
Reflections on the REST Architectural Style and
“Principled Design of the Modern Web Architecture”

(Impact Paper Award)
Roy T. Fielding

Adobe
USA

fielding@gbiv.com

Richard N. Taylor
Institute for Software Research
University of California, Irvine

USA
taylor@uci.edu

Justin R. Erenkrantz
Bloomberg

USA
justin@erenkrantz.com

Michael M. Gorlick
Institute for Software Research
University of California, Irvine

USA
mgorlick@acm.org

Jim Whitehead
Dept. of Computational Media

University of California, Santa Cruz
USA

ejw@ucsc.edu

Rohit Khare
Google
USA

rohit@khare.org

Peyman Oreizy
Dynamic Variable LLC

USA
peyman@oreizy.com

ABSTRACT
Seventeen years after its initial publication at ICSE 2000, the Repre-
sentational State Transfer (REST) architectural style continues to
hold significance as both a guide for understanding how the World
Wide Web is designed to work and an example of how principled
design, through the application of architectural styles, can impact
the development and understanding of large-scale software archi-
tecture. However, REST has also become an industry buzzword:
frequently abused to suit a particular argument, confused with the
general notion of using HTTP, and denigrated for not being more
like a programming methodology or implementation framework.

In this paper, we chart the history, evolution, and shortcomings
of REST, as well as several related architectural styles that it in-
spired, from the perspective of a chain of doctoral dissertations
produced by the University of California’s Institute for Software
Research at UC Irvine. These successive theses share a common
theme: extending the insights of REST to new domains and, in their
own way, exploring the boundary of software engineering as it
applies to decentralized software architectures and architectural
design. We conclude with discussion of the circumstances, environ-
ment, and organizational characteristics that gave rise to this body
of work.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3121282

CCS CONCEPTS
• Software and its engineering → Software architectures; •
Information systems → RESTful web services; • Networks
→ Application layer protocols;

KEYWORDS
REST, Representational State Transfer,WebDAV, ARRESTED, CREST,
COAST
ACM Reference format:
Roy T. Fielding, Richard N. Taylor, Justin R. Erenkrantz, Michael M. Gorlick,
Jim Whitehead, Rohit Khare, and Peyman Oreizy. 2017. Reflections on the
REST Architectural Style and “Principled Design of the Modern Web Ar-
chitecture” (Impact Paper Award). In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3121282

1 A BRIEF HISTORY OF THEWEB, REST, AND
ITS FORMULATIONS

The Web’s initial architecture, as conceived by Berners-Lee in
1989 and implemented from late 1990-91, consisted of federated
client/server components bound together by common protocols:
a human-readable addressing system (URI), a simple mark-up lan-
guage for hypertext (HTML/1.0), and a trivial protocol for transfer-
ring a hypertext document over TCP/IP (HTTP/0.9)[5].

Although rudimentary, the early Web’s low entry barrier and
use of existing Internet protocols were enough to demonstrate that
a wide variety of information systems could be combined under a
common hypertext interface.

By 1993, the Web had piqued the interest of computer science
departments as well. NCSA introduced a new browser, Mosaic, that

4

https://doi.org/10.1145/3106237.3121282
https://doi.org/10.1145/3106237.3121282
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
R. T. Fielding, R. N. Taylor, J. R. Erenkrantz,

M. M. Gorlick, J. Whitehead, R. Khare, and P. Oreizy

was user-friendly and easy to install. HTTP was extended to carry
an email-based message format, supporting non-HTML documents
(e.g., images) and metadata, and a variety of new methods were
proposed.

In 1993, the number of publicWeb servers grew at an exponential
rate, doubling every three months, and continued at that torrid pace
for over three years. Between the growth of commercial interest in
the Web and the rate at which extensions were being introduced,
success was tearing the Web’s development community apart [2].

Roy Fielding became involved in the Web Project while doing
research on distributed information services in 1993. He developed
and published open source tools for Web maintenance, including
wwwstat (logfile analytics) and MOMspider (a maintenance robot)
[14], and created an open development project for libwww-perl (a
Web client library written in the Perl language) out of MOMspider’s
internals.

After speaking aboutMOMspider at the First InternationalWWW
Conference, Fielding contributed to the standardization of HTML/2.0
(at one point reorganizing the entire specification to improve progress)
and resolved an issue blocking Web addresses by authoring a sepa-
rate standard for relative URLs [15]. When it came time to standard-
ize HTTP, he wrote the charter for the IETF working group and
became editor of the HTTP/1.x specifications with Henrik Frystyk
Nielsen of CERN/W3C.

REST was born as a byproduct of the collaboration between
Fielding and Nielsen while working on the HTTP specifications,
pruning HTTP/1.0 to the essential bits and evaluating various ideas
(their own and others’) for a future HTTP/1.1. Fielding developed a
model for ideal Web application behavior, initially called the HTTP
object model, as a test case/oracle for understanding how changes
to the protocol might impact the best applications on the Web. The
“best,” in this case, did not mean which applications were popular
among users, but rather which ones resulted in a better Web: e.g.,
resilient to adverse network conditions, evolvable over time, and
having the effect of increasing the Web itself (by encouraging the
creation and identification of resources for reuse by others).

By 1995, many of the free software projects that had made the
Web successful were gradually fading away. The NCSA httpd (web
server) appeared to be abandoned, so Fielding joined a group of
seven other webmasters in founding the Apache HTTP Server
Project [17], an open development project dedicated to preserving
a Web based on open standards.

The Apache server was redesigned to support a processingmodel
and API for independent extensibility, allowing the core group to
focus on platform features (like HTTP) while the extended commu-
nity built new features on top of the modular API. In less than a
year it had become the most popular server software for the Web. It
played an important role in the standardization of HTTP/1.1, since
IETF standards are based on a tradition of rough consensus and
running code. Apache received the ACM Software System Award in
1999 for its contributions to the Web, its innovative architecture,
and the pioneering way in which it was developed as a collaborative
open source project.

It was only after HTTP/1.1 was finally published [18], in 1997,
that Fielding began research on how to describe the HTTP object
model in his doctoral dissertation. Unfortunately, “object model”
was the wrong term. After talking to a few of his colleagues, it

quickly became clear that the model was actually an architectural
style—an abstraction across many specific application architectures
[43]—and its use as a test oracle for HTTP was the same as evalu-
ating whether a proposed change was an architectural mismatch
for that style, and thus a potential problem for the best Web ap-
plications. Fielding changed the model’s name to Representational
State Transfer (REST) and set to work on its description as an
architectural style.

The first version of what eventually became “Principled Design
of the Modern Web Architecture” was submitted to FSE99. It was
rejected, with reviewer comments including “Over all, the original-
ity of the paper is quite low. There is only little to learn from it.”
and “- the web is old technolgoy [sic] now. - lots of jargon make
the paper difficult to understand. ... - I can’t find a novel lessons
[sic] for software engineers in this paper.”

Not dissuaded, the authors revised the paper and submitted
it to ICSE 2000, held in Limerick, Ireland, in June of 2000 [20].
Fielding defended and published his dissertation in September [16]
and, in 2002, a journal version of "Principled Design" appeared
in ACM Transactions on Internet Technology [21], substantially
enhancing the ICSE version and incorporating material from the
Ph.D. dissertation.

Today “REST” and “RESTful architecture” are widely used terms,
and sometimes even used appropriately. REST’s influence can still
be seen in the current standards for HTTP/1.1 [19] and URI [3].
Fielding’s dissertation has been cited over 6,000 times, according to
Google Scholar; the ICSE/TOIT paper, over 2,000 times. Over the
past decade, O’Reilly & Associates alone has published 30 books
with “REST” in the title; Amazon has 100 more. Crunchbase lists
2,000 startups with an “API” in their descriptions; about 50 specifi-
cally highlight “REST APIs”.

This paper explores REST in a little detail, then proceeds to dis-
cuss common misunderstandings about the work and perceived
shortcomings. A majority of the paper, however, is devoted to sur-
veying what the REST work has inspired, and how that work ad-
vanced in new directions. Thus, this paper includes not only the
original authors, but many other graduates of the same degree
program, under the same advisor (Taylor), who have worked as
colleagues in the exploration of software architecture and architec-
tural styles for decentralized systems. The final section is devoted to
the meta-issues of this research, namely what funding and organi-
zational characteristics enabled the REST-related work to flourish.

