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Abstract—In this work, deep neural networks (DNNs) are
trained and used to model high-speed channels for signal integrity
analysis. The DNN models predict eye-diagram metrics by taking
advantage of the large amount of simulation results made
available in a previous design or at an earlier design stage. The
proposed DNN models characterize high-speed channels through
extrapolation with saved coefficients, which requires no complex
simulations and can be achieved in a highly efficient manner. It
is demonstrated through numerical examples that the proposed
DNN models achieve good accuracy in predicting eye-diagram
metrics from input design parameters. In the DNN models, no
assumptions are made on the distributions of and the interactions
among individual design parameters.

I. INTRODUCTION

A high-speed, chip-to-chip system-level design as shown
in Fig. 1(a) requires intensive simulations for verification
and optimization prior to manufacturing. The simulation tech-
niques for signal integrity analysis include electromagnetic
field solvers for component-level model extraction and circuit
simulators for eye-diagram generation and system-level evalu-
ation. During the manufacturing process, variations of design
parameters often occur and alter the characteristics of a well-
designed channel. Therefore, simulations are also heavily re-
lied on in understanding the effects brought by manufacturing
tolerances on signal integrity. Consequently, a large amount
of data is made available through the aforementioned many
iterations of simulations at various design stages.

The simulation techniques employed in characterizing high-
speed channels for signal integrity can be very computationally
expensive. There are efforts in utilizing domain decomposition
schemes and parallel computing to enhance the efficiency of
electromagnetic solvers on model extraction [1]. There are also
approaches to efficiently generate eye diagrams by utilizing
shorter data patterns as inputs [2]. The efficiency can also
be improved if the simulation results obtained in a previous
design or at an earlier design stage can be reused. In this
work, we propose using deep neural networks (DNNs) to
model high-speed channels for signal integrity analysis by
taking advantage of the large amount of data obtained in
the design process. DNN has recently made great progresses
in selecting relevant results in web search, making recom-
mendations in online shopping, identifying objects in images,
and transcribing speech into text−to name a few [3], [4].
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Fig. 1: (a) The topology of a high-speed channel and (b) the
design parameters considered in this work.

To model high-speed channels, a DNN takes in raw design
parameters as the input level and gradually transforms them
into representations of higher and more abstract levels. With
adequate number of such transformations, the DNN learns
to predict eye-diagram metrics of a high-speed channel from
its design parameters. A DNN model characterizes the high-
speed channel through extrapolation with saved coefficients,
which requires no complex simulations or substantial domain
knowledge and can be achieved in a highly efficient manner. It
is worth mentioning that in a DNN channel model, there are no
assumptions made on the distributions of and the interactions
among individual design parameters. The implementation of
DNN in this work is based on Google’s TensorFlow [5].

II. DNN CHANNEL MODEL

Figure 1(a) shows the topology of a high-speed channel
consisting of a transmitter, a receiver, and the interconnects in
between. The eye height and width as illustrated in Fig. 2 are
often used to assess signal integrity of a high-speed channel.
Figure 1(b) tabulates the design parameters of a high-speed
channel considered in this work. To design a high-speed chan-



Fig. 2: Illustration of eye height and width in an eye diagram.
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Fig. 3: (a) A feedforward neural network consists of one input
layer, one hidden layer, and one output layer and (b) a node
connects the (h− 1)th layer to the hth layer.

nel, electromagnetic field solvers and eye-diagram generators
are used to validate and optimize the design parameters and
to address the corresponding manufacturing tolerances. All the
simulation results obtained in the design process are saved as
data sets to train and validate the DNN models.

As shown in Fig. 3(a), a feedforward neural network con-
sists of many connected nodes in multiple layers. The number
of nodes belonging to individual layers can be lumped into a
vector {L} =

(
Lin, L1, . . . , Lh, . . . , Ln, Lout

)
where Lin, Lh,

Lout denote the number of nodes in the input layer, the hth

hidden layer, and the output layer, respectively. One system-
level simulation produces one training or validation example
({x} , {ŷ}), where {x} represents the input vector of design
parameters and {ŷ} is the target output vector. The input to
the hth hidden layer can be found through{

zh
}
=

{
xh−1

} [
Wh

]
, (1)

where the Lh−1 × Lh matrix
[
Wh

]
contains the weights

Fig. 4: Relative error of predicted eye height from the DNN
model on the validation set.

mapping nodes on two adjacent hidden layers. It is worth
mentioning that the bias term shown in Fig. 3(b) is ignored
for simplicity. With the nonlinear activation function fa, one
obtains the output vector

