quantum phase estimation algorithm
[3] to project to molecular ground states starting from
a classically guessed state [4]. Beyond applications in
chemistry, one might want to prepare fermionic eigen-
states in order to simulate quantum materials [5] includ-
ing models of high-temperature superconductivity [6].

In the procedure introduced by Abrams and Lloyd [7],
one first initializes the system in some efficient-to-prepare
initial state |ϕ〉 which has appreciable support on the de-
sired eigenstate |k〉 of Hamiltonian H. One then uses
quantum simulation to construct a unitary operator that
approximates time evolution under H. With these in-
gredients, standard phase estimation techniques invoke
controlled application of powers of U(τ) = e−iHτ . With
probability αk = |〈ϕ|k〉|2, the output is then an estimate
of the corresponding eigenvalue Ek with standard devia-
tion σEk = O((τM)−1), where M is the total number of
applications of U(τ). The synthesis of e−iHτ is typically
performed using digital quantum simulation algorithms,
such as by Lie-Trotter product formulas [8], truncated
Taylor series [9], or quantum signal processing [10].

∗ Corresponding author: babbush@google.com

Since the proposal by Abrams and Lloyd [7], al-
gorithms for time-evolving fermionic systems have im-
proved substantially [11–17]. Innovations that are partic-
ularly relevant to this paper include the use of first quan-
tization to reduce spatial overhead [18–20] from O(N) to
O(η logN) where η is number of particles and N � η
is number of single-particle basis functions (e.g. molecu-
lar orbitals or plane waves), and the use of post-Trotter
methods to reduce the scaling with time-evolution error
from O(poly(1/ε)) to O(polylog(1/ε)) [18, 21, 22]. The
algorithm of [18] makes use of both of these techniques
to enable the most efficient first quantized quantum sim-
ulation of electronic structure in the literature.

Unlike second quantized simulations which necessar-
ily scale polynomially in N , first quantized simulation
offers the possibility of achieving total gate complexity
O(poly(η) polylog(N, 1/ε)). This is important because
the convergence of basis set discretization error is lim-
ited by resolution of the electron-electron cusp [23], which
cannot be resolved faster than O(1/N) using any single-
particle basis expansion. Thus, whereas the cost of re-
fining second quantized simulations to within δ of the
continuum basis limit is necessarily O(poly(1/δ)), first
quantization offers the possibility of suppressing basis set
errors as O(polylog(1/δ)), providing essentially arbitrar-
ily precise representations.

In second quantized simulations of fermions the wave-
function encodes an antisymmetric fermionic system, but
the qubit representation of that wavefunction is not nec-
essarily antisymmetric. Thus, in second quantization it
is necessary that operators act on the encoded wavefunc-
tion in a way that enforces the proper exchange statis-
tics. This is the purpose of second quantized fermion
mappings such as those explored in [24–30]. By contrast,
the distinguishing feature of first quantized simulations

ar
X

iv
:1

71
1.

10
46

0v
2

 [
qu

an
t-

ph
]

 2
1

D
ec

 2
01

7

mailto:babbush@google.com

2

is that the antisymmetry of the encoded system must be
enforced directly in the qubit representation of the wave-
function. This often simplifies the task of Hamiltonian
simulation but complicates the initial state preparation.

In first quantization there are typically η different reg-
isters of size logN (where η is the number of particles and
N is number of spin-orbitals) encoding integers indicat-
ing the indices of occupied orbitals. As only η of the N
orbitals are occupied, with η logN qubits one can spec-
ify an arbitrary configuration. To perform simulations
in first quantization, one typically requires that the ini-
tial state |ϕ〉 is antisymmetric under the exchange of any
two of the η registers. Prior work presented a procedure
for preparing such antisymmetric states with complexity

stated to be Õ(η2), though there is a step that appears

to scale as Õ(η3) (see Appendix A) [31, 32].
In Section I we provide a general approach for antisym-

metrizing states via sorting networks. The circuit size
is O(η logc η logN) and the depth is O(logc η log logN),
where the value of c ≥ 1 depends on the choice of sorting
network (it can be 1, albeit with a large multiplying fac-
tor). In terms of the circuit depth, these results improve
exponentially over prior implementations [31, 32]. They
also improve polynomially on the total number of gates
needed. We also discuss an alternative approach, a quan-
tum variant of the Fisher-Yates shuffle, which avoids sort-
ing, and achieves a size-complexity of O(η2 logN) with
lower spatial overhead than the sort-based methods.

Once the initial state |ϕ〉 has been prepared, it typ-
ically will not be exactly the ground state desired. In
the usual approach, one would perform phase estimation
repeatedly until the ground state is obtained, giving an
overhead scaling inversely with the initial state overlap.
In Section II we propose a strategy for reducing this cost,
by initially performing the estimation with only enough
precision to eliminate excited states.

In Section III we explain how qubitization [33] pro-
vides a unitary sufficient for phase estimation purposes
with exactly zero error (provided a gate set consisting of
an entangling gate and arbitrary single-qubit rotations).
This improves over proposals to perform the time evolu-
tion unitary with post-Trotter methods at cost scaling as
O(polylog(1/ε)). We expect that a combination of these
strategies will enable quantum simulations of fermions
similar to the proposal of [18] with substantially fewer T
gates than any method suggested in prior literature.

I. EXPONENTIALLY FASTER
ANTISYMMETRIZATION

Here we present our algorithm for imposing fermionic
exchange symmetry on a sorted, repetition-free quantum
array target. Specifically, the result of this procedure is
to perform the transformation

|r1 · · · rη〉 7→
∑
σ∈Sη

(−1)
π(σ) |σ (r1, · · · , rη)〉 (1)

where π(σ) is the parity of the permutation σ, and we
require for the initial state that rp < rp+1 (necessary for
this procedure to be unitary). Although we describe the
procedure for a single input |r1 · · · rη〉, our algorithm may
be applied to any superposition of such states.

Our approach is a modification of that proposed in
Ref. [31]; namely, to apply the reverse of a sort to a
sorted quantum array. Whereas Ref. [31] claims a gate
count of O(η2 logN), we can report a gate count of
O(η log η logN) and a runtime of O(log η log logN).

This section proceeds as follows. We begin with a sum-
mary of our algorithm. We then explain the reasoning
underlying the key step (Step 4) of our algorithm, which
is to reverse a sorting operation on target. Next we dis-
cuss the choice of sorting algorithm, which we require to
be a sorting network. Then, we assess the cost of our
algorithm in terms of gate complexity and runtime and
we compare this to previous work in Ref. [31]. Finally,
we discuss the possibility of antisymmetrizing without
sorting and propose an alternative, though more costly,
algorithm based on the Fisher-Yates shuffle. Our algo-
rithm consists of the following four steps:

1. Prepare seed. Let f be a function chosen so that
f(η) ≥ η2 for all η. We prepare an ancillary register
called seed in an even superposition of all possible
length-η strings of the numbers 0, 1, . . . , f(η) − 1.
If f(η) is a power of two, preparing seed is easy:
simply apply a Hadamard gate to each qubit.

2. Sort seed. Apply a reversible sorting network to
seed. Any sorting network can be made reversible
by storing the outcome of each comparator in a
second ancillary register called record. There are
several known sorting networks with polylogarith-
mic runtime, as we discuss below.

3. Delete collisions from seed. As seed was pre-
pared in a superposition of all length-η strings, it
includes strings with repeated entries. As we are
imposing fermionic exchange symmetry, these rep-
etitions must be deleted. We therefore measure
seed to determine whether a repetition is present,
and we accept the result if it is repetition-free. We
prove in Appendix B that choosing f(η) ≥ η2 en-
sures that the probability of success is greater than
1/2. We further prove that the resulting state of
seed is disentangled from record, meaning seed
can be discarded after this step.

4. Apply the reverse of the sort to target. Using
the comparator values stored in record, we apply
each step of the sorting network in reverse order
to the sorted array target. The resulting state
of target is an evenly weighted superposition of
each possible permutation of the original values.
To ensure the correct phase, we apply a controlled-
phase gate after each swap.

3

Step 4 is the key step. Having prepared (in Step 1-
Step 3) a record of the in-place swaps needed to sort a
symmetrized, collision-free array, we undo each of these
swaps in turn on the sorted target. We employ a sort-
ing network, a restricted type of sorting algorithm, be-
cause sorting networks have comparisons and swaps at a
fixed sequence of locations. By contrast, many common
classical sorting algorithms (like heapsort) choose loca-
tions depending on the values in the list. This results
in accessing registers in a superposition of locations in
the corresponding quantum algorithm, incurring a lin-
ear overhead. As a result, a quantum heapsort requires

Õ
(
η2
)

operations, not Õ(η). By contrast, no overhead is
required for using a fixed sequance of locations.

Our algorithm allows for any choice of sorting network.
Two useful choices are the odd-even mergesort [34] and
the bitonic sort [34, 35]. These both have complexity
O(η log2 η), though the odd-even mergesort is slightly
more efficient. These algorithms are also highly paral-
lelizable, and have depth only O(log2 η). The asymp-
totically best sorting networks have depth O(log η) and
complexity O(η log η), though there is a large constant
which means they are less efficient for realistic η [36, 37].
There is also a sorting network with O(η log η) complex-
ity with a better multiplicative constant [38], though its
depth is O(η log η) (so it is not logarithmic).

We now briefly explain how to make a sorting net-
work reversible, as is necessary for Step 2. A sort-
ing network is a type of comparator network, mean-
ing a circuit constructed entirely out of primitive oper-
ations called comparators. A comparator in the non-
reversible classical sense accepts the input (a, b) and re-
turns (min{a, b},max{a, b}). We explain how to imple-
ment a reversible, hence quantum, comparator in Ap-
pendix C. A reversible sorting network is constructed
from reversible comparators instead of the standard kind.
The implementation of sorting networks in quantum al-
gorithms has previously been considered in Refs. [39, 40].