2 JUST EXACTLY WHAT IS REST?
In spite of the formal publications, there has been a surprising
amount of discussion focused on what REST is, and is not. The
Wikipedia article on Representational State Transfer [57] has over
4,000 edits, reflecting growth as well as controversies. A decade ago,
overzealous students of the style were even dubbed RESTafarians,
while extensive debate raged between REST and so-called “Web Ser-
vices” based on object-oriented RPC styles ("WS-*"). More recently,
a series of seven annual international workshops have been held on
"RESTful Design.", and just five years ago, “RESTful web services”
was inducted into the 2012 ACM Computing Classification System
(CCS).

5

https://www.crunchbase.com/app/search/companies/19eb5faeb904b851168533a760cd36f0e8d362f8
https://www.crunchbase.com/app/search/companies/e18762b53970dfa14970d9b0e0e623da41b02759
http://mikeschinkel.com/blog/whatisarestafarian/
http://design.inf.unisi.ch/publications/2008/www
https://en.wikipedia.org/wiki/List_of_web_service_specifications
http://ws-rest.org/
https://www.acm.org/publications/class-2012-intro
https://www.acm.org/publications/class-2012-intro

Reflections on the REST Architectural Style... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable

Figure 1: Derivation by style, constraints, and properties. [21]

In some cases the confusion stems from willful disregard of the
substance and nuances of REST; in other cases it is the result of
misunderstandings. In the discussion belowwe sketch the evolution
of the definition of REST. In many respects the evolution of REST
resembles how mathematical theories become more carefully and
artfully articulated over time.

2.1 Formulation in Dissertation (2000)
Fielding’s dissertation [16] is the original and most widely cited
description of REST.

As an architectural style for network-based applications, its def-
inition is presented in the dissertation incrementally, as an accu-
mulation of design constraints that derive from nine pre-existing
architectural styles and five additional constraints unique to the
Web. Figure 1 shows the style derivation graph for REST and high-
lights the associated constraints and induced properties. Each style
induces specific architectural properties, some positive and some
negative (a.k.a., trade-offs). Some of the styles are implied by the
Web’s requirements; others were chosen for their beneficial proper-
ties, or to counteract the trade-offs of another style. The detailed
discussion of this derivation can be found on pages 76-86 of the
dissertation.

REST’s five uniform interface constraints, as detailed in [16] are
as follows:

• All important resources are identified by one resource iden-
tifier mechanism (induces simple, visible, and reusable);

• Access methods have the same semantics for all resources
(induces visible, scalable, and available by enabling applica-
tion of layered system, cacheable, and shared caches styles);

• Resources are manipulated through the exchange of repre-
sentations (induces simple, visible, reusable, cacheable, and
evolvable via information hiding);

• Representations are exchanged via self-descriptive messages
(induces visible, scalable, and available by enabling applica-
tion of layered system, cacheable, and shared caches styles,
and evolvable via extensible communication); and,

• Hypertext as the engine of application state (induces simple,
visible, reusable, and cacheable through data-oriented inte-
gration, evolvable via loose coupling, and adaptable though
late binding of application transitions).

The ICSE 2000 and the TOIT papers used a similar formulation,
albeit much more tersely in the ICSE paper.

2.2 Alternative Formulation at FSE (2007)
In 2007, three of us undertook an effort to more succinctly char-
acterize REST, and articulate it in a manner less susceptible to
misunderstanding by the software engineering community (as op-
posed to the network protocols community). This investigation was
also the result of our experience as developers struggling to build
web applications conforming to the REST style. We discovered both
the consequences of failing to hew to the constraints of REST and
how participant architectures (on the scale of a single element)
must be rearranged to align with REST’s goals.

This led to a statement of six key constraints that we first ar-
ticulated in [13]. This formulation was later used as the basis for
the style’s presentation in the Taylor, Medvidovic, and Dashofy
textbook on software architecture [51]. That book also includes a
discussion of the derivation of REST from simpler styles, albeit with
some differences from Fielding’s original derivation graph shown
in Figure 1.

2.3 Discussion
To this day differences exist among the authors regarding what
is the “right” or “best” definition of REST. To some extent this is
due to terminological preferences, based on the target audience. To
some extent it is a matter of level of detail; the presentation in [13]
has the virtue of succinctness; it also has the same vice.

REST is not an architecture, but rather an architectural style. It
is a set of constraints that, when adhered to, will induce a set of
properties; most of those properties are believed to be beneficial
for decentralized, network-based applications, while others are the
negative trade-offs that can result from any design choice (any
constraint implies that a designer’s space of choices is reduced).
REST does not directly constrain the Web’s architecture. Rather,
an application developer may choose to constrain an architecture
in accordance with the REST style. There is no way to force ad-
herence to the REST constraints, though some poorly considered
applications might not work well without them.

3 LESSONS FROM EARLY EXPERIENCE
3.1 Session Management
One early use of theWebwas to support e-commerce. In this context
the use of so-called “shopping carts” arose, wherein an end user
would incrementally add indicators of merchandise to a list for
subsequent purchase. Where and how this list should be maintained
in the Web was unclear to various developers (client? server?) , and
a range of solutions was developed. While some of these were
RESTful, others were not. Lack of attention to this use case opened
the door to popular but unfortunate solutions, such as cookies. This
topic is but an instance of dealing with sessions, full treatment of
which is outside the scope of this paper. Note, however, that session
management can be an attempt to approximate concurrency, a
challenge addressed by WebDAV, and is discussed in §4.2 below.

3.2 Namespaces, Resources, and
Representations

Weexplored several systems— aweb-basedmail archiver (mod_mbox)
and a version control system (Subversion) — of which we had been

6

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
R. T. Fielding, R. N. Taylor, J. R. Erenkrantz,

M. M. Gorlick, J. Whitehead, R. Khare, and P. Oreizy

involved in the design and implementation [11, 13]. One of the criti-
cal lessons demonstrated was the importance of the structure of the
namespace (URL) in REST transactions and the value of decoupling
resources from representations. As an architectural style, REST
alone was neither sufficiently expressive nor definitive to guide
the implementation. mod_mbox required two additional constraints
beyond those dictated by REST: dynamic representations of the
original messages and the definition of a consistent namespace.

However, these constraints depended upon an understanding of
the content itself — a generic approach was inefficient. As mod_mbox
was at its core a mail archiver, we could leverage the properties
of the mail messages themselves to improve the modeling of the pre-
sented namespaces. To achieve this consistent namespace, mod_mbox
relied upon the message’s metadata (in this case, the Message-ID
MIME header). On arrival into the archive, only a metadata entry
is created for a message M . Consequently, if the metadata index
was ever recreated, the URLs of the resources (messages) remain
constant — guaranteeing the long-term persistence of links.

Instead of creating HTML representations as messages arrive,
mod_mbox defers that transformation until a request for a specific
message is received. Only later, when messageM was fetched from
the archive by a user-agent, was the HTML representation of M
generated (with the help of M ′s metadata entry). This sharp dis-
tinction between the resource and its representation minimized the
up-front computational costs of the archive — allowing mod_mbox
to gracefully handle more traffic than other contemporary systems.

3.3 Interplay with Application Architectures
The saga of Subversion speaks on a different level; i.e., the internal
architecture of web participants. It was not possible to fully align
Subversion with REST principles until Subversion clients embraced
asynchronous (nonblocking) network transfers and “just-in-time”
data transforms that together minimized latency.

This problem was anticipated in the early days of standardizing
the HTTP protocol, but was not clearly articulated within REST;
instead “pipelining” — where clients issue multiple requests with-
out waiting for responses — was simply recommended. However,
lacking detailed design guidance, Subversion developers (including
one of the authors), failing to appreciate the performance penalty,
did not implement pipelining, and fetched resources serially. Unsur-
prisingly, the network performance turned out to be unacceptable.
The critical alteration was the use of independent data streams
(“buckets”) to which successive transforms are applied on-the-fly,
allowing the client to delay transforms until needed. Nonblocking
connections improved network efficiency and reduced latency, as
the buckets never had to wait to write or read data. By decoupling
communication and transformation, Subversion clients could now
efficiently exploit pipelining. Reducing latency obviated the need
for a custom WebDAV method.

This, in turn, eliminated the overhead of XML encoding and
permitted the reintroduction of simple caching intermediaries.

This suggests that the benefits of REST may be difficult to realize
unless the individual web participants align their internal archi-
tectures to accommodate both asynchronous communications and
concurrent computations.

