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Abstract

In real-world machine learning problems it is often the case that the gold-standard
for a particular learning problem is not accurately reflected by any one particular
data set. For example, when modeling the landing-page quality associated with
a search result, labels from human evaluators are often biased towards “brand-
name” sites, whereas labels derived from conversions can potentially confound
search abandonment and successful conversion. In this paper we propose a class
of models for characterizing and isolating the relative bias of a prediction problem
across multiple data sets. These models can be used either as tools for data analy-
sis, with the goal of calculating the divergence to the hypothetical gold-standard,
or as smoothing procedures aimed at capturing as much shared structure between
the domains as possible.

1 Introduction

We consider a class of learning problems where labeled data for the exact target concept is unavail-
able, but multiple sources of related data are available, and we wish to combine these biased data
sources to construct an estimate of the true target concept. Without additional human knowledge,
this problem is theoretically intractable, as data from the source domains can be combined arbitrar-
ily. However, by making model assumptions about how the data sets are likely to agree, we can
combine them in a way that systematically cancels out individual idiosyncracies. Specifically, using
mixtures of simple linear classifiers, we can remove orthogonal bias components from multiple data
sources, retaining their shared signal.

Although this problem class shares many features in common with Domain Adaptation and Multi-
task learning, it is separate from each of them as it potentially treats every source domain as unreli-
able. Instead, we base our approach on multivariate Related-Studies models [cf. 6] and mixture-of-
experts models [cf. 9].

Our particular approach, constrained mixture of generalized linear models (CM-GLM), extends the
basic mixture of GLMs framework with additional domain constraints: Each domain inherits mix-
ture components from two sets: (1) shared components common across all domains and (2) domain-
specific components designed to capture additional idiosyncracies. We will develop this model in
subsequent sections and introduce a simple inference procedure based on conditional EM.

To motivate this work, we will address the specific problem of predicting conditional webpage qual-
ity given a search query. Conditional measures of webpage quality can be acquired either automat-
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ically, e.g. bounce-rate, conversion-rate, or at some incurred cost, e.g. human subject evaluation.
Although human evalution data tends to be more pure in general, it typically demonstrates signifi-
cant biases, due to the artificial nature of the problem. For example, human evaluators often prefer
“big name” websites over smaller ones, despite the fact that they often do not contain as relevant
information. Bias is introduced because the raters are asked to “think like a typical web surfer” but
cannot actually come to do so.

2 Background

Our approach to modeling multiple ground-truths borrows from previous work in domain adaptation
and multi-task learning. Chelba and Acero propose a simple model of domain adaptation where a
target model is centered on a source model, e.g. via regularization ΩCA “ ||θtarget´θsrc||

2
2 [3]. Note

that the fundamental asymmetry of this model makes it less suitable in cases where both domains
may be biased.

Daumé proposes a “frustratingly easy” approach to domain adaptation where source θsource and
target θtarget corrections to a set of shared weights θshared are fit simulatenously [4]. Our model
extends this approach by inferring data-dependent mixture structure.

Hannah et. al propose DP-GLM, a Dirichlet Process mixture of Generalized Linear Models where
the data are grouped and each group is fit with a separate GLM [5]:

F0 „ DPpαG0q,

θi “ pθ
x
i ,θ

y
i q|F0 „ F0,

Xi|θ
x
i „ fxp¨|θ

x
i q,

Yi|xi,θ
y
i „ GLMp¨|Xi,θ

y
i q.

where θ is a parameter vector drawn from set of cluster centers F0 and f links θ to the covariate dis-
tribution (e.g. f “ N for mixture of Gaussians). This model is capable of capturing heteroscedastic-
ity as the variance of the response function can vary across mixture components. We further extend
this model to combine multiple ground truths.

3 Constrained Mixture of GLMs

We add additional constraints to the basic DP-GLM accounting for multiple ground truths. We first
describe this Constrained Mixture of GLMs (CM-GLM) in terms of a finite model; then derive a
Bayesian nonparametric extension.

Data Xd
i from d P D domains are fit using D ` 1 sets of mixture components Md: one component

set specific to each domain Md and one set of components shared across all domains, Mshared. This
class of models generalizes several previous approaches:

• When Md “ 0 for all d, we recover standard DP-GLM with Mshared clusters, combining all
domains into a single regression problem.
• When Mshared “ 0 and Md ě 1 for all d we have d independent regression problems.

Other interesting cases include: Mshared“1, Mją1, where the per-domain distributions are more
expressive than the shared distribution, and the converse case Msharedą1, Mj“1, where the shared
distribution is more expressive.

