
LEARNING RECURRENT SPAN REPRESENTATIONS FOR
EXTRACTIVE QUESTION ANSWERING

Kenton Lee†, Shimi Salant?, Tom Kwiatkowksi‡, Ankur Parikh‡, Dipanjan Das‡, and Jonathan
Berant?

kentonl@cs.washington.edu, shimonsalant@mail.tau.ac.il
{tomkwiat, aparikh, dipanjand}@google.com, joberant@cs.tau.ac.il

†University of Washington, Seattle, USA
?Tel-Aviv University, Tel-Aviv, Israel
‡Google Research, New York, USA

ABSTRACT

The reading comprehension task, that asks questions about a given evidence docu-
ment, is a central problem in natural language understanding. Recent formulations
of this task have typically focused on answer selection from a set of candidates
pre-defined manually or through the use of an external NLP pipeline. However,
Rajpurkar et al. (2016) recently released the SQUAD dataset in which the an-
swers can be arbitrary strings from the supplied text. In this paper, we focus on
this answer extraction task, presenting a novel model architecture that efficiently
builds fixed length representations of all spans in the evidence document with a re-
current network. We show that scoring explicit span representations significantly
improves performance over other approaches that factor the prediction into sep-
arate predictions about words or start and end markers. Our approach improves
upon the best published results of Wang & Jiang (2016) by 5% and decreases the
error of Rajpurkar et al.’s baseline by > 50%.

1 INTRODUCTION

A primary goal of natural language processing is to develop systems that can answer questions
about the contents of documents. The reading comprehension task is of practical interest – we want
computers to be able to read the world’s text and then answer our questions – and, since we believe
it requires deep language understanding, it has also become a flagship task in NLP research.

A number of reading comprehension datasets have been developed that focus on answer selection
from a small set of alternatives defined by annotators (Richardson et al., 2013) or existing NLP
pipelines that cannot be trained end-to-end (Hill et al., 2016; Hermann et al., 2015). Subsequently,
the models proposed for this task have tended to make use of the limited set of candidates, basing
their predictions on mention-level attention weights (Hermann et al., 2015), or centering classi-
fiers (Chen et al., 2016), or network memories (Hill et al., 2016) on candidate locations.

Recently, Rajpurkar et al. (2016) released the less restricted SQUAD dataset1 that does not place any
constraints on the set of allowed answers, other than that they should be drawn from the evidence
document. Rajpurkar et al. proposed a baseline system that chooses answers from the constituents
identified by an existing syntactic parser. This allows them to prune the O(N2) answer candidates
in each document of length N , but it also effectively renders 20.7% of all questions unanswerable.

Subsequent work by Wang & Jiang (2016) significantly improve upon this baseline by using an end-
to-end neural network architecture to identify answer spans by labeling either individual words, or
the start and end of the answer span. Both of these methods do not make independence assumptions
about substructures, but they are susceptible to search errors due to greedy training and decoding.

1http://stanford-qa.com

1

ar
X

iv
:1

61
1.

01
43

6v
2 

 [
cs

.C
L

] 
 1

7 
M

ar
 2

01
7

http://stanford-qa.com


In contrast, here we argue that it is beneficial to simplify the decoding procedure by enumerating
all possible answer spans. By explicitly representing each answer span, our model can be globally
normalized during training and decoded exactly during evaluation. A naive approach to building
the O(N2) spans of up to length N would require a network that is cubic in size with respect
to the passage length, and such a network would be untrainable. To overcome this, we present
a novel neural architecture called RASOR that builds fixed-length span representations, reusing
recurrent computations for shared substructures. We demonstrate that directly classifying each of
the competing spans, and training with global normalization over all possible spans, leads to a
significant increase in performance. In our experiments, we show an increase in performance over
Wang & Jiang (2016) of 5% in terms of exact match to a reference answer, and 3.6% in terms
of predicted answer F1 with respect to the reference. On both of these metrics, we close the gap
between Rajpurkar et al.’s baseline and the human-performance upper-bound by > 50%.

