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Quantum approach to the unique sink orientation problem
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We consider quantum algorithms for the unique sink orientation problem on cubes. This problem is widely
considered to be of intermediate computational complexity. This is because there is no known polynomial
algorithm (classical or quantum) for the problem and yet it arises as part of a series of problems for which it
being intractable would imply complexity-theoretic collapses. We give a reduction which proves that if one can
efficiently evaluate the kth power of the unique sink orientation outmap, then there exists a polynomial time
quantum algorithm for the unique sink orientation problem on cubes.
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I. INTRODUCTION

In this paper, we are concerned with finding an efficient
quantum algorithm for a problem that admits no known
classical polynomial time algorithm despite considerable
effort: the unique sink orientation problem on cubes. In this
problem, one is given a directed graph on a hypercube such
that every face (subcube) of the hypercube admits a unique
sink vertex, and the goal is to find the global unique sink of
the entire cube. Access to information about an instance of
this problem is via an oracle which takes as inputs one of the
vertices of the cube and outputs a list of the directions of the
outgoing edges of that vertex. The best (classical) algorithm for
this problem queries the oracle O((1.467 . . . )n) times, where
n is the dimension of the hypercube [1], or, if the directed
graph has no cycles, O( exp(n1/2)) times [2,3]. We are not
able to obtain a polynomial time quantum algorithm for this
problem, but we are able to show that if one could efficiently
calculate the kth power of the oracle in this problem (defined
below), then there exists an efficient quantum algorithm. Our
path to this is through period finding, the key ingredient to
Shor’s efficient quantum algorithm for factoring [4,5]. The
main difference in our failure versus Shor’s success is that in
Shor’s algorithm, there are efficient algorithms to calculate
the kth power of a number mod N for k exponentially
large (modular exponentiation), whereas for the unique sink
orientation problem on cubes, we do not yet have such a
procedure. Our reduction opens an approach towards obtaining
an efficient quantum algorithm for the unique sink orientation
problem on cubes.

II. BACKGROUND AND MOTIVATION

The unique sink orientation problem on cubes (hereafter
abbreviated as the USO problem) arises as a fundamental
problem in a variety of optimization problems. The original
application of the USO problem came from the observation
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that a polynomial time algorithm for the USO problem would
yield a polynomial time algorithm for a class of linear
complementarity problems that has no known polynomial
time algorithm (those arising from P matrices) [6]. Another
application is to linear programming. Recall that a numerical
problem is strongly polynomial if, assuming unit cost for
arithmetic on the involved numerical quantities, the algorithm
takes a polynomial amount of time in the number of numerical
constants. While there are weakly polynomial time algorithms
for linear programming [7], there is no known strongly
polynomial time algorithm. A polynomial time algorithm for
the USO problem, however, would imply a strongly polynomial
time algorithm for linear programming [8]. A variety of
problems in the theory of games would also admit polynomial
time solution [9–11] if there is a polynomial time algorithm for
the USO problem. Finally, finding the smallest ball enclosing a
set of balls would also admit a polynomial time solution if there
was a polynomial time algorithm for the USO problem [12].

The USO problem is a promise problem: we are promised
that the faces of the hypercube graph all have a unique sink.
This promise is itself not known to be polynomial time verifi-
able [13]. Therefore (a decision) version of this problem does
not fit nicely into a discussion of computational complexity.
However, there is strong evidence that the problems which
motivate investing USO are not computationally intractable. For
example, the P-matrix linear complementarity problem is not
NP-hard unless NP=co-NP (co-NP represents the complement
of NP) [14]. Because of this, the USO problem is widely
considered as a candidate for either having a polynomial time
algorithm or being of intermediate computational complexity,
similar to the status of the factoring problem.

A variety of classical algorithms exists for the USO problem.
Most of these are known to have instances in which they take
an exponentially long time. For example, the algorithm of
randomly following one outgoing edge of a vertex, i.e., the
Random Edge algorithm, can be shown to take �( exp(n1/3))
time [15]. Similarly, the algorithm of choosing a random facet,
and then recursing, can also be shown to take �( exp(n1/2))
time [3]. These results all give instances upon which the
given algorithms fail to work in polynomial time. In a similar
vein, we will show below that a naive classical version of our
quantum algorithm that uses the standard oracle to solve the
USO problem requires exponential time.