Then-emerging web development techniques, such as AJAX
and “mashups,” suggested a pivotal role for mobile code in greatly
expanding the scope and subtlety of REST interactions. AJAX em-
ploys server-generated code that is transferred client-side to inject
a degree of application“responsivity” that is difficult to achieve
serverside. Mashups also illustrate the utility of code transfer from
server to client to implement resource fusion — a complex task that
is easier done computationally than declaratively. When viewed
from the perspective of the browser, at an abstract level the innova-
tion of AJAX is the transfer, from server to client, of a computation
whose execution is deferred client-side.

With these examples in mind, we reexamined REST, reformu-
lating and expanding the core REST principles and constraints to
accommodate the recent evolution of the web in CREST, §4.5.

4 WHAT REST HAS INSPIRED, ANDWHERE
IT HAS LED

Several generations of doctoral researchers extended the insights of
REST to explore novel architectural styles that support properties
required by complementary innovations beyond the classic Web
model.

4.1 Web-based Development of Complex
Information Products

Our interest in developing and extending REST and the modern
web architecture was strongly motivated by a desire to have this
infrastructure support large scale software engineering efforts. This
agenda was outlined in a 1998 Communications of the ACM article
which presented requirements and a technical agenda that would
support the development of complex information artifacts via the
web [22]. Key elements of the technical agenda were support for
first-class hypermedia links, a scalable notification architecture,
and support for remote collaborative authoring and versioning
(WebDAV—see the following section). Our goal was to provide
support for these services within the web infrastructure, consistent
with the REST architectural style.

This approach was guided by many shared technical assump-
tions, many of them implicit. In the late 1990s, client-side JavaScript
andmanipulation of the HTML document object model (DOM)were
not especially performant, and there were significant differences
in JavaScript library capabilities within browsers. Due to this, we
assumed that many complex document types would be supported
either via large desktop applications, or specific plugins within the
browser. The applications mostly did not support real-time inter-
active authoring (multiple collaborators in the same document at
the same time), and it seemed unlikely they would soon add this
support. HTML-based web pages were assumed to have limited
capacity for supporting editing, via HTML forms. Notification ser-
vices would require a distributed architecture in order to achieve
Internet scale, such as the SIENNA distributed notification service
[7].

Bi-directional links were initially supported within HTTP via
LINK and UNLINK methods; they were not widely adopted, and
were later removed [4]. In a different approach, WebDAV supported
links via metadata properties defined on resources [25]. This ap-
proach was also infrequently adopted. Links as interoperable first

7

Reflections on the REST Architectural Style... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

class computational agents were never supported in a standards-
based way. Why so little love for bi-directional and first-class links?
First, browsers never provided UI support for these links, in part
because they don’t fit the embedded link style of HTML. Where
would these links appear in a browser window? Most applications
of first-class, bi-directional links tend to fall within a single server’s
zone of control. Hence, first-class links embedded in HTML docu-
ments can be implemented in a rich, application-specific way as a
traditional database-backed web application. For example, GitHub
provides a richly hyperlinked version control and issue tracking
environment implemented as a web application. Link shortener and
link redirection services such as Bit.ly and PURL (persistent URL)
tackle another use case for first-class links, the ability to change an
endpoint without breaking the link.

With our focus on supporting software engineers, we insuf-
ficiently appreciated the importance of web site metrics and ad
tracking as drivers of the web infrastructure. The ability to reliably
track web browsing sessions and produce a range of metrics about
these sessions drove the need for notification services. Tracking of
browsing sessions takes place via JavaScript code which fires off
notification messages on page transitions and other noteworthy
events in a session, such as a click to purchase an item (this is
the approach used by Google Analytics). Due to the value of this
information, there is strong financial motivation to build large scale
notification services within a single organization—no decentraliza-
tion is necessary. These notification services, which began as efforts
to track browsing sessions, have morphed into flexible services able
to send a broad range of notification types and supported by an
emerging standard [54].

The emergence of AJAX began a shift towards web applica-
tions with increasing amounts of client-side computational capacity
and responsibility for maintaining interactive graphical interfaces.
AJAX shone a bright light on the need for improved JavaScript
performance, which led to rapid improvement in computational
speed and cross-browser library consistency. By 2005-6, the techni-
cal capacity of the web browser had improved to the point where
simplified word processor and spreadsheet capability could be pro-
vided in a client-side JavaScript applications. Initially launched by
Google Docs and Sheets, other vendors (Zoho Office, Microsoft
Office 365, Cacoo, Overleaf, etc.) have followed. These applications
support real-time multi-person collaborative editing via the use of
operational transforms [49], which requires development of the
editor from the ground up to support this feature. This combination
seemed highly unlikely to us in the late 1990s: dramatic improve-
ments in JavaScript and the massive engineering effort required
to re-engineer editors from the ground up to support real-time
collaboration. As a result, our approach to collaborative authoring
was focused on desktop-applications and plugins, and our approach
to concurrency control was focused on whole-document locking to
support turn-taking collaboration using these legacy applications.

In retrospect, our analysis of requirements was on-point—today’s
web does in fact have first-class links, notification services, and
collaborative authoring which support the development of large
scale information artifacts. However, we were off on the specifics of
how this might play out. In the case of first-class links, perhaps we
should have known better. Even in 1998 there was ample evidence
of the limited interest in supporting this feature, since no browsers

provided support, and deployment of LINK/UNLINK was rare. But,
with notifications and real-time collaborative authoring, it appears
the main determinant was economics. One can imagine an alternate
path not taken where web site analytics were provided only via
server-side services and not via a centralized service, or companies
were unwilling to make significant investments in real-time collab-
orative editing, which until the mid-2000s had been a niche feature
with uncertain future.

4.2 WebDAV
Web Distributed Authoring and Versioning (WebDAV) is a series
of extensions to HTTP to provide remote authoring and version
control for web resources (initial specification: [25], revision: [10]).
The core WebDAV specification provides services for writing to
resources, reading/writing metadata (properties) on these resources,
and a lock-based concurrency control model.

WebDAV highlights a core assumption of REST, that the vast
majority of information flow is from server to client in the form
of resource representations. This core assumption informs many
aspects of REST, including sending representations of state, caching,
and stateless interactions between client and server. WebDAV had
to circumvent these aspects of REST in order to achieve its remote
authoring goals.

Consider the challenge of writing to a web resource. In REST,
what is transmitted across the wire is a representation of the raw
source of a resource consistent with some standard data type, not
the raw resource itself. However, the author of a resource wishes
to modify this raw resource directly. The raw source could be quite
different from its representation, such as when a web page is created
as the output of a program (e.g., a PHP script) running on the server,
where the representation is in HTML, and the raw source is source
code. WebDAV initially proposed creating a link in the resource
metadata that potentially points to a separate location where the
raw source could be directly modified and potentially read. This
was not widely implemented, and was subsequently removed. This
effectively limits WebDAV remote authoring to situations where
there is a nearly direct correspondence between raw source and
on-the-wire representation.

RESTful caches do not interact well with writing to a resource’s
raw source. Since a cache is only responsible for maintaining a
copy of a resource representation, it has no knowledge of its raw
source, or ability to modify it. Consequently, the raw source must
be directly modified on the original server that generated the initial,
cached resource representation, thereby requiring an authoring
client to bypass all caches. Even if an authoring client were to try
writing the raw source via a series of cooperating caches, there is no
guarantee the raw source would be the same as the representation,
and hence caches would not be able to proactively update their
cache state with what is being written. Unlike, say, a memory cache
which can update on read or write, RESTful caches can update only
on reads.

The REST constraint of maintaining stateless interactions be-
tween client and server placed strains on the design of WebDAV.
One example is WebDAV’s lock-based concurrency control. A typi-
cal approach to resource locking involves creating a session, then
establishing the lock within the session. When the session ends, the

8

http://bibpurl.oclc.org/faq.html

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
R. T. Fielding, R. N. Taylor, J. R. Erenkrantz,

M. M. Gorlick, J. Whitehead, R. Khare, and P. Oreizy

lock disappears. Since sessions are inherently stateful, an alternate
approach was required. WebDAV locks create globally unique iden-
tifiers called lock tokens which are used in subsequent requests to
identify the lock. In this way protocol requests are kept stateless by
using an identifier to refer to the lock’s persistent state on a server.

Overall, the same RESTful architectural constraints which strongly
contributed to the success of the modern web architecture also
increased the difficulty of creating an interoperable authoring pro-
tocol using HTTP. The process of creating WebDAV did lead to a
deep understanding of the design space of hypertext versioning
systems, captured in Whitehead’s dissertation [55] and in [56].