2 EXTRACTIVE QUESTION ANSWERING

2.1 TASK DEFINITION

Extractive question answering systems take as input a question q = {q0, . . . , qn} and a passage of
text p = {p0, . . . , pm} from which they predict a single answer span a = 〈astart , aend〉, represented
as a pair of indices into p. Machine learned extractive question answering systems, such as the one
presented here, learn a predictor function f(q,p)→ a from a training dataset of 〈q,p,a〉 triples.

2.2 RELATED WORK

For the SQUAD dataset, the original paper from Rajpurkar et al. (2016) implemented a linear model
with sparse features based on n-grams and part-of-speech tags present in the question and the can-
didate answer. Other than lexical features, they also used syntactic information in the form of de-
pendency paths to extract more general features. They set a strong baseline for following work
and also presented an in depth analysis, showing that lexical and syntactic features contribute most
strongly to their model’s performance. Subsequent work by Wang & Jiang (2016) use an end-to-end
neural network method that uses a Match-LSTM to model the question and the passage, and uses
pointer networks (Vinyals et al., 2015) to extract the answer span from the passage. This model
resorts to greedy decoding and falls short in terms of performance compared to our model (see Sec-
tion 5 for more detail). While we only compare to published baselines, there are other unpublished
competitive systems on the SQUAD leaderboard, as listed in footnote 4.

A task that is closely related to extractive question answering is the Cloze task (Taylor, 1953),
in which the goal is to predict a concealed span from a declarative sentence given a passage of
supporting text. Recently, Hermann et al. (2015) presented a Cloze dataset in which the task is
to predict the correct entity in an incomplete sentence given an abstractive summary of a news
article. Hermann et al. also present various neural architectures to solve the problem. Although
this dataset is large and varied in domain, recent analysis by Chen et al. (2016) shows that simple
models can achieve close to the human upper bound. As noted by the authors of the SQUAD paper,
the annotated answers in the SQUAD dataset are often spans that include non-entities and can be
longer phrases, unlike the Cloze datasets, thus making the task more challenging.

Another, more traditional line of work has focused on extractive question answering on sentences,
where the task is to extract a sentence from a document, given a question. Relevant datasets include
datasets from the annual TREC evaluations (Voorhees & Tice, 2000) and WikiQA (Yang et al.,
2015), where the latter dataset specifically focused on Wikipedia passages. There has been a line
of interesting recent publications using neural architectures, focused on this variety of extractive
question answering (Tymoshenko et al., 2016; Wang et al., 2016, inter alia). These methods model
the question and a candidate answer sentence, but do not focus on possible candidate answer spans
that may contain the answer to the given question. In this work, we focus on the more challenging
problem of extracting the precise answer span.

2



3 MODEL

We propose a model architecture called RASOR2 illustrated in Figure 1, that explicitly computes
embedding representations for candidate answer spans. In most structured prediction problems (e.g.
sequence labeling or parsing), the number of possible output structures is exponential in the input
length, and computing representations for every candidate is prohibitively expensive. However, we
exploit the simplicity of our task, where we can trivially and tractably enumerate all candidates. This
facilitates an expressive model that computes joint representations of every answer span, that can be
globally normalized during learning.

In order to compute these span representations, we must aggregate information from the passage
and the question for every answer candidate. For the example in Figure 1, RASOR computes an
embedding for the candidate answer spans: fixed to, fixed to the, to the, etc. A naive approach for
these aggregations would require a network that is cubic in size with respect to the passage length.
Instead, our model reduces this to a quadratic size by reusing recurrent computations for shared
substructures (i.e. common passage words) from different spans.

Since the choice of answer span depends on the original question, we must incorporate this infor-
mation into the computation of the span representation. We model this by augmenting the passage
word embeddings with additional embedding representations of the question.

In this section, we motivate and describe the architecture for RASOR in a top-down manner.