Assuming we use an asymptotically optimal sort-
ing network, the circuit depth for our algorithm
is O(log η log logN) and the gate complexity is
O(η log η logN). The dominant cost of the algorithm
comes from Step 2 and Step 4, each of which have
O(η log η) comparators that can be parallelized to ensure
the sorting network executes only O(log η) comparator
rounds. Each comparator for Step 4 has a complexity
of O(logN) and a depth of O(log logN), as we show in
Appendix C. The comparators for Step 2 have complex-
ity O(log η) and depth O(log log η), which is less because
η < N . Thus Step 2 and Step 4 each have gate complex-
ity O(η log η logN) and runtime O(log η log logN).

The other two steps in our algorithm have smaller cost.
Step 1 has constant depth and O(η log η) complexity.
Step 3 requires O(η) comparisons because only nearest-
neighbour comparisons need be carried out on seed af-
ter sorting. These comparisons can be parallelized over
two rounds, with complexity O(η log η) and circuit depth
O(log log η). Then the result for any of the registers being

equal is computed in a single qubit, which has complexity
O(η) and depth O(log η). Thus the complexity of Step 3
is O(η log η) and the total circuit depth is O(log η). We
give further details in Appendix C. Thus, our algorithm
has an exponential runtime improvement over the pro-
posal in Ref. [31]. We also have a polynomial improve-

ment in gate complexity, which is Õ(η) for our algorithm

but Õ(η3) for Ref. [31].
Our runtime is likely optimal for symmetrization, at

least in terms of the η scaling. Symmetrization takes a
single computational basis state and generates a superpo-
sition of η! computational basis states. Each single-qubit
operation can increase the number of states in the super-
position by at most a factor of two, and two-qubit opera-
tions can increase the number of states in the superposi-
tion by at most a factor of four. Thus, the number of one-
and two-qubit operations is at least log2(η!) = O(η log η).
In our algorithm we need this number of operations be-
tween the registers. If that is true in general, then η op-
erations can be parallelized, resulting in minimum depth
O(log η). It is more easily seen that the total number
of registers used is optimal. There are O(η log η) ancilla
qubits due to the number of steps in the sort, but the
number of qubits for the system state we wish to sym-
metrize is O(η logN), which is asymptotically larger.

Our quoted asymptotic runtime and gate complex-
ity scalings assume the use of sorting networks that
are asymptotically optimal. However, these algorithms
have a large constant overhead making it more prac-
tical to use an odd-even mergesort, leading to depth
O(log2 η log logN). Note that is possible to obtain com-
plexity O(η log η logN) and number of ancilla qubits
O(η log η) with a better scaling constant using the sorting
network of Ref. [38].

Given that the cost of our algorithm is dictated by
the cost of sorting algorithms, it is natural to ask if it
is possible to antisymmetrize without sorting. Though
the complexity and runtime both turn out to be sig-
nificantly worse than our sort-based approach, we sug-
gest an alternative antisymmetrization algorithm based
on the Fisher-Yates shuffle. The Fisher-Yates shuffle is
a method for applying to a length-η target array a per-
mutation chosen uniformly at random using a number
of operations scaling as O(η). Our algorithm indexes
the positions to be swapped, thereby increasing the com-

plexity to Õ(η2). Briefly put, our algorithm generates a
superposition of states as in Step II of Ref. [31], then uses
these as control registers to apply the Fisher-Yates shuffle
to the orbital numbers. The complexity is O(η2 logN),
with a factor of logN due to the size of the registers. We
reset the control registers, thereby disentangling them,
using O(η log η) ancillae. We provide more details of this
approach in Appendix D.

To conclude this section, we have presented an al-
gorithm for antisymmetrizing a sorted, repetition-free
quantum register. The dominant cost of our algorithm
derives from the choice of sorting network, whose asymp-
totically optimal gate count complexity and runtime are,

4

respectively, O(η log η logN) andO(log η log logN). This
constitutes a polynomial improvement in the first case
and exponential in the second case over previous work
in Ref. [31]. As in Ref. [31], our antisymmetrization al-
gorithm constitutes a key step for preparing fermionic
wavefunctions in first quantization. viousl

II. FEWER PHASE ESTIMATION
REPETITIONS BY PARTIAL EIGENSTATE

PROJECTION REJECTION

Once the initial state |ϕ〉 has been prepared, it typi-
cally will not be exactly the ground state (or other eigen-
state) desired. In the usual approach, one would perform
phase estimation repeatedly, in order to obtain the de-
sired eigenstate |k〉. The number of repetitions needed
scales inversely in αk = |〈ϕ|k〉|2, increasing the complex-
ity. We propose a practical strategy for reducing this
cost which is particularly relevant for quantum chem-
istry. Our approach applies if one seeks to prepare the
ground state with knowledge of an upper bound on the
ground state energy Ẽ0, together with the promise that
E0 ≤ Ẽ0 < E1. With such bounds available, one can re-
duce costs by restarting the phase estimation procedure
as soon as the energy is estimated to be above Ẽ0 with
high probability. That is, one can perform a phase es-
timation procedure that gradually provides estimates of
the phase to greater and greater accuracy, for example
as in Ref. [41]. If at any stage the phase is estimated to

be above Ẽ0 with high probability, then the initial state
can be discarded and re-prepared.

Performing phase estimation within error ε typically
requires evolution time for the Hamiltonian of 1/ε, lead-
ing to complexity scaling as 1/ε. This means that, if the
state is the first excited state, then an estimation error
less than E1− Ẽ0 will be sufficient to show that the state
is not the ground state. The complexity needed would
then scale as 1/(E1 − Ẽ0). In many cases, the final error

required, εf , will be considerably less than E1 − Ẽ0, so
the majority of the contribution to the complexity comes
from measuring the phase with full precision, rather than
just rejecting the state as not the ground state.

Given the initial state |ϕ〉 which has initial overlap of
α0 with the ground state, if we restart every time the
energy is found to be above Ẽ0, then the contribution to
the complexity is 1/[α0(E1 − Ẽ0)]. There will be an ad-
ditional contribution to the complexity of 1/εf to obtain
the estimate of the ground state energy with the desired
accuracy, giving an overall scaling of the complexity of

O

(
1

α0(E1 − Ẽ0)
+

1

εf

)
. (2)

In contrast, if one were to perform the phase estimation
with full accuracy every time, then the scaling of the com-
plexity would be O(1/(α0εf)). Provided α0(E1 − Ẽ0) >
εf , the method we propose would essentially eliminate
the overhead from α0.

In cases where α0 is very small, it would be helpful
to apply amplitude amplification. A complication with
amplitude amplification is that we would need to choose a
particular initial accuracy to perform the estimation. If a
lower bound on the excitation energy, Ẽ1, is known, then
we can choose the initial accuracy to be Ẽ1 − Ẽ0. The
success case would then correspond to not finding that
the energy is above Ẽ0 after performing phase estimation
with that precision. Then amplitude amplification can
be performed in the usual way, and the overhead for the
complexity is 1/

√
α0 instead of 1/α0.

All of this discussion is predicated on the assumption
that there are cases where α0 is small enough to war-
rant using phase estimation as part of the state prepa-
ration process and where a bound meeting the promises
of Ẽ0 is readily available. We now discuss why these
conditions are anticipated for many problems in quan-
tum chemistry. Most chemistry is understood in terms
of mean-field models (e.g. molecular orbital theory, lig-
and field theory, the periodic table, etc.). Thus, the usual
assumption (empirically confirmed for many smaller sys-
tems) is that the ground state has reasonable support on
the Hartree-Fock state (the typical choice for |ϕ〉) [42–
45]. However, this overlap will decrease as a function of
both basis size and system size. As a simple example,
consider a large system composed of n copies of non-
interacting subsystems. If the Hartree-Fock solution for
the subsystem has overlap α0, then the Hartree-Fock so-
lution for the larger system has overlap of exactly αn0 ,
which is exponentially small in n.

It is literally plain-to-see that the electronic ground
state of molecules is often protected by a large gap. The
color of many molecules and materials is the signature
of an electronic excitation from the ground state to first
excited state upon absorption of a photon in the visible
range (around 0.7 Hartree); many clear organics have
even larger gaps in the UV spectrum. Visible spectrum
E1−E0 gaps are roughly a hundred times larger than the
typical target accuracy of εf = 0.0016 Hartree (“chemical
accuracy”)1. Furthermore, in many cases the first excited
state is perfectly orthogonal to the Hartree-Fock state for
symmetry reasons (e.g. due to the ground state being a
spin singlet and the excited state being a spin triplet).
Thus, the gap of interest is really E∗ − E0 where E∗ =
mink>0Ek subject to |〈ϕ|k〉|2 > 0. Often the E∗ − E0

gap is much larger than the E1 − E0 gap.
For most problems in quantum chemistry a variety of

scalable classical methods are accurate enough to com-
pute upper bounds on the ground state energy Ẽ0 such
that E0 ≤ Ẽ0 < E∗, but not accurate enough to ob-
tain chemical accuracy (which would require quantum

1 The rates of chemical reactions are proportional to e−β∆A/β
where β is inverse temperature and ∆A is a difference in free
energy between reactants and the transition state separating re-
actants and products. Chemical accuracy is defined as the max-
imum error allowable in ∆A such that errors in the rate are
smaller than a factor of ten at room temperature [4].

5

computers). Classical methods usually produce upper
bounds when based on the variational principle. Ex-
amples include mean-field and Configuration Interaction
Singles and Doubles (CISD) methods [46].