4.3 Dynamic Software Architectures
The Web’s architecture is continually changing as clients, servers,
proxies, and gateways join and leave the system. These components
are themselves continually changing to provide new capabilities,
such as adding new resources in the form of novel websites and
web services, supporting new representations for resources (e.g.,
novel image and video formats), integrating novel hardware de-
vices, adding novel features to user agents (web browsers), etc.
The scale, diversity, and rapidity with which these changes occur
make it impossible to capture even a snapshot of the Web’s current
architecture.

This malleability did not emerge by accident. It is a direct conse-
quence of the constraints imposed by the REST architectural style.
Specifically,

• URLs provide an anarchic, decoupled namespace with no
central authority and eachWeb server may support whatever
URLs it chooses and assign them whatever meaning it deems
appropriate. This freedom to introduce URLs and resources
is partially responsible for the outpouring of innovative Web
applications and services.

• Representations for resources may evolve in an ad hoc man-
ner with no central authority since components can negoti-
ate with one another to pick a mutually suitable representa-
tion. The metadata enables intermediaries and the receiver
to inspect and determine how to process a resource.

• Context-free interaction demands that all state be external-
ized. A request (to a server, for example) must carry whatever
state is necessary for that server to be able to process it, with-
out recourse to any prior history of interaction.

• A small set of well-defined methods keeps a low barrier for
introducing new processing components.

• Idempotent operations and the presence of intermediaries
support scalability.

Encouraged by the Web’s malleability and the principal role that
software architecture and architectural style played in helping to
realize it, we wondered if a similar approach applied to the internal
architecture of a single component (a single program or application)
would engender a similar degree of malleability.

The ability to change an application’s behavior during runtime
is an increasingly important capability, both to support continuous
operation of critical systems and to support a good user experience.
Our approach ([40] and later refined in [39, 42]) centered on deploy-
ing an application with an explicit model of its own architecture (in
terms of components and connectors, the interconnections between

those components and connectors, and their mapping to implemen-
tation modules) plus a reusable runtime infrastructure that used the
implementation mapping to (1) maintain consistency between the
application’s model and implementation and to (2) prevent changes
that would violate the application’s architectural constraints. We
applied our approach to several proof-of-concept applications built
in the C2 style [50], a layered, event-based style where components
communicate exclusively by passing events thru active, first-class
connectors. Our applications exhibited a surprisingly powerful and
flexible degree of runtime adaptability.

After further experience and reflection, we broadened our at-
tention to consider approaches at different levels of abstraction,
and devised a framework to help us evaluate, compare, and com-
bine these techniques. Our framework differentiates techniques
based upon the system model they operate on (e.g., microprocessor
instructions executed by a CPU, bytecode executed by a Java Vir-
tual Machine, an architecture model mapped to its implementation
modules) and how they confront four aspects of runtime change:

• Behavior concerns how the behavioral specification of the
system is changed. E.g., are changes restricted to the re-
combination of existing behaviors or can novel behaviors
be introduced, how are changes represented, deployed, and
verified?

• Asynchrony concerns how a change is applied over time. E.g.,
is the system’s execution suspended during changes or does
it continue to execute, potentially in some limited capacity?

• State concerns how the system’s state is changed, whether
in memory, on disk, or in a separate subsystem, such as
a database. E.g., is all state changed in unison or lazily as
accessed; is the system’s execution suspended while changes
are made?

• Execution context concerns how the state of the machine
interpreting the behavioral specification is changed. E.g.,
reordering a function’s bytecode may not be possible while
the interpreter’s stack holds a reference to the function.

We refer to our framework as BASE [41, 52] and used it to char-
acterize several popular architectural styles, including REST, C2,
CREST (described in §4.5), MapReduce, Pipe-and-Filter, Event Noti-
fications, and others. Evident in this analysis are several common
leverage points used to achieve adaptability, namely:
LP1 making the parts that are subject to change identifiable, dis-

crete and manipulable;
LP2 providing mechanisms for controlling interactions between

the parts subject to change; and,
LP3 providing techniques for managing state
Returning to the REST style, we can readily identify its use of

these leverage points to achieve runtime adaptability.
LP1 · clients, servers, proxies and gateways are discrete entities

communicating via generic interfaces, allowing them to
change

· messages are targeted at conceptual resources, allowing
the realization of the resources to change

LP2 · components communicate by passing a representation
of the resource, allowing the raw representation of the
resource to change

9

Reflections on the REST Architectural Style... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

· the format used for a resource’s representation is late-
bound, allowing the format to change or depend on the
capability of the recipient or the characteristics of the
request

· the generic resource interface hides implementation de-
tails, allowing communication mechanisms to change

· metadata accompanies the resource’s representation, al-
lowing caches and gateways to intervene

LP3 · each request contains all of the information necessary
for a connector to understand it, allowing connectors to
change, or choose to process requests serially or in parallel,
or choose whether or not to intermediate.

4.4 Decentralized Consensus: ARRESTED
What were once hyped as “peer to peer” (P2P) systems, or now
promised as “dApps” (decentralized apps on the blockchain), can’t
be characterized effectivelywithin Client/Server architectural styles.
The rise of instant messaging services, mobile push notifications,
and social networking was reflected in the research themes of an-
nual workshops at Irvine from 1998-2000 on event notification,
namespaces, and decentralized organizations [30]. As we explored
these complementary innovations around the Web, we concluded
that real-time, Internet-scale event notification — group messaging
that can be initiated by any party, at any time — highlighted three
limitations of REST’s request-response model:

• One-shot: Every request can only generate a single response.
If that response message is an error (or lost), there is no
recovery protocol.

• One-to-one: Every request proceeds from one client to one
server. Instead of routing to a group at once, a chain of
proxies passes it to each.

• One-way: Every request must be initiated by a client, and
every response must be generated immediately, precluding
servers from sending asynchronous notifications.

While REST presumes centralized resources (within a decentralized
Web), we extended it to induce properties required by distributed
and decentralized resources, such as Group Consensus and Simulta-
neous Agreement. The ARRESTED style [33] used four new build-
ing blocks: events, routes, locks, and estimates for corresponding
constraints on Asynchrony, Routing, Delegation, and Estimation.
Compared to the most common alternative, polling (REST+P), these
styles offered tighter bounds on latency, supported larger groups,
and degraded more gracefully when networks or services fail.

Together, these additional constraints can meet the BASE re-
quirements1 of decentralized systems: to only presume Best-effort
network messaging; to Approximate the current value of remote
resources; to be Self-centered in deciding whether to trust other
agencies’ opinions; and Efficient when using network bandwidth.

We identified two fundamental factors limiting the feasibility of
consensus: latency and agency. Figure 2 maps a family of new styles
against the ‘now horizon’ (components that can refer to the value
of a variable ‘right now’) and agency boundaries (components that
can trust each other). In other words, the now horizon separates
consensus-based styles from consensus-free ones; and the agency
boundary separates master/slave styles from peer-to-peer ones.
1Yes, an entirely different BASE than in the previous section...

6.2 Alternative Approaches to Decentralization

The challenge of decentralization recurs at many layers

of abstraction in computing, from hardware to software:

Asynchronous VLSI. As semiconductor performance

increases, it will become impossible to distribute a clock

signal across a processor die, much less an entire system

bus. This requires new kinds of ‘self-timed’ circuits [41].

Control theory. The study of feedback systems, also

known as cybernetics, resulted in rules for assessing

signals and estimating state with observer variables [40].

Internetworking. The breakthrough that permits inter-

connection of autonomous LANs is the end-to-end hypo-

thesis: the notion that even an unreliable core can be used

to synthesize reliable services, even without signaling.

Middleware. Application integration, even inside a

single organization, faces barriers of interoperability and

performance that led to a vast array of design patterns for

message-oriented & event-based communication [38].

Mobile Systems. Caching and replication are optimistic

strategies for managing inconsistency in disconnected

operation, such as Bayou [7] or the Coda filesystem [25].

Software Architecture. Other researchers in the field

has also described styles for managing latency, such as

processing real-time news and data streams [35].

7. Conclusions

In this paper, we presented: a formal definition of

decentralization; an analysis of the limitations of consen-

sus-based software architectural styles; derivation of new

architectural styles that can enforce the required proper-

ties; and implementations that demonstrate the feasibility

of those styles and sample applications.