Despite the USO problem being of intermediate computa-
tional complexity, the only quantum computation work for this
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problem has been on the problem of recognizing whether or
not an orientation is a unique sink orientation [16]. We note in
passing that a naive application of Grover’s algorithm [17] to
the general USO problem yields an O(

√
2n) = O((1.414 . . .)n)

quantum algorithm, which just marginally beats the best-
known classical algorithm which is O((1.467 . . . )n) [1].

III. UNIQUE SINK ORIENTATION PROBLEM

Here we introduce the USO problem and present some
prior results that will be useful. An excellent introduction to
this problem is provided by Schurr [18]. We begin with an
information description of the problem and then proceed to
a more formal specification which is useful for stating basic
useful properties of the USO problem.

An instance of the USO problem is an orientation of
a Boolean (combinatorial) hypercube, which has special
properties. Recall that the Boolean hypercube is the graph
in which vertices of the graph are Boolean strings and there
is an edge between two vertices if these vertices differ in only
one character of the string. Thus 0010 is a vertex and 0011 is
one of its neighbors, while 1011 is not one of its neighbors. An
orientation is a specification of a direction for each of the edges
in the graph. There are 22n

orientations. In the USO problem,
however, a constraint is imposed on the orientation. Recall
that a vertex in a graph with directed edges is a sink if all the
edges adjacent to a vertex are incoming. In the USO problem,
the orientation is required to satisfy the condition that if one
restricts one’s attention to a subcube, only one of these vertices
is a sink under this restriction. By restricting to a subcube, we
mean considering a k � n hypercube and only examining the
orientation of edges between the vertices of this subcube.

Next we introduce the notation for the combinatorial
hypercube that we will use in this paper. This notation is the
same as that used by the literature about USOs and is used here
to help provide a bridge into that literature and also to make the
proofs that appear in Sec. IV cleaner. Let [n] = {1,2, . . . ,n}.
We will label the vertices of the n-dimensional hypercube by
the subsets of [n]. That is, vertices correspond to the power set
of [n]: V = 2[n] := {v ⊂ [n]}. If one prefers to think about the
hypercube vertices as Boolean strings, then one can consider a
subset of [n] as corresponding to the elements in an n bit string
that are 1, while those not in the subset are 0. The symmetric
difference of two sets u and v is the set of elements that are
in u and v but not both, u ⊕ v := (u ∪ v) \ (u ∩ v). Given
this definition, the edges of the n-dimensional hypercube
are then vertices whose symmetric difference has size 1:
E = {(u,v)|u,v ⊆ [n],|u ⊕ v| = 1}. This is the version of the
condition that an edge in a hypercube exists between Boolean
strings if they differ in exactly one position.

More generally, for sets u ⊆ v, define the interval of these
sets as [u : v] := {w|u ⊆ w ⊆ v}. Then the cube spanned by
these sets, C[u:v], is defined as the graph with vertex set

V (C[u:v]) := [u : v] (1)

and edge set

E(C[u:v]) := {(s,t)|s,t ∈ [u : v],|s ⊕ t | = 1}. (2)

A useful shorthand is Cu = C[∅:u], in which case the n-
dimensional hypercube is C[n]. Intervals are useful for defining

∅

{3} {1}

{1, 3}

{2}

{2, 3} {1, 2}

{1, 2, 3}

{1}{2}{3}

FIG. 1. Labeling of the vertices of a hypercube for n = 3 on the
left and the different directions on the right.

subcubes. The cube C[u,v] is a subcube of the cube C[u′:v′] iff
[u,v] ⊆ [u′ : v′]. Subcubes of a cube are often called faces
and a face of dimension that is one less than the cube is
called a facet. If one prefers to work over the Boolean string
representation of a hypercube, then the vertices of a hypercube
are those where a fixed set of character positions are fixed, and
other are allowed to vary. The elements that are in v but not
in u of a subcube C[u,v] are exactly the locations where the
characters are allowed to vary.