As a concrete example, consider a calculation on the
water molecule in its equilibrium geometry (bond an-
gle of 104.5◦, bond length of 0.9584 Å) in the minimal
(STO-3G) basis set performed using OpenFermion [47]
and Psi4 [48]. For this system, E0 = −75.0104 Hartree
and E1 = −74.6836 Hartree. However, 〈ϕ|1〉 = 0 and
E∗ = −74.3688 Hartree. The classical mean-field en-
ergy provides an upper bound on the ground state en-
ergy of Ẽ0 = −74.9579 Hartree. Therefore E∗−Ẽ0 ≈ 0.6
Hartree, which is about 370 times εf . Thus, using our
strategy, for α0 > 0.003 there is very little overhead due
to the initial state |ψ〉 not being the exact ground state.
In the most extreme case for this example, that represents
a speedup by a factor of more than two orders of mag-
nitude. However, in some cases the ground state overlap
might be high enough that this technique provides only a
modest advantage. While the Hartree-Fock state overlap
in this small basis example is α0 = 0.972, as the sys-
tem size and basis size grow we expect this overlap will
decrease (as argued earlier).

Another way to cause the overlap to decrease is to
deviate from equilibrium geometries [42, 43]. For exam-
ple, we consider this same system (water in the minimal
basis) when we stretch the bond lengths to 2.25× their
normal lengths. In this case, E0 = −74.7505 Hartree,
E∗ = −74.6394 Hartree, and α0 = 0.107. The CISD so-
lution provides an upper bound Ẽ0 = −74.7248. In this
case, E∗ − Ẽ0 ≈ 0.085 Hartree, about 50 times εf . Since
α0 > 0.02, here we speed up state preparation by roughly
a factor of α−10 (more than an order of magnitude).

III. PHASE ESTIMATION UNITARIES
WITHOUT APPROXIMATION

Normally, the phase estimation would be performed by
Hamiltonian simulation. That introduces two difficulties:
first, there is error introduced by the Hamiltonian simu-
lation that needs to be taken into account in bounding
the overall error, and second, there can be ambiguities
in the phase that require simulation of the Hamiltonian
over very short times to eliminate.

These problems can be eliminated if one were to
use Hamiltonian simulation via a quantum walk, as in
Refs. [49, 50]. There, steps of a quantum walk can be
performed exactly, which have eigenvalues related to the
eigenvalues of the Hamiltonian. Specifically, the eigen-
values are of the form ±e±i arcsin(Ek/λ). Instead of using
Hamiltonian simulation, it is possible to simply perform
phase estimation on the steps of that quantum walk, and
invert the function to find the eigenvalues of the Hamil-
tonian. That eliminates any error due to Hamiltonian
simulation. Moreover, the possible range of eigenvalues
of the Hamiltonian is automatically limited, which elim-

inates the problem with ambiguities.
The quantum walk of Ref. [50] does not appear to be

appropriate for quantum chemistry, because it requires
an efficient method of calculating matrix entries of the
Hamiltonian. That is not available for the Hamiltonians
of quantum chemistry, but they can be expressed as sums
of unitaries, as for example discussed in Ref. [21]. It turns
out that the method called qubitization [33] allows one
to take a Hamiltonian given by a sum of unitaries, and
construct a new operation with exactly the same func-
tional dependence on the eigenvalues of the Hamiltonian
as for the quantum walk in Refs. [49, 50].

Next, we summarize how qubitization works [33]. One
assumes black-box access to a signal oracle V that en-
codes H in the form:

(|0〉〈0|a ⊗ 11s)V (|0〉〈0|a ⊗ 11s) = |0〉〈0|a ⊗H/λ (3)

where |0〉a is in general a multi-qubit ancilla state in the
computational basis, 11s is the identity gate on the system
register and λ ≥ ‖H‖ is a normalization constant. For
Hamiltonians given by a sum of unitaries,

H =

d−1∑
j=0

ajUj aj > 0, (4)

one constructs

U = (A† ⊗ 11) SELECT-U(A⊗ 11), (5)

where A is an operator for state preparation acting as

A |0〉 =

d−1∑
j=0

√
aj/λ |j〉 (6)

with λ =
∑d−1
j=0 aj , and

SELECT-U =

d−1∑
j=0

|j〉〈j| ⊗ Uj . (7)

For U that is Hermitian, which is the case for quan-
tum chemistry, we can simply take V = U . If U is not
Hermitian, then we may construct a Hermitian V as

V = |+〉〈−| ⊗ U + |−〉〈+| ⊗ U† (8)

where |±〉 = 1√
2
(|0〉 ± |1〉). The multiqubit ancilla la-

belled “a” would then include this additional qubit, as
well as the ancilla used for the control for SELECT-U.
In either case we can then construct a unitary operator
called the qubiterate as follows:

W = i(2 |0〉〈0|a ⊗ 11s − 11)V. (9)

The qubiterate transforms each eigenstate |k〉 of H as

W |0〉a |k〉s = i
Ek
λ
|0〉a |k〉s + i

√
1−

∣∣∣∣Ekλ
∣∣∣∣2 |0k⊥〉as (10)

W |0k⊥〉as = i
Ek
λ
|0k⊥〉as − i

√
1−

∣∣∣∣Ekλ
∣∣∣∣2 |0〉a |k〉s (11)

6

where |0k⊥〉as has no support on |0〉a. Thus, W per-
forms rotation between two orthogonal states |0〉a |k〉s
and |0k⊥〉as. Restricted to this subspace, the qubiterate
may be diagonalized as

W |±k〉as = ∓e∓i arcsin(Ek/λ) |±k〉as (12)

|±k〉as =
1√
2

(
|0〉a |k〉s ± |0k

⊥〉as
)
. (13)

This spectrum is exact, and identical to that for the quan-
tum walk in Refs. [49, 50]. This procedure is also simple,
requiring only two queries to U and a number of gates to
implement the controlled-Z operator (2 |0〉〈0|a ⊗ 11s − 11)
scaling linearly in the number of controls.

We may replace the time evolution operator with
the qubiterate W in phase estimation, and phase es-
timation will provide an estimate of arcsin(Ek/λ) or
π − arcsin (Ek/λ). In either case taking the sine gives
an estimate of Ek/λ, so it is not necessary to distin-
guish the cases. Any problems with phase ambiguity are
eliminated, because performing the sine of the estimated
phase of W yields an unambiguous estimate for Ek. Note
also that λ ≥ ‖H‖ implies that |Ek/λ| ≤ 1.

More generally, any unitary operation eif(H) that has
eigenvalues related to those of the Hamiltonian would
work so long as the function f(·) : R→ (−π, π) is known
in advance and invertible. One may perform phase es-
timation to obtain a classical estimate of f(Ek), then
invert the function to estimate Ek. To first order, the
error of the estimate would then propagate like

σEk =

∣∣∣∣∣
(
df

dx

∣∣∣∣
x=Ek

)∣∣∣∣∣
−1

σf(Ek). (14)

In our example, with standard deviation σphase in the
phase estimate of W , the error in the estimate is

σEk = σphase

√
λ2 − E2

k ≤ λσphase . (15)

Obtaining uncertainty ε for the phase of W requires ap-
plying W a number of times scaling as 1/ε. Hence,
obtaining uncertainty ε for Ek requires applying W a
number of times scaling as λ/ε. For Hamiltonians given
by sums of unitaries, as in chemistry, each application
of W uses O(1) applications of state preparations and
SELECT-U operations. In terms of these operations, the
complexities of Section II have multiplying factors of λ.

CONCLUSION

We have described three techniques which we expect
will be practical and useful for the quantum simulation

of fermionic systems. Our first technique provides an ex-
ponentially faster method for antisymmetrizing configu-
ration states, a necessary step for simulating fermions in
first quantization. We expect that in virtually all cir-
cumstances the gate complexity of this algorithm will
be nearly trivial compared to the cost of the subsequent
phase estimation. Then, we showed that when one has
knowledge of an upper bound on the ground state energy
that is separated from the first excited state energy, one
can prepare ground states using phase estimation with
lower cost. We discussed why this situation is anticipated
for many problems in chemistry and provided numerics
for a situation in which this trick reduced the gate com-
plexity of preparing the ground state of molecular water
by more than an order of magnitude. Finally, we ex-
plained how qubitization [33] provides a unitary that can
be used for phase estimation without introducing the ad-
ditional error inherent in Hamiltonian simulation.

We expect that these techniques will be useful in a va-
riety of contexts within quantum simulation. In particu-
lar, we anticipate that the combination of the three tech-
niques will enable exceptionally efficient quantum simu-
lations of chemistry based on methods similar to those
proposed in [18]. While specific gate counts will be the
subject of a future work, we conjecture that such tech-
niques will enable simulations of systems with roughly a
hundred electrons on a million point grid with fewer than
a billion T gates. With such low T counts, simulations
such as the mechanism of Nitrogen fixation by ferredoxin,
explored for quantum simulation in [51], should be practi-
cal to implement within the surface code in a reasonable
amount of time with fewer than a few million physical
qubits and error rates just beyond threshold.

ACKNOWLEDGEMENTS

The authors thank Matthias Troyer for relaying the
idea of Alexei Kitaev that phase estimation could be
performed without Hamiltonian simulation. We thank
Jarrod McClean for discussions about molecular excited
state gaps. DWB is funded by an Australian Research
Council Discovery Project (Grant No. DP160102426).

AUTHOR CONTRIBUTIONS

DWB proposed the algorithms of Section I and the
basic idea behind Section II as solutions to issues raised
by RB. MK, AS and YRS worked out and wrote up the
details of Section I and associated appendices. RB con-
nected developments to chemistry simulation, conducted
numerics, and wrote Section II with input from DWB.
Based on discussions with NW, GHL suggested the basic
idea of Section III. CG helped to improve the gate com-
plexity of our comparator circuits. Remaining aspects of
the paper were written by RB and DWB with assistance
from MK, AS and YRS.