Figure 5 summarizes our findings. First, we identified

two basic factors limiting the feasibility of consensus:

latency and agency. These correspond to two boundaries,

indicated by dashed lines: the ‘now horizon’ within which

components can refer to the value of a variable ‘right

now’; and an agency boundary within which components

can trust each other. Another way to describe them is that

the now horizon separates consensus-based styles from

consensus-free ones; and the agency boundary separates

master/slave styles from peer-to-peer ones.

First, we identified four new capabilities that could be

combined with REST individually to induce the proper-

ties we desired: events, routes, locks, and estimates. Then,

we were able to combine these to derive four new styles

optimized for each of the four types of resources.

For centralized resources, we enforce simultaneous

agreement by extending REST into an event-based

architectural style by adding A synchronous event

notification and R outing through active proxies

(ARREST). For distributed control of shared resources,

we enforce ACID transactions by further extending REST

with end-to-end D ecision functions that enable each

component to serialize all updates (ARREST+D).

The alternative to simultaneous agreement is decen-

tralization: permitting independent agents to make their

own decisions. This requires accommodating four

intrinsic sources of uncertainty that arise when communi-

cating with remote agencies: loss, congestion, delay, and

disagreement. Their corresponding constraints are B est-

effort data transfer, E fficient summarization of data to be

sent, A pproximate estimates of current values from data

already received, and S elf-centered trust management.

These so-called ‘BASE’ properties can be enforced by

replacing references to shared resources with end-to-end

E stimator functions. Such extensions to REST can

increase precision of measurements of a single remote

resource (ARREST+E); as well as increase accuracy by

assessing the opinions of several different agencies

(ARRESTED) to eliminate independent sources of error.

Furthermore, application of these styles to real-world

problems has been shown to be both feasible and

effective, using both open-source and commercial tools.

Acknowledgements

This work is based on the first author’s doctoral dis-

sertation, which also benefited from the support of Dr.

André van der Hoek and Dr. Debra J. Richardson. The

authors are also grateful for the assistance of Dr. Joseph

Touch, Dr. E. James Whitehead, Dr. Roy T. Fielding, Eric

M. Dashofy, Adam Rifkin, and our anonymous reviewers.

This material is based upon work supported by the

National Science Foundation under Grant #0205724.

ARRESTED

ARREST+E

REST+E

REST

A+REST R+REST

ARREST

ARREST+D

REST+D

"now horizon"

Consensus-based
styles

Consensus-free
styles

REST+P

Master-slave
styles

Peer-to-peer
styles

agency boundary

Centralized Systems

Decentralized Systems

D
istributed System

sEs
tim

at
ed

 S
ys

te
m

s
Figure 5: Diagram summarizing our four new architectural

styles, derived from four capabilities added to REST.
Figure 2: Diagram summarizing four new architectural
styles, derived from four capabilities added to REST [32].

4.4.1 Assessments. Since then, Web applications have added
several complementary features for real-time and group commu-
nication, such as WebRTC, Websockets, Webhooks, and HTTP/2
streaming. New use cases for pushmessaging tomobile apps and the
Internet of Things (IoT) continue to proliferate. Internet-scale event
notification services are available for content distribution (fast.ly,
a CDN with near-real-time global invalidation), service integra-
tion (Apache Kafka, Amazon Kinesis, and Google Cloud Pub/Sub),
and lightweight reactive programming platforms (Amazon Lambda,
IFTTT, and AI ‘assistants’).

Nonetheless, centralized systems still dominate the Web. Amaz-
ingly, even planetary-scale databases like Spanner [8] became prac-
tical with the introduction of a bounded-error TrueTime service:
a practical rebuke to the imaginary GlobalClock that ARRESTED
approximates. Commercially, centralized networks also dominate
two-sided markets, from auctions to advertising to payments. The
promise of federated social networking across agency boundaries
remains just that, in the face of addictive ‘news feeds’ based on
machine learning techniques that are only feasible over centralized
clickstreams (though Federated Learning [6] could change that).

4.4.2 Disruptions. Of the algorithms ARRESTED advocated,
consistent hashing is now commonplace in NoSQL databases such
as Cassandra [34]; and Merkle hash trees are still a practical way
to create trust between suspicious agencies. However, most appli-
cations are within organizations — BitTorrent remains the most
prominent use of Distributed Hash Tables (DHTs) across agency
boundaries [58] with little evidence of success as public, shared
infrastructure [44].

The authors did not anticipate anything like Bitcoin or the
blockchain [37], perhaps the signature achievement of ‘decentral-
ization’ over the past decade. An explosion of new systems are
exploring the space of new possibilities for the technology beyond
its origins as a cryptocurrency protocol [35].We expect entirely new

10

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
R. T. Fielding, R. N. Taylor, J. R. Erenkrantz,

M. M. Gorlick, J. Whitehead, R. Khare, and P. Oreizy

architectural styles to emerge around what the Ethereum [59] calls
“dApps” [9] that run directly on community-contributed computing
resources.

4.4.3 Recentralization. Ultimately, our goal was to identify styles
that could build software that works the way society works. The "way
society works" has turned out to be far more recentralized than de-
centralized, though.When RESTwas being framed, it seemed incon-
ceivable that two billion people would all agree to use one website
(Facebook); or that “search engines” would index the entire public
Web; or that advertising networks that match marketers to con-
tent publishers or app developers would be embedded across large
swaths of the Web. When a decentralized alternative for source-
control took off (git), “society” still adopted a centralized repository
of incredible scale (Github). To the degree that RESTful designs have
enabled the entire Software-as-a-Service (SaaS) industry to disrupt
how custom software is developed and deployed, that has led to
abundant choices between competitors — but almost no choices for
sticking with last week’s version, because SaaS subscription models
continuously upgrade all their tenants on a centralized basis.

4.5 Computation Exchange: CREST
REST addresses Internet-scale hypermedia, but our FSE 2007 paper
[13] was the gateway to a different vision of the web, one where
Internet-scale computation exchange rather than content exchange,
dominates web activity. To provide developers concrete guidance
in the implementation and deployment of computational exchange,
we offered Computational REST (CREST) as an architectural style
to guide the construction of computational web elements. There
are five core CREST principles:
CP1 The key abstraction of computation is a resource, named by an

URL.
CP2 The representation of a resource is a program, a closure, a con-

tinuation, or a binding environment plus metadata to describe
the program, closure, continuation, or binding environment.

CP3 All computations are context-free.
CP4 Only a few primitive operations are always available, but

additional per-resource operations are also encouraged.
CP5 The presence of intermediaries is promoted.
The evolution of REST to CREST began in 2006–2007 when

Erenkrantz and Gorlick, like Fielding before them, turned to the
web as a living laboratory [12]. As described earlier by Erenkrantz
(Section 3.2) the macro-level constraints of REST had seeped down
into application architectures, a confirmation of the prior work
of Oreizy [38]. Moreover, study of other decentralized systems re-
vealed constraints (or alternatively, principles of construction) that
bore more than a passing resemblance to the context-free state
transfers of REST. This strongly suggested that REST was but one
member of a family of architectural styles whose instantiations had
been hiding in plain sight all along and that variations in, or devia-
tions from, REST were not necessarily flaws or shortcomings but
merely examples of natural and useful, domain-specific variations.

Another web development also attracted their attention. Web
mashups, introduced by Paul Rademacher in April, 20052 spread like
wildfire. Though unexpected (at least to Erenkrantz and Gorlick;

2 See http://www.housingmaps.com/ and https://forums.craigslist.org/?ID=26638141

Fielding may have thought otherwise) mashups offered a fresh per-
spective on REST intermediaries. To their eyes, mashups mirrored
continuations (a well-known construction in the formal semantics
of programming languages [53] and a control mechanism in several
programming languages such as Scheme and SML) in the sense that
the client-side scripts and the “redirection” URLs they contained
represented, from the perspective of the mashup hostM , the “rest
of the computation” (that is, a continuation) that M itself might
have performed had it not been constrained by network latency
and scaling.

Two other examples, from entirely different domains, also in-
formed their view. The first was the work of David Halls [28] who
explored the role of mobile code (implemented as the network
transfer of continuations from one remote Scheme interpreter to
another) in the construction of distributed systems. Hall’s exam-
ple of a web server and web client that exchanged continuations
(embedded in HTTP requests and responses) elegantly solved three
problems that REST failed to address: session management, cookie
injection, and the inconsistent behavior of the browser back button
in the presence of a session-specific cookie.