Edges of the n-dimensional hypercube are labeled in a
natural way by their direction label. That is, for the edge
e = (u,v), there is a unique λ such that {λ} = u ⊕ v. The set
of all labels of a cube is called the carrier,

carrC[u:v] := v \ u. (3)

For a given direction λ, we can split the cube into two subcubes,
called the λ facets. In particular for the cube C[n], the lower λ

facet is C[n]\{λ} and the upper λ facet is C[{λ}:[n]]. Less formally,
the condition is that when one considers only the orientations
of the edges between the vertices in a subcube, this orientation
has a unique sink vertex. See Fig. 1 for this labeling scheme
and direction in the case of n = 3.

An orientation φ of a graph G = (V,E) is a map from
the edges E to the vertices V such that φ((v,w)) = v or
φ((v,w)) = w for all (v,w) ∈ E. This maps edges to their
corresponding sink vertex. Thus if (v,w) ∈ E and φ((v,w)) =
v, then the orientation has the edge E directed from w to v. In
this case, w is the source and v is the sink. Given this notion
for a particular vertex, we can partition edges that contain the
vertex into those for which the vertex is the sink (incoming
edges) and those for which it is the source (outgoing edges).

Given an orientation φ of a cube C, we define the outmap
s of φ as the map that assigns to every vertex the labels of the
outgoing edges from that vertex:

s : V (C) → 2carrC . (4)

We can now define a USO of a cube C. A USO of a cube C is an
orientation φ such that every subcube has a unique sink. That
is, an orientation φ with outmap s is a USO iff

∀u,vC[u,v] (5)

is a unique sink orientation, where a subcube C[u,v] is a unique
sink orientation if there exists a unique vertex w such that the
outmap does not point along any of the outgoing directions in
the carrier space for a subcube, carrC[u:v],

∃ unique w such that ∀λ ∈ carrC[u:v], s(w) /∈ λ. (6)
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∅

{3} {1}

{1, 3}

{2}

{2, 3} {1, 2}

{1, 2, 3}

FIG. 2. Example of a USO. The unique sink is vertex {1,3} and
the unique source is ϕ. Note, for instance, that this is a USO since all
of its faces considered alone have a unique sink vertex. For example,
the C[∅:{1,2}] cube has the unique sink of {1,2}.

See Fig. 2 for a picture of a USO for n = 3.
The central problem we would like to solve can now be

introduced.
Problem 1. USO. Given a USO φ on a cubeC[n] and a subcube

C[u:v], determine by querying the outmap s of φ whether the
unique sink of C[n] lies in C[u:v].

Note that this is a decision problem having a yes or no
answer for each φ and subcube C[u:v]. However, it can be
used to efficiently solve the search version of the problem,
finding the unique sink vertex of the entire cube. To do this,
one simply uses the decision version on facets of the cube,
determining whether the unique sink is in one of two facets,
and then recursively applying this procedure to the facet with
the unique sink.

IV. PROPERTIES OF USO’s

Here we recall certain properties of USOs on cubes that
we will use. We present short proofs of these results for
completeness.

If φ is an orientation with corresponding outmap s for a cube
C, then the orientation φ′, in which for every λ ∈ � ⊆ carrC the
λ edge of φ are reversed, has an outmap of s ′(v) = � ⊕ s(v).
If the original orientation φ is a USO, then, according to the
following Lemma, the orientation φ′ is also a USO.

Lemma 1. [18] Given a unique sink outmap s of a cube
C[n], and a set of directions, � ⊆ carrC[n], the map defined by
s ′(v) = � ⊕ s(v) is the outmap of a USO.