3.1 SCORING ANSWER SPANS

The goal of our extractive question answering system is to predict the single best answer span among
all candidates from the passage p, denoted as A(p). Therefore, we define a probability distribution
over all possible answer spans given the question q and passage p, and the predictor function finds
the answer span with the maximum likelihood:

f(q,p) := argmax
a∈A(p)

P (a | q,p) (1)

One might be tempted to introduce independence assumptions that would enable cheaper decoding.
For example, this distribution can be modeled as (1) a product of conditionally independent distribu-
tions (binary) for every word or (2) a product of conditionally independent distributions (over words)
for the start and end indices of the answer span. However, we show in Section 5.2 that such inde-
pendence assumptions hurt the accuracy of the model, and instead we only assume a fixed-length
representation ha of each candidate span that is scored and normalized with a softmax layer (Span
score and Softmax in Figure 1):

sa = wa · FFNN(ha) a ∈ A(p) (2)

P (a | q,p) = exp(sa)∑
a′∈A(p) exp(sa′)

a ∈ A(p) (3)

where FFNN(·) denotes a fully connected feed-forward neural network that provides a non-linear
mapping of its input embedding.

3.2 RASOR: RECURRENT SPAN REPRESENTATION

The previously defined probability distribution depends on the answer span representations, ha.
When computing ha, we assume access to representations of individual passage words that have
been augmented with a representation of the question. We denote these question-focused passage
word embeddings as {p∗1, . . . , p∗m} and describe their creation in Section 3.3. In order to reuse
computation for shared substructures, we use a bidirectional LSTM (Hochreiter & Schmidhuber,
1997) to encode the left and right context of every p∗i (Passage-level BiLSTM in Figure 1). This
allows us to simply concatenate the bidirectional LSTM (BiLSTM) outputs at the endpoints of a
span to jointly encode its inside and outside information (Span embedding in Figure 1):

{p∗′1 , . . . , p∗′m} = BILSTM({p∗1, . . . , p∗m}) (4)

ha = [p∗′astart
, p∗

′

aend
] 〈astart , aend〉 ∈ A(p) (5)

2An abbreviation for Recurrent Span Representations, pronounced as razor.

3



where BILSTM(·) denotes a BiLSTM over its input embedding sequence and p∗′i is the concatenation
of forward and backward outputs at time-step i. While the visualization in Figure 1 shows a single
layer BiLSTM for simplicity, we use a multi-layer BiLSTM in our experiments. The concatenated
output of each layer is used as input for the subsequent layer, allowing the upper layers to depend
on the entire passage.

3.3 QUESTION-FOCUSED PASSAGE WORD EMBEDDING

Computing the question-focused passage word embeddings {p∗1, . . . , p∗m} requires integrating ques-
tion information into the passage. The architecture for this integration is flexible and likely depends
on the nature of the dataset. For the SQUAD dataset, we find that both passage-aligned and passage-
independent question representations are effective at incorporating this contextual information, and
experiments will show that their benefits are complementary. To incorporate these question rep-
resentations, we simply concatenate them with the passage word embeddings (Question-focused
passage word embedding in Figure 1).

We use fixed pretrained embeddings to represent question and passage words. Therefore, in the fol-
lowing discussion, notation for the words are interchangeable with their embedding representations.

Question-independent passage word embedding The first component simply looks up the pre-
trained word embedding for the passage word, pi.

Passage-aligned question representation In this dataset, the question-passage pairs often contain
large lexical overlap or similarity near the correct answer span. To encourage the model to exploit
these similarities, we include a fixed-length representation of the question based on soft-alignments
with the passage word. The alignments are computed via neural attention (Bahdanau et al., 2014),
and we use the variant proposed by Parikh et al. (2016), where attention scores are dot products
between non-linear mappings of word embeddings.

sij = FFNN(pi) · FFNN(qj) 1 ≤ j ≤ n (6)

aij =
exp(sij)∑n
k=1 exp(sik)

1 ≤ j ≤ n (7)

qaligni =

n∑
j=1

aijqj (8)

Passage-independent question representation We also include a representation of the question
that does not depend on the passage and is shared for all passage words.

Similar to the previous question representation, an attention score is computed via a dot-product,
except the question word is compared to a universal learned embedding rather any particular passage
word. Additionally, we incorporate contextual information with a BiLSTM before aggregating the
outputs using this attention mechanism.

The goal is to generate a coarse-grained summary of the question that depends on word order. For-
mally, the passage-independent question representation qindep is computed as follows:

{q′1, . . . , q′n} = BILSTM(q) (9)

sj = wq · FFNN(q′j) 1 ≤ j ≤ n (10)

aj =
exp(sj)∑n
k=1 exp(sk)

1 ≤ j ≤ n (11)

qindep =

n∑
j=1

ajq
′
j (12)

This representation is a bidirectional generalization of the question representation recently proposed
by Li et al. (2016) for a different question-answering task.