The second example came from Alan Shieh [45, 46] who, fol-
lowing the design pattern of Aura and Nikander [1], reconstructed
TCP as a stateless-protocol (named Trickles) in which the initiator
of the TCP connection and the listener that responded to connec-
tion initiation exchange “network continuations” that encapsulate
all of the requisite TCP session state. The burden of maintaining
session state is thereby transferred to the initiator as every transmis-
sion from initiator to listener is accompanied by the session state
generated by the listener in the prior round trip. These REST-like
constructions for TCP confer like advantages: substantial reduc-
tions in server-side state, trivial connection restart, and connection
mobility in which the network locations of the Trickles endpoints
can be shifted without loss of connection state.

From this backdrop arose the idiom of computation exchange, in
which peers interact by exchanging and evaluating live computa-
tions (state plus code) in a REST-like framework. Computational
REST (CREST) for computation exchange was hammered out in
three intensive days of whiteboard discussions among Erenkrantz,
Gorlick, and Girish Suryanarayana in Spring 2006.

The work on CREST, detailed in [13], and Erenkrantz’s doctoral
thesis [11], set benchmarks for the analysis of REST-like systems.
This presentation eased understanding, promoted cross-comparison
among related styles, and encouraged reasoned analysis of the
degree to which a system is RESTful.

Further, the reduction of REST to a terse constraint set laid bare
the several independent axes of variation of REST, thereby allow-
ing us to describe, with improved precision, the benefits that the
constraints, both individually and in combination, conferred upon
conforming architectures — the fundamental defining characteristic
of an architectural style. Here we drew upon the prior work of Or-
eizy discussed in §4.3 in which dynamic architectures are expected
to define what is and what is not dynamic; on this hinges the dis-
tinctions among the members of a family of dynamic architectures.

In retrospect, the formulation of CREST perhaps leaves too much
unsaid, but nonetheless CREST took REST-like systems in a new
direction by emphasizing the primacy of computation over content
and relegating content to a side-effect of computation. In this way

11

http://www.housingmaps.com/
https://forums.craigslist.org/?ID=26638141

Reflections on the REST Architectural Style... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

CREST reflects the idiom of computation exchange: it elevates com-
putations to first-class representations of a resource and designates
context-free state exchange (including computational state reified
as closures, continuation, or binding environments) as the sole form
of information exchange among clients and servers. As detailed in
[11, 13] CREST resolved several outstanding puzzles in the evolu-
ton of the web including web mashups, session management, the
(misplaced) role of cookies in client/server interactions, and the
rationale for time-dependent resources such as weather forecasts
or time-series responses like a stock ticker.

4.6 Computation Exchange with Security:
COAST

Many reviewers of CREST observed that exchanging and evaluating
computations (mobile code) among peers appears patently unsafe,
leaving peers open to service theft or denial of service attacks, and
easy prey for hostile takeovers where the peer is used as a launchpad
for attacks against other peers in the network. COmputAtional
State Transfer (COAST) also pursues the idiom of computation
exchange but directly addresses these concerns, this time cast in
an architectural style where security and peer safety are first-order
concerns [26].

Under COAST the exchange of live computations (state + code)
is the principal form of interaction among peers. All COAST ex-
changes rely on communication by introduction, meaning that a
peer x can communicate with a peer y only if peer x holds a Capa-
bility URL (CURL) for y. CURLs are cryptographic structures; they
are tamper-proof and cannot be guessed or counterfeited. Live com-
putations received by peers via CURLs are evaluated in the context
of execution sites, flexible sandboxes that confine the functional
and communication capability of visiting computations. These four
fundamentals: communication by introduction, live computations,
execution sites and CURLs, are sufficient to protect against many
common security threats including unwanted intrusion, resource
theft, or gross abuse of capability. These same four concepts also
account for a considerable degree of adaptation and flexibility. More
broadly, the COAST architectural style embeds computation ex-
change in the object-capability model of security [36]; both compu-
tation exchange and object-capability contribute in equal measure
to security and adaptation.

For any form of computation exchange there are two fundamen-
tal issues: communication and confinement; that is, how indepen-
dent computations contact one another and exchange information
and how their executions are confined to prevent damage to their
hosts or other computations. The COAST style defines four rules:
one each for services, execution, messaging, and interpretation.
Services specifies the form and content of communications: asyn-
chronous messaging of live computations comprising primitive
values, closures, continuations, and binding environments and im-
plicitly the meaning of service: computation-specific interpretation
of mobile closures, continuations, and binding environments. Exe-
cution defines execution sites as a basic mechanism for functional
and resource confinement. Messaging regulates how communica-
tion capability is allocated among computations. In particular, there
is no ambient communication capability; without CURLs a compu-
tation is mute and without egress points (a capability that confers

the right to read (extract) messages from a unidirectional com-
munication channel) a computation is deaf. Finally, interpretation
specifies that message interpretation is not only receiver-dependent
but also delivery-dependent; both the CURL denoting the ingress
point (a capability that confers the right to write (inject) messages
into a unidirectional communication channel) of the message and
the consequent transmission trajectory of a message can influence
the interpretation. Within the four corners of the style rules peers
exchange and evaluate live computations, thereby receiving and
transmitting messages that contain primitive values, closures, con-
tinuations, and binding environments.

Specifically, the COAST rules are:
• Services: All services are computations whose only interac-
tions are the asynchronous messaging of primitive values,
closures, continuations, and binding environments.

• Execution: All computations execute within the confines
of some execution site ⟨E,B⟩ where E is an execution engine
and B a binding environment.

• Messaging: Computation x can transmit a message to a
computation y only if there exists a unidirectional commu-
nication channel t such that x holds a CURL u denoting an
ingress point of t and y holds an egress point of t .

• Interpretation: The interpretation of a message delivered
to computation y via CURL u is y- and u-dependent.

Early results from COAST are encouraging, including:
• Secure remote evaluation [47, 48] of computations and secure
remote spawning of computations are natural consequences
of the COAST style.

• Live update modifies the code, structure and data values
of a running system in place without halting the system
or interfering with it [29], including three distinct forms
of secure live update with hot backup, that is, transparent
service recovery in the event that the update fails [24].

• A novel form of system-level monitoring, capability account-
ing, that can be used for forensic analysis, penetration de-
tection, early warning of attack, and testing, both functional
and security-centric [23].

• Remote evaluation allows service providers to pare their
service offerings to the bare minimum and shift the bur-
den of rapidly evolving and refining service APIs from the
provider to the clients. Using a web bookmark service as a
test case we demonstrated a minimalist API (containing only
three simple service primitives) that is extended per-client by
client-generated live computations delivered provider-side
for remote evaluation.

• Dynamic rearrangement of computations among hosts for
the sake of performance, latency, or security [27].

5 REFLECTIONS ON THE RESEARCH
ENVIRONMENT AND PROCESS

The development of the Web, REST, and the derivative technolo-
gies discussed above have clearly had an enormous impact. To be
sure, REST and the other technologies did not emerge solely from
the seven authors on this paper. Indeed, a very large number of
individuals contributed to the numerous IETF standards and to
the software systems that realized those standards. That said, UC

12

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
R. T. Fielding, R. N. Taylor, J. R. Erenkrantz,

M. M. Gorlick, J. Whitehead, R. Khare, and P. Oreizy

Irvine’s Institute for Software Research (and its predecessor, IRUS)
has played a prominent role in these developments, as it was the
home institution for the work of this paper’s authors.

The point of bringing up this old history is not to tout accom-
plishments or burnish medals. Rather it offers a chance to reflect
on the milieu of software engineering research: how it is funded,
conducted, evaluated, published, and transitioned.

The tale of REST, theWeb, and the HTTP/1.1 protocol is certainly
at odds with much current software engineering research practice.
The work on these topics at ISR spanned more than a decade. In
the early years of the work it was difficult to explain to funding
agencies why the Web was a “big deal” and why they would later
be glad to tout it as one of their signature accomplishments. The
University of California, Irvine had a hard time understanding why
one of ISR’s Ph.D. students was taking close to a decade to finish his
degree. Wasn’t that “slowness” indication of “inadequate progress
towards the degree”? And howwas this “open source” thing actually
going to produce production-grade software?

In hindsight it is easy to see that we made the right decisions
— at the time it was a bit of a struggle to tell the tale well. The
point to emphasize, though, is that the accomplishments required a
relentless determination to make advances that had depth, integrity,
quality, and value. REST did not result from a summer research
project that produced a one-off solution that no one will ever actu-
ally use. Developing REST and HTTP/1.1 required tenacity and a
dedication to quality. It required building substantial software of
lasting value. Would that all software engineering research held to
the same standards and values.