To extend this finite model to the nonparametric case, we borrow mixture combination machinery
from [7] and the DP-GLM from [5]. Each ground truth inherits clusters from a shared mixture model
Fshared and a specific mixture model Fd for capturing any noise or idiosyncratic structure that the
ground truth exhibits on top of the shared structure. In particular we replace the cluster distribution
F0 „ DPpαG0q step from the DP-GLM with

Fshared „ DPpαsharedGsharedq

Fd „ DPpαdGdq

Hd “ εFd ` p1´ εqFshared,
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where Hj is a new measure that is the weighted average of Fshared and Fd. Since the F are discrete
with probability 1, this amounts to reweighting all their components.
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Under this model, the clusters from the DPMM draw Fshared are
shared across all the domains, while Fj accounts for the idiosyn-
crasies of domain j. The base measures tGju and concentration
parameters tαju control the expressiveness of the model. Fur-
thermore, these parameters can be tuned to model any known
structure in the ground truth data sets.

This model naturally captures domain-dependent response vari-
ance and heteroscedasticity: each mixture component is respon-
sible for every covariate location, and hence parameter disper-
sion between the different components leads to higher posterior
response variance.

4 Case Study: Landing Page Quality

We evaluate CM-GLM on “post-click quality” i.e. determining the relevance of a particular landing
page L to a Web search query Q, or Web query / advertisement pair pQ,Aq.

Our three ground-truth datasets are:

(Human-Eval; HE) A small collection of landing page relevance scores made by trained human
evaluators. Coverage is low due to the high cost of label acquisition, and although variance is low,
these labels exhibit significant bias, especially because raters do not have the context of the queries
(e.g., based on the session) of actual web users when they rate the landing page quality w.r.t. just
the query.

(Conversion; CV) The conversion after a click measures whether the user performed an action
on the landing page that was specified by advertiser as a conversion event, e.g., user makes an
item purchase. Since conversions are advertiser-reported, some of the conversion events can be
noisy. Furthermore, many landing pages rated highly by human evaluators may not actually track
conversions [1, 10].

(Bounce; BO) A bounce event on a webpage indicates that the user “bounces off” from the page,
i.e., user clicks through, does not find the desirable information on the ad landing page after click-
through and then returns relatively quickly to the page from where the original click was issued
[8]. Bounces are typically negative indicators of conditional landing page quality. Although easy to
collect, Bounce has high variance and is difficult to use as a quality signal directly.

The target concepts for each of the these data sets differ. Despite best efforts in training evaluators,
HE data may still contains unwanted biases that keep it from accurately reflecting landing page
quality. We apply CM-GLM as a smoothing method to generate a reliable signal indicating landing
page quality, focusing on combining Bounce (BO) data with Human-eval (HE) data, in order to
address potential biases. Our working assumptions are:

1. HE data is much sparser than CV, so much so that including HE as a feature in an BO-only
model would get washed out. But,

2. HE is typically more precise than BO (modulo some bias that we’ll try to model). Finally,

3. BO targets can be a more reliable indicator of ”real-world” landing page quality in some
cases, but have significantly higher variance and noise than HE.

4. (Optional) HE and BO have the same data distribution.

Thus our approach is to leverage both data sets in a way that can reduce the bias of HE while
simultaneously reducing the variance of BO. This is accomplished using the generative CM-GLM,
specifically identifying clusters of data points where there is strong agreement between HE and BO
and areas where there is little agreement.
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Figure 1: (left) Empirical divergences between domain hypothesis class pairs (see Note 1). (right)
Classification performance for CM-GLM vs. single-domain baselines.

Figure 1 shows the empirical divergences computed between each of the domains.1 In general, the
BO/CV domains are more related to each other than to HE, and it is easier to distinguish negative
CV/BO instances from HE instances.

Due to the availability of large amounts of data in each domain, the strong bias induced by CM-GLM
does not lead to improvement on the test accuracy. Since we are not interested in performance on
any of the three domains per se, we instead focus on model interpretation; in particular comparing
feature coefficient z-scores between the CM-GLM model and standalone regression models.

Furthermore, the shared BO/HE component places strong emphasis on content vertical features in
general than BO alone, indicating that expert human raters are more sensitive to content mismatch.
Based on these observations, an actionable outcome from our analysis would be to retrain human
raters to be more judicious when evaluating apparent content mismatches.

5 Discussion and Future Work

CM-GLM can be applied broadly in situations where data integration or synthesis between multiple
sources is important. For example, in computer vision it is often necessary to combine different
ground truth models of image annotation, e.g. LabelMe and Peekaboom. Since these data sources
are collected under different sets of annotator constraints, they show may exhibit significant relative
bias.

(Expressivity) The model can only assign entire feature vectors to clusters, and hence cannot cap-
ture differences in the reliability of feature subspaces. For example, it might be the case that coef-
ficients for certain subsets of features should be shared across multiple sources, but others should
not. It would be straightforward to extend the model from a mixture to an admixture to address this
problem.

(Mean-shift bias) Although the model is capable of identifying idiosyncracies in each model, it is
not capable of distinguishing between additive biases and pure noise. For example, HE and BO
might both admit similar feature covariance structures, but require additive offsets to the shared
structure for some features. This kind of sharing can be expressed using a “frustratingly-easy” style
model and could be included in our model as the base model for the shared structure.
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