Proof. We will first show that this is true for � = {λ}.
We need to show that the new outmap s ′ corresponds to an
orientation φ′ that has the USO property. Let Cu and Cl denote
the upper and lower λ facets of C[n] respectively. Consider
any subcube C of C[n]. If C is entirely within a λ facet, then
the orientation obtained by reversing all edges along the λ

direction does not change the orientation on any edges of C. In
this case, since φ has a unique sink on C, so does φ′ on C. On
the other hand, if C spans λ facets, then we can partition C into
subcubes Du = C ∪ Cu and Dd = C ∪ Cd . Over the orientation
φ suppose that these two subcubes have unique sinks ou and
od . Assume without loss of generality that the unique sink of
φ over C is ou. Flipping all of the edges along λ means that
ou is no longer a unique sink (since its λ edge now points
away from it). However, od must now be a unique sink of
C since prior to flipping the λ edge the only thing keeping
od from being a unique sink of C was the λ edge. All other
vertices cannot be unique sinks of C since they are not unique

sinks in Du or Dd and none of the edges in those subcubes
are flipped. Hence, φ′ is the outmap of a USO for � = {λ}.
For the general case of � = {λ1, . . . ,λk}, note that it follows
from the application of the just proven case k times since
s ′(v) = � ⊕ s(v) = {λ1} ⊕ · · · ⊕ {λk} ⊕ s(v).

The use of the above lemma is that it implies an important
property of all outmaps of a USO of a cube.

Lemma 2. [19] The outmap of a USO of a cube C is a
bijection.

Proof. Given a USO φ of a cube C, suppose that there exist
two vertices, u = v, which each have the same image under the
outmap s, s(v) = s(u) = t . Then consider the orientation φ′
obtained by flipping all of the edges along the t direction. This
has outmap s ′(v) = t ⊕ v. Via Lemma 1, this new orientation
is a USO. However, s ′(u) = s ′(v) = ∅, which is a contradiction.
Hence there are not two vertices which have the same image
under the outmap s.

V. QUANTUM APPROACH

In the last section, we have seen that the outmap of a USO is
a bijection from vertices to the power set of the carrier space of
the cube. Vertices are labeled by elements of 2[n] and elements
of the carrier space are also labeled by 2[n]. Viewed in this
manner, we can map the carrier space back to the vertices, and
hence we can view the outmap as a permutation on 2[n]. Given
this view, we can then define the kth power of this map,

sk := s ◦ s ◦ · · · ◦ s︸ ︷︷ ︸
k times

, (7)

i.e., the permutation s applied k times.
Consider the sequence

∅,s(∅),s2(∅), . . . . (8)

Because s is a bijection, this sequence is periodic with a period,
at most, 2n. That is, there exists a minimal l > 0 such that
sk(∅) = sk+l(∅).

Suppose that we could determine the minimal l = 0
such that sk(∅) = sk+l(∅). Then, sl(∅) = ∅ and hence
s(sl−1(∅)) = ∅, or, in other words, sl−1(∅) is the unique
sink of the cube. In other words, determining the period of
s, and then evaluating s raised to that power minus one,
yields the unique sink. The problem of finding the period
of a function is one in which quantum computers offer an
exponential advantage over classical computers, and this is
the basis of Shor’s algorithm for factoring [4,5].

In particular, this leads us to our main result. Let φ be a USO

with outmap s. Let H = Cn
2 ⊗ Cn

2 ⊗ Cn
2 and label the basis of

these states by |k,u,v〉 with k ∈ {0, . . . ,2n − 1} and u,v ∈ 2[n].
We say that a unitary U calculates the kth power of an outmap
if it acts on this basis as

U |k,u,v〉 = |k,u,v ⊕ sk(u)〉. (9)

Theorem 1. Given a unitary U which can calculate the kth
power of the outmap permutation of a USO, there exists a
polynomial sized quantum algorithm that queries this oracle
O(1) times and identifies the unique sink with constant
probability with a circuit of size O(poly(n)).
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Proof. Straightforward application of Shor’s period finding
algorithm to the given oracle [4,5], followed by using the oracle
once to calculate sl−1(∅), provides the proof.

VI. EXPONENTIALLY LONG PERIODS

In the previous section, we showed that if one can efficiently
determine the period of an outmap s of a USO of a cube and
one can evaluate the outmap at this period minus one, then
one can efficiently solve the USO problem. A question which
arises is whether or not this is an efficient classical algorithm.
A naive classical use of this period finding method would be
to try to calculate s(∅),s2(∅), . . . until the sequence repeats.
Here we show that this approach fails because there are USOs
where this sequence is exponentially long.