{
xh

}
of the hth hidden layer. Based

on the input vector {x}, the described feedforward mechanism
generates the output vector {y}, which at first is often very
different from {ŷ} with the relative difference defined by

{e} = {y} − {ŷ} . (2)

To make {y} a good approximation of {ŷ}, one needs to
minimize the cost function

E =
1

2
{e} {e}T

. (3)

The weights stored in matrix [W ] are the tunable parameters
in minimizing the quadratic error E. To find a local minimum
of the cost function, a backpropagation method is used. In
the backpropagation method, it uses matrix [D] to store the
derivatives of the activation function and vector {δ} for the
errors. The backpropagated error in the hth hidden layer can
be written as {

δh
}
=

{
δh+1

} [
Wh+1

]T [
Dh

]
. (4)

With the backpropagted error, the weights can be updated
through [

Wh
]
=

[
Wh

]
− γ

{
xh−1

}T {
δh

}
, (5)

where γ is the learning rate.

III. NUMERICAL EXAMPLE

A deep neural network (DNN) is trained to predict the eye
height. The DNN has three hidden layers of 100, 300, and
200 nodes, respectively. The learning rate is chosen as 0.01
and batch size is 25. The training and validation sets have
717 and 476 examples, respectively. The maximum number
of iterations is set to 4000. The eye height in the data set
varies from 148 to 253 mV. Table I shows the root-mean-
square errors (RMSEs) and the maximum relative errors at
the last iteration under three different optimizers, namely, the



TABLE I: Accuracy of predicted eye heights from the DNN model.

Gradient Descent Momentum RMSProp

On Training Set
RMSE (mV) 3.1 1.9 2.6

Maximum Relative Error (%) 6.2 4.1 5.2

On Validation Set
RMSE (mV) 3.4 2.7 3.1

Maximum Relative Error (%) 5.9 6.1 6.3

TABLE II: Accuracy of predicted eye widths from the DNN model. A unit interval (UI) is defined as one data bit-width,
regardless of data rate. Eye width is represented in terms of the UI.

Gradient Descent Momentum RMSProp

On Training Set
RMSE (UI) 0.006 0.006 0.008

Maximum Relative Error (%) 7.9 8.1 8.7

On Validation Set
RMSE (UI) 0.008 0.008 0.01

Maximum Relative Error (%) 10.6 9.3 9.5

gradient descent, momentum, and RMSProp methods [6], [7].
The RMSE on the training set with gradient descent method
is 3.1 mV at the last iteration and 3.4 mV on the validation
set. When the momentum method is used, the RMSE on the
training set is reduced to 1.9 mV and 2.7 mV on the validation
set. Figure 4 depicts the relative errors of the predicted eye
heights on the validation set and the majority are below 3%.
Another deep neural network (DNN) is trained to predict the
eye width. The eye width is represented in terms of a unit
interval (UI), which is defined as one data bit-width. This
DNN has seven hidden layers of 10, 20, 20, 30, 20, 20, and 10
nodes, respectively. The training and validation sets have 509
and 203 examples, respectively. The batch size is changed to
15. The eye width varies from 0.21 to 0.37 UI in the data set.
From Table II, the RMSE at the last iteration with momentum
method is 0.006 UI on the training set and 0.008 UI on
the validation set, and the maximum relative errors in both
training and validation sets are less than 10%. It can be seen
that the DNN models achieve good accuracies in predicting
eye-diagram metrics. Figure 5 shows the convergence while
training the DNN with the three optimizers. Through either
adding a fraction of the updated vector from the previous step
in the momentum method or adapting the learning rate in the
RMSRrop method, faster convergence than the conventional
gradient descent method can be achieved. It is worth mention-
ing that data standardization is applied to the training set such
that an individual feature is transformed into a data set with
zero mean and unit variance. The hyperbolic tangent is chosen
as the activation function in both numerical examples.

IV. CONCLUSION

In this work, DNNs are trained to model high-speed chan-
nels for signal integrity analysis. The training and validation
data sets are obtained from the simulation results in a previous
design or at an earlier design stage. The proposed DNN
models predict eye-diagram metrics through extrapolation with
saved coefficients, which saves iterations of complex and

Fig. 5: The RMSE of eye height on the training set with three
different optimizers.

computationally intensive simulations and enhances efficiency
in signal integrity analysis. Numerical examples demonstrate
that the DNN models achieve good accuracy in predicting eye
height and width.
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