7

[1] L. Mueck, Nature Chemistry 7, 361 (2015).
[2] M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev,

R. Babbush, A. Fowler, V. Smelyanskiy, and J. Martinis,
Nature 543, 171 (2017).

[3] A. Y. Kitaev, eprint arXiv: quant-ph/9511026 (1995).
[4] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-

Gordon, Science 309, 1704 (2005).
[5] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and

M. Troyer, e-print arXiv: 1510.03859 (2015).
[6] Z. Jiang, K. J. Sung, K. Kechedzhi, V. N. Smelyanskiy,

and S. Boixo, e-print arXiv:1711.05395 (2017).
[7] D. S. Abrams and S. Lloyd, Physical Review Letters 83,

5162 (1999).
[8] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders,

Communications In Mathematical Physics 270, 359
(2007).

[9] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and
R. D. Somma, Physical Review Letters 114, 090502
(2015).

[10] G. H. Low and I. L. Chuang, Physical Review Letters
118, 010501 (2017).

[11] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Mol.
Phys. 109, 735 (2011).

[12] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer,
Quantum Information & Computation 15, 1 (2015).

[13] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C.
Doherty, and M. Troyer, Quantum Information & Com-
putation 15, 361 (2015).

[14] K. Sugisaki, S. Yamamoto, S. Nakazawa, K. Toyota,
K. Sato, D. Shiomi, and T. Takui, The Journal of Phys-
ical Chemistry A 120, 6459 (2016).

[15] F. Motzoi, M. Kaicher, and F. Wilhelm, e-print arXiv:
1705.10863 (2017).

[16] R. Babbush, N. Wiebe, J. McClean, J. McClain,
H. Neven, and G. K.-L. Chan, e-print arXiv: 1706.0023
(2017).

[17] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney,
A. Aspuru-Guzik, G. K.-L. Chan, and R. Babbush, e-
print arXiv: 1711:04789 (2017).

[18] I. D. Kivlichan, N. Wiebe, R. Babbush, and A. Aspuru-
Guzik, Journal of Physics A: Mathematical and Theoret-
ical 50, 305301 (2017).

[19] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and
A. Aspuru-Guzik, Proceedings of the National Academy
of Sciences 105, 18681 (2008).

[20] B. Toloui and P. J. Love, e-print arXiv: 1312.2579
(2013).

[21] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei,
P. J. Love, and A. Aspuru-Guzik, New Journal of Physics
18, 033032 (2016).

[22] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y.
Wei, P. J. Love, and A. Aspuru-Guzik, e-print arXiv:
1506.01029 (2015).

[23] T. Kato, Communications on Pure and Applied Mathe-
matics 10, 151 (1957).

[24] R. D. Somma, G. Ortiz, J. Gubernatis, E. Knill, and
R. Laflamme, Physical Review A 65, 17 (2002).

[25] J. T. Seeley, M. J. Richard, and P. J. Love, Journal of
Chemical Physics 137, 224109 (2012).

[26] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean,
R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and

P. J. Love, International Journal of Quantum Chemistry
115, 1431 (2015).

[27] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and
K. Temme, e-print arXiv: 1701.08213 (2017).

[28] V. Havlicek, M. Troyer, and J. D. Whitfield, Physical
Review A 95, 032332 (2017).

[29] K. Setia and J. D. Whitfield, e-print arXiv: 1712.00446
(2017).

[30] M. Steudtner and S. Wehner, e-print arXiv:1712.07067
(2017).

[31] D. S. Abrams and S. Lloyd, Physical Review Letters 79,
4 (1997).

[32] N. J. Ward, I. Kassal, and A. Aspuru-Guzik, Journal Of
Chemical Physics 130, 194105 (2008).

[33] G. H. Low and I. L. Chuang, e-print arXiv: 1610.06546
(2016).

[34] K. E. Batcher, Communications of the ACM 32, 307
(1968).

[35] K. J. Liszka and K. E. Batcher, International Conference
on Parallel Processing 1, 105 (1993).

[36] M. Ajtai, J. Komlós, and E. Szemerédi, in Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory
of Computing , STOC ’83 (ACM, New York, NY, USA,
1983) pp. 1–9.

[37] M. S. Paterson, Algorithmica 5, 75 (1990).
[38] M. T. Goodrich, in Proceedings of the Forty-sixth Annual

ACM Symposium on Theory of Computing , STOC ’14
(ACM, New York, NY, USA, 2014) pp. 684–693.

[39] S.-T. Cheng and C.-Y. Wang, IEEE Transactions on Cir-
cuits and Systems I: Regular Papers 53, 316 (2006).

[40] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin,
N. Linden, D. Shepherd, and M. Stather, Proceedings of
the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 469 (2013).

[41] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wise-
man, and G. J. Pryde, Nature 450, 393 (2007).

[42] H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoff-
mann, Physical Chemistry Chemical Physics 10, 5388
(2008).

[43] L. Veis and J. Pittner, The Journal of Chemical Physics
140, 1 (2014).

[44] J. R. McClean, R. Babbush, P. J. Love, and A. Aspuru-
Guzik, The Journal of Physical Chemistry Letters 5, 4368
(2014).

[45] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik,
and N. Wiebe, Physical Review A 91, 022311 (2015).

[46] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Elec-
tronic Structure Theory (Wiley, 2002).

[47] J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao,
E. S. Fried, C. Gidney, T. Häner, V. Havĺıček, Z. Jiang,
M. Neeley, J. Romero, N. Rubin, N. P. D. Sawaya, K. Se-
tia, S. Sim, W. Sun, K. Sung, and R. Babbush, e-print
arXiv: 1710.07629 (2017).

[48] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Sim-
monett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya,
A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F.
Gonthier, A. M. James, H. R. McAlexander, A. Kumar,
M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F.
Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A.
Evangelista, J. M. Turney, T. D. Crawford, and C. D.
Sherrill, Journal of Chemical Theory and Computation

http://dx.doi.org/10.1038/nchem.2248
http://dx.doi.org/10.1038/543171a
http://arxiv.org/abs/quant-ph/9511026
http://dx.doi.org/10.1126/science.1113479
http://arxiv.org/abs/1510.03859
http://arxiv.org/abs/1711.05395
http://dx.doi.org/10.1103/PhysRevLett.83.5162
http://dx.doi.org/10.1103/PhysRevLett.83.5162
http://www.springerlink.com/index/hk7484445j37r228.pdf
http://www.springerlink.com/index/hk7484445j37r228.pdf
http://dx.doi.org/ 10.1103/PhysRevLett.114.090502
http://dx.doi.org/ 10.1103/PhysRevLett.114.090502
http://dx.doi.org/10.1103/PhysRevLett.118.010501
http://dx.doi.org/10.1103/PhysRevLett.118.010501
http://dx.doi.org/10.1080/00268976.2011.552441
http://dx.doi.org/10.1080/00268976.2011.552441
http://arxiv.org/abs/1403.1539
http://arxiv.org/abs/1406.4920
http://arxiv.org/abs/1406.4920
http://dx.doi.org/10.1021/acs.jpca.6b04932
http://dx.doi.org/10.1021/acs.jpca.6b04932
http://arxiv.org/abs/1705.10863
http://arxiv.org/abs/1705.10863
http://arxiv.org/abs/1706.00023
http://arxiv.org/abs/1706.00023
http://arxiv.org/abs/1711.04789
http://arxiv.org/abs/1711.04789
http://iopscience.iop.org/article/10.1088/1751-8121/aa77b8
http://iopscience.iop.org/article/10.1088/1751-8121/aa77b8
http://www.pnas.org/content/105/48/18681.abstract
http://www.pnas.org/content/105/48/18681.abstract
http://arxiv.org/abs/1312.2579
http://arxiv.org/abs/1312.2579
http://dx.doi.org/ 10.1088/1367-2630/18/3/033032
http://dx.doi.org/ 10.1088/1367-2630/18/3/033032
http://arxiv.org/abs/1506.01029
http://arxiv.org/abs/1506.01029
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/ 10.1103/PhysRevA.65.042323
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1002/qua.24969
http://dx.doi.org/10.1002/qua.24969
http://arxiv.org/abs/1701.08213
http://dx.doi.org/10.1103/PhysRevA.95.032332
http://dx.doi.org/10.1103/PhysRevA.95.032332
http://arxiv.org/abs/1712.00446
http://arxiv.org/abs/1712.00446
https://arxiv.org/abs/1712.07067
https://arxiv.org/abs/1712.07067
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.79.2586
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.79.2586
http://dx.doi.org/http://dx.doi.org/10.1063/1.3115177
http://dx.doi.org/http://dx.doi.org/10.1063/1.3115177
http://arxiv.org/abs/1610.06546
http://arxiv.org/abs/1610.06546
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1109/ICPP.1993.23
http://dx.doi.org/10.1109/ICPP.1993.23
http://dx.doi.org/10.1145/800061.808726
http://dx.doi.org/10.1145/800061.808726
http://dx.doi.org/10.1145/800061.808726
http://dx.doi.org/10.1007/BF01840378
http://dx.doi.org/10.1145/2591796.2591830
http://dx.doi.org/10.1145/2591796.2591830
http://dx.doi.org/10.1109/TCSI.2005.856669
http://dx.doi.org/10.1109/TCSI.2005.856669
http://rspa.royalsocietypublishing.org/content/469/2153/20120686
http://rspa.royalsocietypublishing.org/content/469/2153/20120686
http://rspa.royalsocietypublishing.org/content/469/2153/20120686
http://dx.doi.org/ 10.1038/nature06257
http://dx.doi.org/ 10.1039/B804804E
http://dx.doi.org/ 10.1039/B804804E
http://dx.doi.org/10.1063/1.4880755
http://dx.doi.org/10.1063/1.4880755
http://dx.doi.org/10.1021/jz501649m
http://dx.doi.org/10.1021/jz501649m
http://dx.doi.org/10.1103/PhysRevA.91.022311
http://arxiv.org/abs/1710.07629
http://arxiv.org/abs/1710.07629
http://dx.doi.org/10.1021/acs.jctc.7b00174

8

13, 3185 (2017).
[49] A. M. Childs, Communications in Mathematical Physics

294, 581 (2010).
[50] D. W. Berry and A. M. Childs, Quantum Information &

Computation 12, 29 (2012).
[51] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and

M. Troyer, Proceedings of the National Academy of Sci-
ences 114, 7555 (2017).

[52] M. Bellare, J. Kilian, and P. Rogaway, Journal of Com-
puter and System Sciences 61, 362 (2000).