Given the above three components, the complete question-focused passage word embedding for pi
is their concatenation: p∗i = [pi, q

align
i , qindep].

4



fixed to the turbine

fixed to fixed
to the to the to the

turbine
the

turbine

Softmax

Span score

Hidden layer

Span embedding

Passage-level
BiLSTM

Question-focused
passage word
embedding

Passage-independent
question representation

Question-level
BiLSTM

Passage-aligned
question
representation

(1)
(2)

(3) +

What are stators attached to ?

fixed +

Figure 1: A visualization of RASOR, where the question is “What are the stators attached to?” and the passage
is “. . . fixed to the turbine . . . ”. The model constructs question-focused passage word embeddings by concate-
nating (1) the original passage word embedding, (2) a passage-aligned representation of the question, and (3)
a passage-independent representation of the question shared across all passage words. We use a BiLSTM over
these concatenated embeddings to efficiently recover embedding representations of all possible spans, which
are then scored by the final layer of the model.

3.4 LEARNING

Given the above model specification, learning is straightforward. We simply maximize the log-
likelihood of the correct answer candidates and backpropagate the errors end-to-end.

4 EXPERIMENTAL SETUP

We represent each of the words in the question and document using 300 dimensional GloVe embed-
dings trained on a corpus of 840bn words (Pennington et al., 2014). These embeddings cover 200k
words and all out of vocabulary (OOV) words are projected onto one of 1m randomly initialized
300d embeddings. We couple the input and forget gates in our LSTMs, as described in Greff et al.
(2016), and we use a single dropout mask to apply dropout across all LSTM time-steps as proposed
by Gal & Ghahramani (2016). Hidden layers in the feed forward neural networks use rectified linear
units (Nair & Hinton, 2010). Answer candidates are limited to spans with at most 30 words.

To choose the final model configuration, we ran grid searches over: the dimensionality of the LSTM
hidden states; the width and depth of the feed forward neural networks; dropout for the LSTMs;
the number of stacked LSTM layers (1, 2, 3); and the decay multiplier [0.9, 0.95, 1.0] with which
we multiply the learning rate every 10k steps. The best model uses 50d LSTM states; two-layer
BiLSTMs for the span encoder and the passage-independent question representation; dropout of 0.1
throughout; and a learning rate decay of 5% every 10k steps.

5



All models are implemented using TensorFlow3 and trained on the SQUAD training set using the
ADAM (Kingma & Ba, 2015) optimizer with a mini-batch size of 4 and trained using 10 asyn-
chronous training threads on a single machine.

5 RESULTS

We train on the 80k (question, passage, answer span) triples in the SQUAD training set and report
results on the 10k examples in the SQUAD development and test sets.

All results are calculated using the official SQUAD evaluation script, which reports exact answer
match and F1 overlap of the unigrams between the predicted answer and the closest labeled answer
from the 3 reference answers given in the SQUAD development set.

5.1 COMPARISONS TO OTHER WORK

Our model with recurrent span representations (RASOR) is compared to all previously published
systems 4. Rajpurkar et al. (2016) published a logistic regression baseline as well as human perfor-
mance on the SQUAD task. The logistic regression baseline uses the output of an existing syntactic
parser both as a constraint on the set of allowed answer spans, and as a method of creating sparse
features for an answer-centric scoring model. Despite not having access to any external representa-
tion of linguistic structure, RASOR achieves an error reduction of more than 50% over this baseline,
both in terms of exact match and F1, relative to the human performance upper bound.

Dev Test

System EM F1 EM F1

Logistic regression baseline 39.8 51.0 40.4 51.0
Match-LSTM (Sequence) 54.5 67.7 54.8 68.0
Match-LSTM (Boundary) 60.5 70.7 59.4 70.0
RASOR 66.4 74.9 67.4 75.5
Human 81.4 91.0 82.3 91.2

Table 1: Exact match (EM) and span F1 on SQUAD.