What was the environment at UCI-ISR that enabled such con-
tributions to emerge? Fundamentally it was one in which students
were given the authority to pursue topics that they found exciting
and thought were potential game-changers. That authority was
accompanied by funding that enabled them to travel — sometimes
extensively — in support of standardization efforts. That funding
was beyond what is typically available from the NSF and similar
agencies. Rather, it was DARPA that provided the key funding, es-
pecially in the initial years of the project. (And DARPA, to its credit,
did not demand quarterly proof of relevancy of the REST research
to the top-level goals of the funding project; they let us run too.)

The authority to “run with it” was accompanied, to be sure, with
responsibility. That responsibility took several somewhat atypical
forms. First, the work, for many years, was conducted as part of the
multi-institution Arcadia project [31]. The practical consequence
of that was that every 3 or 4 months the students were obliged to
present progress on their work to a small, vociferous, and some-
times cantankerous audience of other Arcadia researchers. More
than once did students experience a rocky reception. In retrospect,
however, most would agree that such frank commentary was es-
sential in refining their work in important ways. Second, also a
consequence of being part of Arcadia, there was a strong push for
students to produce substantial software based upon their research,
where that software would be appropriate for trial application in
industrial contexts. Third, the students were responsible for writing
and presenting their work in the appropriate academic forums, as
well as to standards bodies, such as the IETF.

Is this kind of research generally possible in today’s funding and
publication climate? Will universities tolerate this kind of process?

The answer to the latter seems pretty much, “no.” With many uni-
versities demanding that students graduate in 5 years (or 4 years, in
some countries), there is little chance of such projects being under-
taken as a Ph.D effort. This type of work seems destined only for
post-docs. But funding and publications? Impact must be brought
to the fore. The ICSE 2000 paper had no surveys, no statistical
analyses, and essentially no evaluation section. It merely stated:

“The REST architectural style has been validated through
six years of development of theHTTP/1.0 andHTTP/1.1
standards, elaboration of the URI and relative URL
standards, and successful deployment of several dozen
independently developed, commercial-grade software
systems within the modern Web architecture.”

Particularly ironic is retrospective consideration of the original
reviews of the first FSE submission. They basically said that there
is no value to be had in reflecting on a design, post facto, nor in
clarifying, or assessing how the design principles worked out in
one (important) instance of practice. To the contrary, there should
be more of this.

ACKNOWLEDGMENTS
The support of DARPA over the critical years of this project was
essential to its success. Our sincere appreciation especially to Bill
Scherlis and the late John Salasin. Likewise our appreciation to the
National Science Foundation for their years of support. The sup-
port of ISR’s corporate sponsors was also critical, and is gratefully
acknowledged.

Numerous people contributed to the Web, of course, though
the REST community owes a particular debt to Tim Berners-Lee,
Henrik Frystyk Nielsen, Dan Connolly, Dave Raggett, and Larry
Masinter. Advocacy for REST within industry has almost entirely
been the work of others, especially Mark Baker, Paul Prescod, Mike
Amundsen, Leonard Richardson, Sam Ruby, and the late Aaron
Swartz. Our work has benefited from interactions with several
more generations of students and colleagues, at UCI and beyond,
for whom we are grateful to have collaborated with, including
Mark Ackerman, Ken Anderson, Greg Bolcer, Eric Dashofy, Nenad
Medvidovic, Kari Nies, Jie Ren, Jason Robbins, David Rosenblum,
and Girish Suryanarayana.

REFERENCES
[1] T. Aura and P. Niklander. 1997. Stateless Connections. In Proceedings of the First

International Conference on Information and Communication Security (Lecture
Notes In Computer Science), Y. Han, T. Okamoto, and S. Qing (Eds.), Vol. 1334.
Springer-Verlag, 87–97.

[2] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and
Arthur Secret. 1994. The World-Wide Web. Commun. ACM 37, 8 (Aug. 1994),
76–82. https://doi.org/10.1145/179606.179671

[3] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. (Jan. 2005). https://doi.org/10.17487/
RFC3986

[4] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. 1996. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945. (May 1996). https://doi.org/10.17487/
RFC1945

[5] Tim Berners-Lee and Jean-Francois Groff. 1992. WWW. SIGBIO Newsl. 12, 3
(Sept. 1992), 37–40. https://doi.org/10.1145/147126.147133

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2016.
Practical Secure Aggregation for Federated Learning on User-Held Data. In NIPS
Workshop on Private Multi-Party Machine Learning. https://research.google.com/
pubs/pub45808.html

13

https://doi.org/10.1145/179606.179671
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC1945
https://doi.org/10.17487/RFC1945
https://doi.org/10.1145/147126.147133
https://research.google.com/pubs/pub45808.html
https://research.google.com/pubs/pub45808.html

Reflections on the REST Architectural Style... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

[7] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2001. Design
and Evaluation of a Wide-Area Event Notification Service. ACM Transactions on
Computer Systems 19, 3 (Aug. 2001), 332–383.

[8] James C. Corbett and Jeffrey Dean et. al. 2012. Spanner: Google’s Globally-
distributed Database. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (OSDI’12). 251–264. http://dl.acm.org/citation.
cfm?id=2387880.2387905

[9] Chris Dixon. 2017. Crypto Tokens: A Breakthrough in Open Network Design.
(June 2017). https://medium.com/@cdixon/e600975be2ef

[10] L. Dusseault. 2007. HTTP Extensions for Web Distributed Authoring and Versioning
(WEBDAV). Request for Comments 4918. Internet Engineering Task Force.

[11] Justin R. Erenkrantz. 2009. Computational REST: A New Model for Decentralized,
Internet-Scale Applications. Ph.D. Dissertation. University of California, Irvine,
Irvine, California, USA.

[12] Justin R. Erenkrantz, Michael Gorlick, Girish Suryanarayana, and Richard N.
Taylor. 2006. Harmonizing Architectural Dissonance in REST-based Architectures.
Technical Report UCI-ISR-06-18. Institute for Software Research, University of
California, Irvine.

[13] Justin R. Erenkrantz, Michael M. Gorlick, Girish Suryanarayana, and Richard N.
Taylor. 2007. From Representations to Computations: The Evolution of Web
Architectures. In ACM SIGSOFT Symposium on The Foundations of Software Engi-
neering (FSE’07). 255–264.

[14] Roy T. Fielding. 1994. Maintaining distributed hypertext infostructures: Welcome
to MOMspider’s Web. Computer Networks and ISDN Systems 27, 2 (1994), 193 –
204. https://doi.org/10.1016/0169-7552(94)90133-3 Selected Papers of the First
World-Wide Web Conference.

[15] Roy T. Fielding. 1995. Relative Uniform Resource Locators. RFC 1808. (June 1995).
https://doi.org/10.17487/RFC1808

[16] Roy T. Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation. University of California, Irvine, California, USA.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[17] Roy T. Fielding and Gail Kaiser. 1997. The Apache HTTP Server Project. IEEE
Internet Computing 1, 4 (July 1997), 88–90. https://doi.org/10.1109/4236.612229

[18] Roy T. Fielding, Henrik Frystyk Nielsen, Jeffrey Mogul, Jim Gettys, and Tim
Berners-Lee. 1997. Hypertext Transfer Protocol – HTTP/1.1. RFC 2068. (Jan.
1997). https://doi.org/10.17487/RFC2068

[19] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231. (June 2014). https://doi.org/10.17487/RFC7231

[20] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern
Web Architecture. In Proceedings of the 22nd International Conference on Software
Engineering. IEEE, Limerick, Ireland, 407–416.

[21] Roy T. Fielding and Richard N. Taylor. 2002. Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology 2, 2 (May 2002),
115–150.

[22] Roy T. Fielding, E. James Whitehead, Jr., Kenneth M. Anderson, Gregory A.
Bolcer, Peyman Oreizy, and Richard N. Taylor. 1998. Web-Based Development of
Complex Information Products. Commun. ACM 41, 8 (August 1998), 84–92.

[23] Matias Giorgio and Richard N. Taylor. 2015. Accountability Through Architecture
for Decentralized Systems: A Preliminary Assessment. Technical Report UCI-ISR-
15-2. Institute for Software Research, University of California, Irvine.

[24] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2013. Safe and
Automatic Live Update for Operating Systems. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’13). ACM, New York City, New York, USA, 279–292.