[53] D. E. Knuth, The art of computer programming, Vol. 3
(Pearson Education, 1997).

[54] M. Codish, L. Cruz-Filipe, T. Ehlers,
M. Mller, and P. Schneider-Kamp, Journal
of Computer and System Sciences (2016),
https://doi.org/10.1016/j.jcss.2016.04.004.

[55] C. Jones, Physical Review A 87, 022328 (2013).
[56] C. Gidney, e-print arXiv: 1709.06648 (2017).
[57] R. Durstenfeld, Communications of the ACM 7, 420

(1964).
[58] M. A. Nielsen and I. L. Chuang, Quantum Computing

and Quantum Information (Cambridge University Press,
2000).

Appendix A: Complexity Scaling of Ref. [31]

An approach to prepare appropriately antisym-
metrized states starting from an ordered state (where
r1, . . . , rη are in ascending order) was proposed in
Ref. [31]. The complexity scaling with η given in that

work was Õ(η2), but there is a step that appears to

scale as Õ(η3). In Step III of that proposal, a per-
mutation is generated by setting B′[i] equal to the
B[i]th natural number that is not contained in the set
{B′[1], . . . , B′[i− 1]}. To implement this step one would
need to go through O(η) natural numbers, and for each
perform equality testing with each of the O(η) numbers
{B′[1], . . . , B′[i−1]}. This would need to be done for each
of O(η) values of i, which would yield overall complexity

Õ(η3). The same step is required in Ref [32] and thus

that procedure also appears to have complexity Õ(η3)

despite also claiming to scale as Õ(η2).

Appendix B: Analysis of ‘Delete Collisions’ Step

In this Appendix, we explain the most difficult-to-
understand step of our algorithm: the step in which we
delete collisions from seed. There are two important
points that require explanation. First, we have to show
that the probability of failure is small. Second, we have
to show that the resulting state of seed is disentangled
from record, as we wish to uncompute record during
the final step of our algorithm.

To explain these two points, we begin with an analysis

of the state of seed after Step 1. The state of seed is

1

f(η)η/2

f(η)−1∑
`0,...,`η−1=0

|`0, . . . , `η−1〉 . (B1)

We can decompose the state space of seed into two or-
thogonal subspaces: the ‘repetition-free’ subspace

span {|`0, . . . , `η−1〉 |∀i 6= j : `i 6= `j} (B2)

and its orthogonal complement. If we project the state
of seed onto the repetition-free subspace, we obtain the
unnormalized vector

1

f(η)η/2

∑
0≤`0<...<`η−1<f(η)

∑
σ∈Sη

|σ (`0, . . . , `η−1)〉 . (B3)

The norm of this vector is

η!

f(η)η

(
f(η)
η

)
, (B4)

which is equal to 1 − C(f(η), η) in the terminology of
Proposition A.1 in [52].

We sort the register in Step 2 before detecting repe-
titions in Step 3, because then it is only necessary to
check adjacent registers. The probability of repetitions
in unaffected by the sort, because it is unitary and does
not affect whether there are repetitions. Therefore the
probability of failure (detection of a repetition) in Step 3
is equal to C(f(η), η). Using Proposition A.1 in [52], the
probability of failure is bounded as

Pr(repetition) = C(f(η), η) ≤ η(η − 1)

2f(η)
, (B5)

which is less than 1/2 for f(η) ≥ η2. The repetition-free
outcome can therefore be achieved after fewer than two
attempts on average. One can improve the success prob-
ability by using a larger function f or by using amplitude
amplification.

We now show that seed⊗record is in an unentangled
state after Step 3. After Step 1, the state of seed ⊗
record projected to the repetition-free subspace can be
represented (up to normalization) as∑

0≤`0<...<`η−1<f(η)

∑
σ∈Sη

|σ (`0, . . . , `η−1)〉
seed
|ι〉record .

(B6)
Here we represent the state of record as a recording of
all permutations we have applied to seed; ι represents
the identity permutation. During Step 2, a sequence of
permutations σ1, . . . , σT (where T depends on the choice
of sorting network) is applied to seed and recorded on
record. This sequence of permutations is chosen so that

σT ◦ · · · ◦ σ1 ◦ σ (`0, . . . , `η−1) = (`0, . . . , `η−1) , (B7)

http://dx.doi.org/10.1021/acs.jctc.7b00174
http://dx.doi.org/10.1007/s00220-009-0930-1
http://dx.doi.org/10.1007/s00220-009-0930-1
http://dl.acm.org/citation.cfm?id=2231036.2231040
http://dl.acm.org/citation.cfm?id=2231036.2231040
http://www.pnas.org/content/114/29/7555.abstract
http://www.pnas.org/content/114/29/7555.abstract
http://www.sciencedirect.com/science/article/pii/S002200009991694X
http://www.sciencedirect.com/science/article/pii/S002200009991694X
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2016.04.004
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2016.04.004
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2016.04.004
http://dx.doi.org/10.1103/PhysRevA.87.022328
https://arxiv.org/abs/1709.06648
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540

9

where 0 ≤ `0 < . . . < `η−1 < f(η). That is to say,2

σT ◦ · · · ◦ σ1 ◦ σ = ι. (B8)

Therefore, the state of seed⊗ record after Step 3 is (up
to normalization)∑
0≤`0<...<`η−1<f(η)

|`0, . . . , `η−1〉seed
∑
σ∈Sη

|σ1, . . . , σT 〉record .

(B9)
This is a product state. Therefore, seed can be discarded
after Step 3 without affecting record.

Appendix C: Quantum Sorting

1. Quantum Sorting Networks

In this appendix, we expand on the implementation
of quantum sorting networks and discuss some examples
with favorable scaling. We also illustrate that for small
number of inputs to be sorted (up to η = 20), concrete
bounds have been derived for optimized circuit depth as
well as the number of comparators. This may be of in-
terest and useful for implementing quantum simulations
of small molecules, also in view of the observation that
η ≈ 20 is nearly reaching a number of electrons for where
classical simulations become intractable.

Sorting networks are logical circuits that consist of
wires carrying values and comparator modules applied
to pairs of wires, that compare values and swap them
if they are not in the correct order. Wires repre-
sent bit strings (integers are stored in binary) in clas-
sical sorting networks and qubit strings in their quan-
tum analogues. A classical comparator is a sort on
two numbers, which gives the transformation (A,B) 7→
(min(A,B),max(A,B)). A quantum comparator is its
reversible version where we record whether the items
were already sorted (ancilla state |0〉) or the comparator
needed to apply a swap (ancilla state |1〉); see Figure 1.

A • A / • × min(A,B)

B • = B / • × max(A,B)

|0〉 A > B •

FIG. 1. The standard notation for a comparator is indicated
on the left. Its implementation as a quantum circuit is shown
on the right. In the first step, we compare two inputs with
values A and B and save the outcome (1 if A > B is true
and 0 otherwise) in a single-qubit ancilla. In the second step,
conditioned on the value of the ancilla qubit, the values A
and B in the two wires are swapped.

2 Note that no condition like Eq. (B8) holds in the orthogonal
complement of the repetition-free subspace. There are multi-
ple permutations that sort an unsorted array that has repeated
elements, so the choice of σ would be ambiguous.

Note that the positions of comparators are set as a
predetermined fixed sequence in advance and therefore
cannot depend on the inputs. This makes sorting net-
works viable candidates for quantum computing. Many
of the sorting networks are also highly parallelizable, thus
allowing low-depth, often polylogarithmic, performance.

Several common sort algorithms such as the insert
and bubble sorts can be represented as sorting networks.
However, these algorithms have poor time complexity
even after parallelization. More efficient runtime can be
achieved, for example, using the bitonic sort, which is
illustrated for 8 inputs in Figure 2. The bitonic sort
uses O(η log2 η) comparators and O(log2 η) depth, thus
achieving an exponential improvement in depth com-
pared to common sorting techniques.

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

FIG. 2. Example of a bitonic sort on 8 inputs. The ancillae
necessary to record the results as part of implementing each of
the comparators are omitted for clarity. Comparators in each
dashed box can be applied in parallel for depth reduction.

Optimizing sorting networks for small inputs is an ac-
tive research area in parallel programming. Knuth [53]
and later Codish et al. [54] gave networks for sorting up
to 17 numbers that were later shown to be optimal in
depth, and up to η ≤ 10 also optimal in the number
of comparators. Optimizations for up to 20 inputs have
recently been achieved, see Table 1 in [54]. In such op-
timizations one typically distinguishes between the opti-
mal depth problem and the problem of minimizing the
overall number of comparators. For illustration, the best
known sorting networks for 20 numbers require depth 11
and 92 comparators, with lower bounds reported as 10
and 73 respectively. Efficient sorting networks can be
produced by in-place merging of sorting networks with
smaller sizes. However, this procedure necessarily pro-
duces some overhead.