More closely related to RASOR is the boundary model with Match-LSTMs and Pointer Networks by
Wang & Jiang (2016). Their model similarly uses recurrent networks to learn embeddings of each
passage word in the context of the question, and it can also capture interactions between endpoints,
since the end index probability distribution is conditioned on the start index. However, both training
and evaluation are greedy, making their system susceptible to search errors when decoding. In
contrast, RASOR can efficiently and explicitly model the quadratic number of possible answers,
which leads to a 14% error reduction over the best performing Match-LSTM model.

5.2 MODEL VARIATIONS

We investigate two main questions in the following ablations and comparisons. (1) How important
are the two methods of representing the question described in Section 3.3? (2) What is the impact
of learning a loss function that accurately reflects the span prediction task?

Question representations Table 2a shows the performance of RASOR when either of the two
question representations described in Section 3.3 is removed. The passage-aligned question repre-
sentation is crucial, since lexically similar regions of the passage provide strong signal for relevant
answer spans. If the question is only integrated through the inclusion of a passage-independent rep-
resentation, performance drops drastically. The passage-independent question representation over

3www.tensorflow.org
4As of submission, other unpublished systems are shown on the SQUAD leaderboard, including Match-

LSTM with Ans-Ptr (Boundary+Ensemble), Co-attention, r-net, Match-LSTM with Bi-Ans-Ptr (Boundary), Co-
attention old, Dynamic Chunk Reader, Dynamic Chunk Ranker with Convolution layer, Attentive Chunker.

6

www.tensorflow.org


the BiLSTM is less important, but it still accounts for over 3% exact match and F1. The input of
both of these components is analyzed qualitatively in Section 6.

Question representation EM F1

Only passage-independent 48.7 56.6
Only passage-aligned 63.1 71.3
RASOR 66.4 74.9

(a) Ablation of question representations.

Learning objective EM F1

Membership prediction 57.9 69.7
BIO sequence prediction 63.9 73.0
Endpoints prediction 65.3 75.1
Span prediction w/ log loss 65.2 73.6

(b) Comparisons for different learning objectives
given the same passage-level BiLSTM.

Table 2: Results for variations of the model architecture presented in Section 3.

Learning objectives Given a fixed architecture that is capable of encoding the input question-
passage pairs, there are many ways of setting up a learning objective to encourage the model to
predict the correct span. In Table 2b, we provide comparisons of some alternatives (learned end-to-
end) given only the passage-level BiLSTM from RASOR. In order to provide clean comparisons,
we restrict the alternatives to objectives that are trained and evaluated with exact decoding.

The simplest alternative is to consider this task as binary classification for every word (Membership
prediction in Table 2b). In this baseline, we optimize the logistic loss for binary labels indicating
whether passage words belong to the correct answer span. At prediction time, a valid span can be
recovered in linear time by finding the maximum contiguous sum of scores.

Li et al. (2016) proposed a sequence-labeling scheme that is similar to the above baseline (BIO
sequence prediction in Table 2b). We follow their proposed model and learn a conditional random
field (CRF) layer after the passage-level BiLSTM to model transitions between the different labels.
At prediction time, a valid span can be recovered in linear time using Viterbi decoding, with hard
transition constraints to enforce a single contiguous output.

We also consider a model that independently predicts the two endpoints of the answer span (End-
points prediction in Table 2b). This model uses the softmax loss over passage words during learning.
When decoding, we only need to enforce the constraint that the start index is no greater than the end
index. Without the interactions between the endpoints, this can be computed in linear time. Note
that this model has the same expressivity as RASOR if the span-level FFNN were removed.

Lastly, we compare with a model using the same architecture as RASOR but is trained with a binary
logistic loss rather than a softmax loss over spans (Span prediction w/ logistic loss in Table 2b).

The trend in Table 2b shows that the model is better at leveraging the supervision as the learning
objective more accurately reflects the fundamental task at hand: determining the best answer span.

First, we observe general improvements when using labels that closely align with the task. For
example, the labels for membership prediction simply happens to provide single contiguous spans
in the supervision. The model must consider far more possible answers than it needs to (the power set
of all words). The same problem holds for BIO sequence prediction– the model must do additional
work to learn the semantics of the BIO tags. On the other hand, in RASOR, the semantics of an
answer span is naturally encoded by the set of labels.