[25] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. 1999. HTTP Extensions
for Distributed Authoring – WEBDAV. Request for Comments 2518. Internet
Engineering Task Force.

[26] Michael Martin Gorlick. 2016. Computational State Transfer: An Architectural Style
for Decentralized Systems. Ph.D. Dissertation. University of California, Irvine,
Irvine, California, USA. Available as Technical Report UCI-ISR-16-3.

[27] Michael M. Gorlick, Kyle Strasser, and Richard N. Taylor. 2012. COAST: An
Architectural Style for Decentralized On-Demand Tailored Services. In Proceed-
ings of 2012 Joint Working Conference on Software Architecture & 6th European
Conference on Software Architecture (WICSA/ECSA’12). 71–80.

[28] David Alan Halls. 1997. Applying Mobile Code to Distributed Systems. Ph.D.
Dissertation. University of Cambridge, Cambridge, UK.

[29] Michael Hicks. 2001. Dynamic Software Updating. Ph.D. Dissertation. Computer
and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania,
USA.

[30] Irvine Research Unit in Software (IRUS). 1998-2000. The Workshop on Internet-
scale Technology. (1998-2000). http://isr.uci.edu/events/twist/

[31] R. Kadia. 1992. Issues Encountered in Building a Flexible Software Development
Environment: Lessons from the Arcadia Project. In Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Development Environments (SDE 5). ACM, New
York, NY, USA, 169–180. https://doi.org/10.1145/142868.143768

[32] Rohit Khare. 2003. Extending the REpresentational State Transfer (REST) Architec-
tural Style for Decentralized Systems. Ph.D. Dissertation. University of California,
Irvine, California, USA. http://www.ics.uci.edu/~rohit/Khare-Thesis-FINAL.pdf

[33] Rohit Khare and Richard N. Taylor. 2004. Extending the REpresentational
State Transfer Architectural Style for Decentralized Systems. In Proceedings
of the 26th International Conference on Software Engineering (ICSE’04). IEEE Com-
puter Society, Edinburgh, Scotland, UK, 428–437. http://www.ics.uci.edu/~rohit/
ARRESTED-ICSE.pdf

[34] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40.
https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf

[35] David Mazieres. 2015. The stellar consensus protocol: A federated model for
internet-level consensus. Stellar Development Foundation (2015). https://www.
stellar.org/papers/stellar-consensus-protocol.pdf

[36] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. Ph.D. Dissertation. Johns Hopkins
University, Baltimore, Maryland, USA.

[37] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
https://bitcoin.org/bitcoin.pdf

[38] Peyman Oreizy. 2000. Open architecture software: a flexible approach to decen-
tralized software evolution. Ph.D. Dissertation. University of California, Irvine,
Irvine, California, USA.

[39] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, and David Rosenblum. 1999.
An Architecture-based Approach to Self-Adaptive Software. IEEE Intelligent
Systems 14, 3 (May-June 1999), 54–62.

[40] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. 1998. Architecture-
Based Runtime Software Evolution. In Proceedings of the 20th International Con-
ference on Software Engineering (ICSE’98). 177–186.

[41] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. 2008. Runtime Soft-
ware Adaptation: Framework, Approaches, and Styles. In Companion of 30th
International Conference on Software Engineering (ICSE Companion 2008). ACM,
899–910.

[42] Peyman Oreizy and Richard N. Taylor. 1998. On the role of software architectures
in runtime system reconfiguration. IEE Proceedings-Software 145, 5 (1998), 137–
145.

[43] Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the Study
of Software Architecture. SIGSOFT Softw. Eng. Notes 17, 4 (Oct. 1992), 40–52.
https://doi.org/10.1145/141874.141884

[44] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,
Scott Shenker, Ion Stoica, and Harlan Yu. 2005. OpenDHT: A Public DHT Service
and Its Uses. SIGCOMM Comput. Commun. Rev. 35, 4 (Aug. 2005), 73–84.

[45] Alan Shieh, Andrew C. Myers, and Emin G. Sirer. 2005. Trickles: A Stateless
Network Stack for Improved Scalability, Resilience, and Flexibility. In Proceedings
of Symposium on Networked Systems Design and Implementation (NSDI’05), Vol. 2.
USENIX Association, 175–188.

[46] Alan Shieh, Andrew C. Myers, and Emin Gün Sirer. 2008. A Stateless Approach
to Connection-Oriented Protocols. ACM Transactions on Computer Systems 26, 3
(September 2008), 8:1–8:50.

[47] James W. Stamos and David K. Gifford. 1990. Implementing Remote Evaluation.
IEEE Transactions on Software Engineering 16, 7 (July 1990), 710–722.

[48] James W. Stamos and David K. Gifford. 1990. Remote Evaluation. ACM Transac-
tions on Programming Languages and Systems 12, 4 (October 1990), 537–564.

[49] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. 1998.
Achieving Convergence, Causality Preservation, and Intention Preservation in
Real-time Cooperative Editing Systems. ACM Trans. Comput.-Hum. Interact. 5, 1
(March 1998), 63–108.

[50] Richard N. Taylor, Nenad Medvidovic, et al. 1996. A Component- and Message-
Based Architectural Style for GUI Software. Transactions on Software Engineering
(June 1996), 390–406.

[51] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. 2010. Software
Architecture: Foundations, Theory, and Practice. John Wiley & Sons.

[52] Richard N. Taylor, Nenad Medvidovic, and Peyman Oreizy. 2009. Architectural
Styles for Runtime Software Adaptation. In Proceedings of the Eighth JointWorking
IEEE/IFIP Conference on Software Architecture and Third European Conference on
Software Architecture. IEEE Computer Society, 171–180.

[53] R.D. Tennant. 1976. The Denotational Semantics of Programming Languages.
Commun. ACM 19, 8 (August 1976), 437–453.

[54] M. Thomson, E. Damaggio, and B Raymor. 2016. Generic Event Delivery Using
HTTP Push. Request for Comments 8030. Internet Engineering Task Force.

[55] Emmet JamesWhitehead, Jr. 2000. An Analysis of the Hypertext Versioning Domain.
Ph.D. Dissertation. Univ. of California, Irvine, Irvine, California, USA.

[56] Emmet James Whitehead, Jr. and Yaron Goland. 2004. The WebDAV Property
Design. Software, Practice and Experience 34 (2004), 135–161.

[57] Wikipedia. 2017. Representational state transfer — Wikipedia, The Free Encyclo-
pedia. (2017). https://en.wikipedia.org/wiki/Representational_state_transfer

[58] Scott Wolchok and J Alex Halderman. 2010. Crawling BitTorrent DHTs for Fun
and Profit.. In Fourth USENIX Workshop on Offensive Technologies (WOOT10).
http://static.usenix.org/events/woot10/tech/full_papers/Wolchok.pdf

[59] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014). http://yellowpaper.io/

14

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://medium.com/@cdixon/e600975be2ef
https://doi.org/10.1016/0169-7552(94)90133-3
https://doi.org/10.17487/RFC1808
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://doi.org/10.1109/4236.612229
https://doi.org/10.17487/RFC2068
https://doi.org/10.17487/RFC7231
http://isr.uci.edu/events/twist/
https://doi.org/10.1145/142868.143768
http://www.ics.uci.edu/~rohit/Khare-Thesis-FINAL.pdf
http://www.ics.uci.edu/~rohit/ARRESTED-ICSE.pdf
http://www.ics.uci.edu/~rohit/ARRESTED-ICSE.pdf
https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/141874.141884
https://en.wikipedia.org/wiki/Representational_state_transfer
http://static.usenix.org/events/woot10/tech/full_papers/Wolchok.pdf
http://yellowpaper.io/

	Abstract
	1 A brief history of the Web, REST, and its formulations
	2 Just Exactly What is REST?
	2.1 Formulation in Dissertation (2000)
	2.2 Alternative Formulation at FSE (2007)
	2.3 Discussion

	3 Lessons from Early Experience
	3.1 Session Management
	3.2 Namespaces, Resources, and Representations
	3.3 Interplay with Application Architectures

	4 What REST has inspired, and where it has led
	4.1 Web-based Development of Complex Information Products
	4.2 WebDAV
	4.3 Dynamic Software Architectures
	4.4 Decentralized Consensus: ARRESTED
	4.5 Computation Exchange: CREST
	4.6 Computation Exchange with Security: COAST

	5 Reflections on the research environment and process
	Acknowledgments
	References