For our resource analysis we assume that the quantum
sorting network has η wires, where each wire represents
a quantum register of length d (i.e., consists of d qubits).
The resource requirement for implementing the quantum
sort is obtained by taking the (classical) sorting network
depth or the overall number of comparators involved and
multiplying it by the corresponding resources needed to
construct a comparator. As explained above, the latter
requires one query to a comparison oracle, whose cir-
cuit implementation and complexity are provided in Ap-
pendix C 2, and a conditional swap applied to the com-
pared registers of size d controlled by the single-qubit

10

ancilla holding the result of the comparison.
The construction of the comparison oracle as well as

the implementation of the conditional swaps both yield
a network consisting predominantly of Toffoli, Not and
CNot gates requiring O(d) elementary gate operations
but only O(log d) circuit depth. Indeed, as shown in Ap-
pendix C 2, the comparison oracle can be implemented
such that the operations can mostly be performed in par-
allel with only O(log d) circuit depth.

When implementing conditional swaps on two regis-
ters of size d as part of a comparator, all elementary
swaps between the corresponding qubits of these regis-
ters must be controlled by the very same ancilla qubit,
namely the one encoding the result of the comparison or-
acle. This suggests having to perform all the controlled
swaps in sequence, as they all are to be controlled by
the same qubit, which would imply depth scaling O(d)
rather than O(log d). Yet the conditional swaps can also
be parallelized. This can be achieved by first copying the
bit of the ancilla holding the result of the comparison to
d − 1 additional ancillae, all initialized in |0〉. Such an
expansion of the result to d copies can be attained with a
parallelized arrangement of O(d) CNots but with circuit
depth only O(log d). After copying, all the d controlled
elementary swaps can then be executed in parallel (by us-
ing the additional ancillae) with circuit depth only O(1).
After executing the swaps, the d − 1 additional ancillae
used for holding the copied result of comparison are un-
computed again, by reversing the copying process. While
this procedure requires O(d) ancillary space overhead, it
optimizes the depth. The overall space overhead of the
quantum comparator is also O(d).

Taking d = dlogNe (the largest registers used
in Step 4 of our sort-based antisymmetrization algo-
rithm), conducting the quantum bitonic sort, for in-
stance, thus requires O(η log2(η) logN) elementary gates
but only O(log2(η) log logN) circuit depth, while the
overall worst-case ancillary space overhead amounts to
O(η log2(η) logN).

2. Comparison Oracle

Here we describe how to implement reversibly the com-
parison of the value held in one register with the value
carried by a second equally-sized register, and store the
result (larger or not) in a single-qubit ancilla. We term
the corresponding unitary process a ‘comparison oracle’.
We need to use it for implementing the comparator mod-
ules of quantum sorting networks as well as in our anti-
symmetrization approach based on the quantum Fisher-
Yates shuffle. We first explain a naive method for com-
parison with depth linear in the length of the involved
registers. In the second step we then convert this pro-
totype into an algorithm with depth logarithmic in the
register length using a divide and conquer approach.

Let A and B denote the two equally sized registers to
be compared, and A and B the values held by these two

Register i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

A 0 0 0 0 1 0 1 0 1

B 0 0 0 0 0 1 1 1 0

A′ 0 0 0 0 1 1 1 1 1

B′ 0 0 0 0 0 0 0 0 0

TABLE I. Example illustrating the idea of reversible bitwise
comparison. Here, d = 9, the value held in register A is 21 and
the value held in register B is 14. The index i labels the bits of
the registers, with i = 0 designating the most significant bits,
respectively. Observe that the first occurrence of A[i] 6= B[i] is
for i = 4, at which stage the value of ancilla A′[4] is switched to
1, as A[4] > B[4]. This change causes all lesser significant bits
of A′ also to be switched to 1, whereas all bits of B′ remain 0.
Thus, the least significant bits of A′ and B′ contain information
about which number is larger. Here, A′[8] = 1 implies A > B.

registers. To determine whether A > B or A < B or
A = B, we compare the registers in a bit-by-bit fashion,
starting with their most significant bits and going down
to their least significant bits. At the very first occurrence
of an i such that A[i] 6= B[i], i.e., either A[i] = 1 and
B[i] = 0 or A[i] = 0 and B[i] = 1, we know that A > B in
the first case and A < B in the second case. If A[i] = B[i]
for all i, then A = B. We now show how to infer and
record the result in a reversible way.

To achieve a reversible comparison, we employ two an-
cillary registers, each consisting of d qubits, and each ini-

tialized to state |0〉⊗d, respectively. We denote them by
A′ and B′. They are introduced for the purpose of record-
ing the result of bitwise comparison as follows. A′[i] = 1
implies that after i bitwise comparisons we know with
certainty that A = max(A,B), while B′[i] = 1 implies
B = max(A,B). These implications can be achieved by
the following protocol, which is illustrated by a simple
example in Table I.

To start, at i = 0 we compare the most significant bits
A[0] and B[0], and write 1 into ancilla A′[0] if A[0] > B[0],
or write 1 into ancilla B′[0] if A[0] < B[0]. Otherwise the
ancillas remain as 0. For each i > 0, if A′[i − 1] = 0
and B′[i− 1] = 0 we compare A[i] and B[i] and record the
outcome to A′[i] and B′[i] in the same way as for i = 0.
If however A′[i − 1] = 1 and B′[i − 1] = 0, we already
know that A > B, so we set A′[i] = 1 and B′[i] = 0.
Similarly, A′[i − 1] = 0 and B′[i − 1] = 1 implies A < B,
so we set A′[i] = 0 and B′[i] = 1. We continue doing so
until we reach the least significant bits. This results in
the least significant bits of the ancillary registers A′ and
B′ holding information about max(A,B). If these least
significant bits are both 0, then A = B. At the end the
least significant bit of A′ has value 1 if A > B, and 0 if
A ≤ B. This bit can be copied to an output register,
and the initial sequence of operations reversed to erase
the other ancilla qubits.

While this algorithm works, it has the drawback that
the bitwise comparison is conducted sequentially, which
results in circuit-depth scaling O(d). It also uses more

11

x1 • • temp

y1 • × temp

x0 × x′

y0 • × • y′

|1〉 × temp

FIG. 3. A circuit that implements Compare2, taking a
pair of 2-bit integers and outputting a pair of single bits
while preserving inequalities. The input pair is (x, y) =
(x0 +2x1, y0 +2y1). The output pair is (x′, y′) and will satisfy
sign(x′ − y′) = sign(x − y). Output qubits marked “temp”
store values that are not needed, and are kept until a later
uncompute step where the inputs are restored. Each Fredkin
gate within the circuit can be computed using 4 T gates and
(by storing an ancilla not shown) later uncomputed using 0
T gates [55, 56].

ancilla qubits than necessary. We can improve upon this.
We can reduce the number of ancilla qubits by reusing
some input bits as output bits, and we can achieve a
depth scaling of O(log d) by parallelizing the bitwise com-
parison. To introduce a parallelization, observe the fol-
lowing. Let us split the register A into two parts: A1
consisting of the first approximately d/2 bits and A2 con-
sisting of the remaining approximately d/2 bits. Split
register B in the very same way into subregisters B1
and B2. We can then determine which number is larger
(or whether both are equal) for each pair (A1, B1) and
(A2, B2) separately in parallel (using the method de-
scribed above) and record the results of the two com-
parisons in ancilla registers (A′1, B

′
1), (A′2, B

′
2). The least

significant bits of these four ancilla registers can then be
used to deduce whether A > B or A < B or A = B with
just a single bitwise comparison. Thus, we effectively
halved the depth by dividing the problem into smaller
problems and merging them afterwards. We now explain
a bottom-up implementation.

Instead of comparing the whole registers A and B, our
parallelized algorithm slices A and B into pairs of bits –
the first slice contains A[0] and A[1], the second slice con-
sists of A[2] and A[3], etc., and in the very same way for B.
The key step takes the corresponding slices of A and B and
overwrites the second bit of each slice with the outcome of
the comparison. The first bit of each slice is then ignored,
so that the comparison results stored in the second bits
become the next layer on which bitwise comparisons are
performed. We denote the i’th bit forming the registers
of the jth layer by Aj [i] and Bj [i]. The original registers A
and B correspond to j = 0: A0 ≡ A and B0 ≡ B. The part
of the circuit that implements a single bitwise compari-
son is depicted in Figure 3. We denote the corresponding
transformation by ‘Compare2’, i.e. (Aj+1[i], Bj+1[i]) =
Compare2(Aj [2i], Bj [2i], Aj [2i + 1], Bj [2i + 1]), mean-
ing that it prepares the bits Aj+1[i], Bj+1[i] storing the
comparison result.

At each step, comparisons of the pairs of the original

0
0
0

0
0

0
0 0 0

0
1
1 1

1 1
1

1 1
1 1

1
1 1

A0

B0

0
1

0
0

0
0

0

0
1 1

0
0
1

0
1 0

1 1
0

1
0

0
1

0
1

A1

B1

A2

B2

A3

B3

A4

B4

1
1

FIG. 4. Parallelized bitwise comparison. Observe how each
step reduces the size of the problem by approximately one
half, while using a constant depth for computing the results.

arrays can be performed in parallel, and produce two
new arrays with approximately half the size of the orig-
inal ones to record the results. Thus, at each step we
approximately halve the size of the problem, while us-
ing a constant depth for computing the results. The
basic idea is illustrated in Figure 4. This procedure is
repeated for dlog de steps3 until registers Afin := Adlog de

and Bfin := Bdlog de both of size 1 have been prepared.
This parallelized algorithm is perfectly suited for com-

paring arrays whose length d is a power of 2. If d is not
a power of 2, we can either pad A and B with 0s prior to
their most significant bits without altering the result, or
introduce comparison of single bits (using only the first
two gates from the circuit in Figure 3 with targets on
Aj+1 and Bj+1 registers respectively).

Formally, we can express our comparison algorithm as
follows, here assuming d to be a power of 2:

for j = 0, . . . , log d− 1 do
for i = 0, . . . , size(Aj)/2− 1 do(

Aj+1[i], Bj+1[i]
)

= Compare2(Aj [2i], Bj [2i],

Aj [2i+ 1], Bj [2i+ 1])
end for

end for
return (Alog d−1[0], Blog d−1[0])

The key feature of this algorithm is that all the op-
erations of the inner loop can be performed in paral-
lel. Since one application of Compare2 requires only
constant depth and constant number of operations, our
comparison algorithm requires only depth O(log d).