We will explicitly show an example of such a USO. Given
two USOs of the same dimension n, φ1, and φ2, one can produce
a new USO of dimension n + 1 by using φ1 as a lower n + 1
face and φ2 as the upper n + 1 face and then directing all of
the n + 1 edges either from the lower to the upper face, or vice
versa. Label these two cases φ1 ↑ φ2 and φ1 ↓ φ2, respectively.
It is clear that the new orientation constructed in this manner is
a USO since every face either lies entirely in φ1 or φ2 (and so is
a USO), or the face spans φ1 and φ2 and hence each component
in the upper and lower n + 1 face has a unique sink so that
the global USO exists and is uniquely the one in which the new
n + 1 orientation points.

Let ψ1 be the one-dimensional orientation in which the
single edge points from ∅ to {1}. Further, define the uni-
form orientation un,a as the n-dimensional orientation whose
outmap is s(v) = v ⊕ a. Recursively define the orientation

ψn+1 = ψn ↓ un−1,∅. (10)

This orientation has ψn as its lower n + 1 facet, the uniform
orientation towards ∅ in its upper n + 1 facet, and n + 1 edges
from the upper to the lower n + 1 facet.

Lemma 3. Define P (φ) as the period of the outmap of φ,
starting at ∅. Then,

P (ψn+1) = 2P (ψn), (11)

and hence since P (ψ1) = 2, P (ψn) = 2n.
Proof. Let sn denote the outmap of ψn. The outmap of ψn+1

can be written as

sn+1(v) =
{{n + 1} ∪ sn(v) if n + 1 /∈ v

v \ {n + 1} otherwise. (12)

From this it follows that the sequence sn+1(∅),
s2
n+1(∅), s3

n+1(∅), s4
n+1(∅), . . . is equal to sn(∅) ∪ {n +

1}, sn(∅), s2
n(∅) ∪ {n + 1}, s2

n(∅), . . . . Since sn does not act
on the n + 1 element, the claim follows directly.

Because there exist USOs such as φn that have exponentially
long periods, the naive classical algorithm for finding the
period fails. Note that this does not mean that a classical
approach based upon identifying the period will fail, only that
the naive algorithm would take exponentially long. Perhaps
USOs have structure which would allow for an efficient
classical algorithm based upon finding the period of the
outmap.

VII. THE MISSING PIECE

We have shown that the ability to efficiently calculate
the kth power of a USO’s outmap would lead to an efficient
quantum algorithm for the problem and that the same is not
necessarily true for a naive classical algorithm. In Shor’s
algorithm, the step we are replacing with the kth power of
a USO is the evaluation of rxmodN . This can be done by
modular exponentiation (using the trick of repeated squaring).
We have been unable to find an efficient way to calculate this
kth power. In general, it would seem that such a procedure
would need to rely on properties of USOs. Note that in general
there is no procedure that efficiently calculates the power of
an arbitrary unitary gate. This follows from [20] where it was
shown that evaluating exp(−iH t) scales at least linearly in
t , though this does not preclude such powering for known
sets of unitaries (see also [21,22]). There are large classes of
USOs which have structure because they arise from different
algorithmic problems [23]. For example, those arising in the
P-matrix linear complementarity problem are known to be
a restricted class that is rather small relative to all USOs,
and yet efficiently solving the USO arising from this problem
would constitute a breakthrough. Focusing on these instances
is suggested as an important future direction.

VIII. CONCLUSION

We have shown that the ability to efficiently calculate the kth
power of a USO’s outmap would imply that there is an efficient
quantum algorithm for the USO problem. This approach uses
a key component that is thought to be important for quantum
speedups [24], i.e., period finding. A variety of open problems
remain, even beyond the obvious of trying to efficiently power
the outmap. One important question is whether there are
classes of USOs for which there is a quantum speedup. For
example, USOs that are decomposable are known to have query
complexity �(n) [18,25]; is there a constant query quantum
algorithm for these cases? Another interesting question is
whether the query complexity of the USO is polynomial in
an information theoretic sense.
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