Second, we observe the importance of allowing interactions between the endpoints using the span-
level FFNN. RASOR outperforms the endpoint prediction model by 1.1 in exact match, The interac-
tion between endpoints enables RASOR to enforce consistency across its two substructures. While
this does not provide improvements for predicting the correct region of the answer (captured by the
F1 metric, which drops by 0.2), it is more likely to predict a clean answer span that matches human
judgment exactly (captured by the exact-match metric).

7



6 ANALYSIS

Figure 2 shows how the performances of RASOR and the endpoint predictor introduced in Sec-
tion 5.2 degrade as the lengths of their predictions increase. It is clear that explicitly modeling
interactions between end markers is increasingly important as the span grows in length.

Figure 2: F1 and Exact Match
(EM) accuracy of RASOR and
the endpoint predictor baseline
over different prediction lengths.

Figure 3: Attention masks from RASOR. Top predictions for the first
example are ’Egyptians’, ’Egyptians against the British’, ’British’. Top
predictions for the second are ’unjust laws’, ’what they deem to be unjust
laws’, ’laws’.

Figure 3 shows attention masks for both of RASOR’s question representations. The passage-
independent question representation pays most attention to the words that could attach to the answer
in the passage (“brought”, “against”) or describe the answer category (“people”). Meanwhile, the
passage-aligned question representation pays attention to similar words. The top predictions for both
examples are all valid syntactic constituents, and they all have the correct semantic category. How-
ever, RASOR assigns almost as much probability mass to it’s incorrect third prediction “British”
as it does to the top scoring correct prediction “Egyptian”. This showcases a common failure case
for RASOR, where it can find an answer of the correct type close to a phrase that overlaps with the
question – but it cannot accurately represent the semantic dependency on that phrase.

7 CONCLUSION

We have shown a novel approach for perform extractive question answering on the SQUAD dataset
by explicitly representing and scoring answer span candidates. The core of our model relies on a
recurrent network that enables shared computation for the shared substructure across span candi-
dates. We explore different methods of encoding the passage and question, showing the benefits of
including both passage-independent and passage-aligned question representations. While we show
that this encoding method is beneficial for the task, this is orthogonal to the core contribution of
efficiently computing span representation. In future work, we plan to explore alternate architectures
that provide input to the recurrent span representations.

REFERENCES

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination of the cnn/daily
mail reading comprehension task. In Proceedings of ACL, 2016.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. Proceedings of NIPS, 2016.

8



Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen Schmidhuber.
LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems,
PP:1–11, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Proceedings of
NIPS, 2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks principle: Reading
children’s books with explicit memory representations. In Proceedings of ICLR, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural computation, 9(8):
1735–1780, 1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of
ICLR, 2015.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, and Wei Xu. Dataset and
neural recurrent sequence labeling model for open-domain factoid question answering. CoRR,
abs/1607.06275, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of ICML, 2010.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of EMNLP, 2016.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of EMNLP, 2014.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100, 000+ questions
for machine comprehension of text. In Proceedings of EMNLP, 2016.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In Proceedings of EMNLP, 2013.

Wilson Taylor. Cloze procedure: A new tool for measuring readability. Journalism Quarterly, 30:
415–433, 1953.

Kateryna Tymoshenko, Daniele Bonadiman, and Alessandro Moschitti. Convolutional neural net-
works vs. convolution kernels: Feature engineering for answer sentence reranking. In Proceedings
of NAACL, 2016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of NIPS,
2015.

Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection. In Proceedings
of SIGIR, 2000.

Bingning Wang, Kang Liu, and Jun Zhao. Inner attention based recurrent neural networks for answer
selection. In Proceedings of ACL, 2016.

Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905, 2016.

Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of EMNLP, 2015.

9


	1 Introduction
	2 Extractive Question Answering
	2.1 Task Definition
	2.2 Related Work

	3 Model
	3.1 Scoring Answer Spans
	3.2 RaSoR: Recurrent Span Representation
	3.3 Question-focused Passage Word Embedding
	3.4 Learning

	4 Experimental Setup
	5 Results
	5.1 Comparisons to other work
	5.2 Model Variations

	6 Analysis
	7 Conclusion