Our comparison algorithm constructed above can in-
deed be used to output a result that distinguishes be-
tween A > B, A < B and A = B. Observe that its
reversible execution results in the ancillary single-qubit
registers Afin and Bfin generated in the very last step of
the algorithm holding information about which number is
larger or whether they are equal. Indeed, Afin[0] = Bfin[0]
implies A = B, Afin[0] < Bfin[0] implies A < B, and

3 All logarithms are taken to the base 2.

12

x • x

y • • x=y

|0〉 • x<y

|0〉 x>y

FIG. 5. A circuit that determines if two bits are equal, as-
cending, or descending. When the comparison is no longer
needed, the results are uncomputed by applying the circuit in
reverse order.

Afin[0] > Bfin[0] implies A > B. The three cases are sepa-
rated into three control qubits by using the circuit shown
in Figure 5. These individual control qubits can be used
to control further conditional operations that depend on
the result of the comparison.

For the purpose in our applications (comparator mod-
ules of quantum sorting networks or quantum Fisher-
Yates shuffle), we only need to condition on whether
A > B is true or false. Thus, we only need the first op-
eration from the circuit in Figure 5 which takes a single
qubit initialized to |0〉 and transforms it into the out-
put of the comparison oracle. After the output bit has
been produced, we must reverse the complete compari-
son algorithm (invert the corresponding unitary process),
thereby uncomputing all the ancillary registers that have
been generated along this reversible process and restoring
the input registers A and B.

The actual ‘comparison oracle’ thus takes as inputs two
size-d registers A and B (holding values A and B) and
a single-qubit ancilla q initialized to |0〉. It reversibly
computes whether A > B is true or false by executing
the parallelized comparison process presented above. It
copies the result (which is stored in Afin) to ancilla q. It
then executes the inverse of the comparison process. It
outputs A and B unaltered and the ancilla q holding the
result of the oracle: q = 1 if A > B and q = 0 if A ≤ B.
As shown, this oracle has circuit size O(d) but depth only
O(log d) and a T-count of 8d+O(1).

Appendix D: Symmetrization Using The Quantum
Fisher-Yates Shuffle

In this appendix we present an alternative approach for
antisymmetrization that is not based on sorting, yield-
ing a size- and depth-complexity O(η2 logN), but with a
lower spatial overhead than the sort-based method. Our
alternative symmetrization method uses a quantum vari-
ant of the well-known Fisher-Yates shuffle, which applies
a permutation chosen uniformly at random to an input
array input of length η. A standard form of the algo-
rithm is given in [57].

We consider the following variant of the Fisher-Yates
shuffle:

for k = 1, . . . , (η − 1) do

1 2 5 7
1 2 7 5
1 7 5 2
7 2 5 1
1 5 2 7
1 5 7 2
1 7 2 5

1 2 5 7

7 5 2 1
5 2 1 7
5 2 7 1
5 7 1 2

2 1 5
2 1 5 7
2 1 7 5
2 7 5 1
7 1 5 2

1 5 2 7

2 1 7

2 1 5 7

2 5 1 7
2 5 7 1
2 7 1 5

5 1 2
5 1 2 7
5 1 7 2
5 7 2 1
7 1 2 5

2 5 1

5 1 2 7

1 2 5 7

2 1 5 7

1 2 5 7

k=3k=2k=1

7

7

5

7

FIG. 6. A tree diagram for the Fisher-Yates shuffle applied
to an example sorted array. Here the green boxes identify
the array entry that has been swapped at each stage of the
shuffle. Observe that the green boxes also label the largest
value in the array truncated to position k.

Choose ` uniformly at random from {0, . . . , k}.
Swap positions k and ` of input.

end for

The basic idea is illustrated in Figure 6 for η = 4.
There are two key steps that turn the Fisher-Yates

shuffle into a quantum algorithm. First, our quantum
implementation of the shuffle replaces the random selec-
tion of swaps with a superposition of all possible swaps.
To achieve this superposition, the random variable is re-

placed by an equal-weight superposition 1√
k+1

∑k
`=0 |`〉

in an ancillary register (called choice). At each step
of the quantum Fisher-Yates shuffle, the choice register
must begin and end in a fiducial initial state.

In order to reset the choice register, we introduce an
additional index register, which initially contains the in-
tegers 0, . . . , η − 1. We shuffle both the length-η input
register and the index register, and the simple form of
index enables us to easily reset choice. The resulting
state of the joint input⊗index register is still highly en-
tangled; however, provided input was initially sorted in
ascending order, we can disentangle index from input.

Our quantum Fisher-Yates shuffle consists of the fol-
lowing steps:

1. Initialization. Prepare the choice register in the
state |0〉. Prepare the index register in the state
|0, 1, . . . , η − 1〉. Also set a classical variable k = 1.

2. Prepare choice. Transform the choice register

from |0〉 to 1√
k+1

∑k
`=0 |`〉.

13

3. Execute swap. Swap element k of input with
the element specified by choice. If a non-trivial
swap was executed (i.e. if choice did not specify
k), apply a phase of −1 to the input register. Also
swap element k of index with the element specified
by choice.

4. Reset choice. For each ` = 1, . . . , k, subtract `
from the choice register if position ` in index is
equal to k. The resulting state of choice is |0〉.

5. Repeat. Increment k by one. If k < η, go to
Step 2. Otherwise, proceed to the next step.

6. Disentangle index from input. For each k 6=
` = 0, 1, . . . , η − 1, subtract 1 from position ` of
index if the element at position k in input is
greater than the element at position ` in input.
The resulting state of index is |0, 0, . . . , 0〉, which
is disentangled from input.

|0〉⊗η

FY1

. . .

FYη−1

|0〉⊗η

|0〉⊗ηdlog ηe / Init . . .

Detangle

|0〉⊗ηdlog ηe

input / . . . Symm(input)

(a)

|0〉⊗η / Prepare choice c c < k
Reset

choice

|0〉⊗η

index / Swap(c,k)

input / Swap(c,k) eiπ

(b)

FIG. 7. An overview of symmetrization by quantum Fisher-
Yates shuffle. (a) High-level view of the algorithm. The proce-
dure acts on registers labeled (top to bottom) choice, index
and input. (b) Detail for the Fisher-Yates block FYk. The
first register (again labeled choice) is used to select the tar-
get of the two selected swap steps. Then a phase eiπ = −1 is
applied to the input register if a swap was performed, i.e. if
the choice register encodes a value less than k. Each block
FYk is completed by resetting the choice register back to its
original state |0〉⊗η.

We present an overview of the algorithm in Figure 7.
At the highest level, depicted in Figure 7a, we apply
an initialization procedure to index, then η − 1 ‘Fisher-
Yates’ blocks (FYk for k = 1, . . . , η−1), and finally a dis-
entangling (‘Detangle’) procedure on index and input.
Following the Detangle procedure, the ancillary regis-
ters choice and index are reset to their initial all-zero
states and the input register has been symmetrized. In
each Fisher-Yates block, depicted in Figure 7b, we apply
the preparation operator Πk to choice, apply selected
swaps on choice+index and choice+input, then apply
a phase conditioned on choice to input, and finally reset
the choice register. Preparing and resetting choice as

well as executing swap are therefore part of each Fisher-
Yates block and are thus each applied a total of η − 1
times (for each of k = 1, . . . , η − 1). Their gate counts
and circuits depths must thus be multiplied by (η − 1).
Disentangling index and input is the most expensive
step, but it is executed only once, so it contributes only
an additive cost to the overall resource requirement.

In what follows, we explain each step of the algo-
rithm and justify their corresponding resource contribu-
tions, which are briefly summarized here: Step 1 requires
O(η log η) gates but has a negligible depth O(1). Step 2
requires O(η) gates and has the same depth complex-
ity. Step 3 requires O(η logN) gates and has also depth
O(η logN). Step 4 requires O(η log η) gates but has only
depth O(log η). As Step 2 to Step 4 are repeated η − 1
times, the total gate count before Step 6 is O(η2 logN).
Finally, Step 6 requires O(η2 logN) gates and has depth
O
(
η2 [log logN + log η]

)
. Thus the total gate count of

the quantum Fisher-Yates shuffle is O(η2 logN). Because
most of the gates need to be performed sequentially, the
overall circuit depth of the algorithm is also O(η2 logN).

Our complexity analysis is given in terms of elemen-
tary gate operations, a term we use loosely. Generally
speaking, we treat all single-qubit gates as elementary
and we allow up to two controls for free on each single-
qubit gate. This definition of elementary gates includes
several standard universal gate sets such as Clifford+T
and Hadamard+Toffoli. A more restrictive choice of el-
ementary gate set only introduces somewhat larger con-
stant factors in most of the procedure. The exception
is the application of Πk in the first step of FYk, where
we require the ability to perform controlled single-qubit

rotations of angle arcsin
(√

`
`+1

)
, where ` = 1, . . . , k.

The Solovay-Kitaev theorem implies a gate-count over-
head that grows polylogarithmically in the inverse of the
error tolerance. We now proceed by analyzing each step
to the quantum Fisher-Yates shuffle.

1. Initialization

The first step is to initialize choice in the state |0〉⊗η.
This is assumed to have zero cost. The index register is
set to the state |0, 1, . . . , η − 1〉 that represents the posi-
tions of the entries of input in ascending order. Because
each of the η entries in index must be capable of stor-
ing any of the values 0, 1, . . . , η − 1, the size of index is
ηdlog ηe qubits. This step requires O(η log η) single-qubit
gates that can be applied in parallel with circuit depth
O(1).

2. Fisher-Yates Blocks

Each Fisher-Yates block has three stages: prepare
choice, executed selected swaps, and reset choice. The

14

0 X . . .

1 Rk • . . . •

2 Rk−1 . . . •
...

. . .
. . .

k − 1 . . . •
k . . . R1 •

FIG. 8. Circuit for preparing the choice register at the be-
ginning of block FYk. See Eq. (D5) for the definition of R`.

exact steps depend on the encoding of the choice regis-
ter; in particular, whether it is binary or unary.

We elect the conceptually simplest encoding of choice,
which is a kind of unary encoding. We use η qubits (la-
belled 0, 1, . . . , η), define

|null〉 = |0〉⊗η (D1)

and encode

|`〉 = X` |null〉 , (D2)

where X` is the Pauli X applied to the qubit labelled `.
An advantage of our encoding for choice is that the

selected swaps require only single-qubit controls. An ob-
vious disadvantage is the unnecessary space overhead.
Although one can save space with a binary encoding, the
resulting operations become somewhat more complicated
and hence come at an increased time cost. Our choice of
encoding is made for simplicity.

a. Prepare choice

Our preparation procedure has two stages. First, we
prepare an alternative unary encoding of the state

|Wk〉 :=
1√
k + 1

k∑
`=0

|`〉 , (D3)

which we name for its resemblance to the W-state
1√
3
(|001〉 + |010〉 + |100〉). Second, we translate the al-

ternative unary encoding to our desired encoding. For a
summary of the procedure, see Figure 8.

Next, we explain how to prepare |Wk〉 in the alterna-
tive unary encoding. The alternative encoding is

|`〉 =

(∏̀
`′=0

X`′

)
|null〉 . (D4)

We can prepare |Wk〉 in this encoding with a cascade of
controlled rotations of the form

R` :=
1√
`+ 1

(
1 −

√
`√

` 1

)
. (D5)

Explicitly:

Apply X to qubit 0.
Apply Rk to qubit 1.
for ` = 1, . . . , k − 1 do

Apply Rk−` controlled on qubit ` to qubit `+ 1.
end for

This is a total of k + 1 gates, k = 1 of which are applied
sequentially.

Next we explain how to translate to the desired encod-
ing. This is a simple procedure:

for ` = k, . . . , 1 do
Apply Not controlled on qubit ` to qubit `− 1.

end for

The total number of CNot gates is k, and they must
be applied in sequence. Thus the total gate count (and
time-complexity) for preparing choice is O(k) = O(η).

b. Selected Swap

We need to implement selected swaps of the form

SelSwapk :=

η−1∑
c=0

|c〉〈c|choice ⊗ Swap(c, k)target, (D6)

where the Swap(c, k) operator acts on either target =
index or target = input. Here the state of the choice
register selects which entry in the target array is to be
swapped with entry k. Our unary encoding of the choice
register allows for a simple implementation of SelSwap;
see Figure 9.

Observe that only the first k + 1 subregisters are in-
volved of each choice, index and input, respectively.
Also observe that, for each i = 0, 1, . . . , k, index[i] is of
size dlog ηe whereas input[i] is of size dlogNe. Hence,
the circuit actually consists of kdlog ηe + kdlogNe or-
dinary 3-qubit controlled-Swap gates that for the most
part must be executed sequentially. As η ≤ N , we report
O (η logN) for both gate count and depth.

c. Applying the controlled-phase

Applying the controlled-phase gate is straightforward.
We select a target qubit in the input register – it does
not matter which. Then, for each ` = 0, 1, . . . , k − 1, we
apply a phase gate controlled on position ` of choice to
the target qubit. The result is that input has picked up
a phase of (−1) if choice specified a value strictly less
than k. The total number of gates is k = O(η), while the
depth can be made O(1).

d. Resetting choice register

The reason we execute swaps on both index and input
is to enable reversible erasure of choice at the end of
each Fisher-Yates block. This is done by scanning index

15

choice[0] • . . . • . . .

choice[1] • . . . • . . .

.

.

.
. . .

. . .
choice[k − 1] . . . • . . . •

choice[k]

index[0] / ×

index[1] / ×
.
.
.

. . .

index[k − 1] / . . . × . . .

index[k] / × × . . . × . . .

input[0] / . . . × . . .

input[1] / . . . × . . .
.
.
.

. . .

input[k − 1] / ×
input[k] / . . . × × . . . ×

FIG. 9. Implementation of the two selected swaps SelSwapk
as part of FYk, with the unary-encoded choice as the control
register and index and input as target registers, respectively.
As each wire of the target registers stand for several qubits,
each controlled-Swap is to be interepreted as many bitwise
controlled-Swaps.

to find out which value of k was encoded into choice. In
general, we know that step k sends the value k to posi-
tion ` of index, where ` is specified by the choice regis-
ter. We thus erase choice by applying a Not operation
to choice[`] if index[`] = k. This can be expressed as
a multi-controlled-Not, as illustrated by an example in
Figure 10. The control sequence of the multi-controlled-
Not is a binary encoding of the value k.

choice[`]

0

1 •
2

index[`]

{
3 •
4
...

...

dlog ηe − 1

FIG. 10. Circuit for resetting choice register as part of it-
eration block FYk. In this example k = 10. It consists of a
series of multi-fold-controlled-Nots, employing the `-th wire
of choice and the `-th subregister index[`] of size dlog ηe, for
each ` = 0, . . . , k. Note that the multi-fold-controlled-Not is
the same for all values of `. The control sequence is a binary
encoding of k = 10. The Not erases choice[`] if index[`] = k.

For compiling multiple controls, see Figure 4.10 in

[58]. Each dlog ηe-fold-controlled-Not can be decom-
posed into a network of O(log η) gates (predominantly
Toffolis) with depth O(log η). Because the k + 1 multi-
fold-controlled-Nots (for ` ≤ k ≤ η − 1) can all be exe-
cuted in parallel, resetting choice register thus requires
a circuit with O(η log η) gates but only O(log η) depth.

3. Disentangling index from input

The last task is to clean up and disentangle index
from input by resetting the former to the original state

|0〉⊗ηdlog ηe while leaving the latter in the desired antisym-
metrized superposition. This can be achieved as follows.

We compare the value carried by each of the η subregis-
ters input[`] (labeled by position index ` = 0, 1, . . . , η−1)
with the value of each other subregister input[`′] (`′ 6= `),
thus requiring η(η − 1) comparisons in total. Note that
these subregisters of input have all size dlogNe. Each
time the value held in input[`] is larger than the value
carried by any other of the remaining η − 1 subregisters
input[`′], we decrement the value of the corresponding `th

subregister index[`] of index by 1. In cases in which the
value carried by input[`] is smaller than input[`′], we do
not decrement the value of index[`]. After accomplish-
ing all the η(η−1) comparisons within the input register
and controlled decrements, we have reset the index reg-

ister state to |0〉⊗ηdlog ηe while leaving the input register
in the antisymmetrized superposition state.

Each comparison between the values of two subregis-
ters of input (each of size dlogNe) can be performed
using the comparison oracle introduced in Appendix C 2.
The oracle’s output is then used to control the ‘decrement
by 1’ operation, after which the oracle is used again to
uncompute the ancilla holding its result. The compari-
son oracle has been shown to require O(logN) gates but
to have only circuit depth O(log logN).

Decrementing the value of the dlog ηe-sized index sub-
register index[`] (for any ` = 0, 1, . . . , η−1) by the value
1 can be achieved by a circuit depicted in Figure 11.
Each such operation involves a total of dlog ηe multi-fold-
controlled-Nots. More specifically, it involves n-fold-
controlled-Nots for each n = dlog ηe − 1, . . . , 0. Note
that each must also be controlled by the qubit holding
the result of the comparison oracle. When decompos-
ing each of them into a network of O(n) Toffoli gates
using O(n) ancillae according to the method provided
in Figure 4.10 in [58], the majority of the involved Tof-
foli gates for different values of n effectively cancel each
other out. The resulting cost is only O (log η) Toffolis
rather than O

(
log2 η

)
, at the expense of an additional

space overhead of size O (log η). However, there is no
need to employ new ancillae. We can simply reuse those
qubits that previously composed the choice register for
this purpose, as the latter is not being used otherwise at
this stage any more.

Putting everything together, the overall circuit size for
this step amounts to O (η(η − 1) [logN + log η]) predom-

16

(a) (b)
0 0

1 1

2 = 2

3 3

4 4

5 5

|0〉 • • • |0〉
|0〉 • • • |0〉
|0〉 • |0〉

FIG. 11. Circuit implementing ‘decrement by 1’ operation,
applied to index[`] subregisters of size dlog ηe. (a) Example
for η = 64. (b) Decomposition into a network of O (log η)
Toffoli gates using O (log η) ancillae.

inantly Toffoli gates, which can then be further decom-
posed into CNots and single-qubit gates (including T
gates) in well-known ways. Because η ≤ N , we thus re-
port O(η2 logN) for the overall gate count for this step,
while its circuit depth is O

(
η2 [log logN + log η]

)
.

	Improved Techniques for Preparing Eigenstates of Fermionic Hamiltonians
	Abstract
	 Introduction
	I Exponentially Faster Antisymmetrization
	II Fewer Phase Estimation Repetitions by Partial Eigenstate Projection Rejection
	III Phase Estimation Unitaries without Approximation
	 Conclusion
	 Acknowledgements
	 Author Contributions
	 References
	A Complexity Scaling of Ref. Abrams1997
	B Analysis of `Delete Collisions' Step
	C Quantum Sorting
	1 Quantum Sorting Networks
	2 Comparison Oracle

	D Symmetrization Using The Quantum Fisher-Yates Shuffle
	1 Initialization
	2 Fisher-Yates Blocks
	a Prepare choice
	b Selected Swap
	c Applying the controlled-phase
	d Resetting choice register

	3 Disentangling index from input

