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ML in front of consumers
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Source: Deep Learning for Detection of Diabetic Eye Disease, Google Research Blog

https://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html


ML behind the scenes
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Source: Deep Learning for Detection of Diabetic Eye Disease, Google Research Blog

https://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html


The data flow point-of-view

“Train” and “Serve” are data flows.

Optimizing these data flows is an interesting research problem.
● DB technology and principles are relevant in this new context.
● Velox [CBG+ CIDR15], Weld [PTS+ CIDR17], SystemML [BDE+ VLDB16]

This is NOT what this tutorial is about.
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This tutorial: The data flow point-of-view

What data-management issues arise when deploying ML in production?

● Having the right data is crucial for model quality.
● Preparing data for an ML pipeline requires effort and care.
● Invalid data can cause outages in production ⇒ data monitoring, validation, and 

fixing are essential.
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Starting point: Data and a question

Input 
Data

I have data!
I have a question!
Let’s use ML!
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purchase: {
  product_id: 0x1234
  user_id: 4321
}
user: {
  id: 4321
  …
}
product: {
  id: 0x1234
  category: [“BOOK”, “FICTION”]
}

- Sources: DBs, KV stores, Logs, …
- Formats: JSON, relational, unstructured, 
…
- Raw or curated
- We can assert few invariants [DHG+ SE4ML]



Data-access paths in training/serving

Training 
Input 
Data

Serving 
Input 
Data

- Unit: all user sessions in one day
- Large size
- High throughput

- Unit: current user session
- Small size
- Low latency
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Training 
Data Train Model Serving 

DataServeModel

ML Framework and Input formats

Training 
Input 
Data

Serving 
Input 
Data

“category”: [“FOOD”,“FICTION”]
“price”: [.99]
“user”: [.1, .25, .13]
“purchase”: [1]

“category”: [“COOKING”]
“price”: [0.89]
“user”: [.13, .15, .01]
“purchase”: ?

Expressed as a 
program in a suitable 
framework (e.g., 
Tensorflow, Keras, 
Mxnet, ...)
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purchase: {
  product_id: 0x1234
  user_id: 4321
}
user: {
  id: 4321
  …
}
product: {
  id: 0x1234
  category: [“FOOD”, “FICTION”]
}



Preparing the data

Prepare

- What features can be derived from the data?
- How are these features generated in training and serving?
- What are the properties of the feature values?
- What are best practices to transcode values for ML?

Training 
Input 
Data

Serving 
Input 
Data

Prepare
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Getting to a good model

Prepare

Evaluate

Training 
Input 
Data

Serving 
Input 
Data

Prepare
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Training 
Data Train Model Serving 

DataServeModel- Is the model good enough?
- Should data be encoded differently?
- Should there be more data? More 
features?



Several experiments 
later...
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Ready to launch!

Prepare

Evaluate

Training 
Input 
Data

Serving 
Input 
Data

Prepare

Hm… are we 
ready?
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An example of data failure

● No new features or data, same training and serving logic
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Refactor 
backend that 
generates a 
feature



An example of data failure

● No new features or data, same training and serving logic

Prod rollout
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An example of data failure

● No new features or data, same training and serving logic

Refactor 
backend that 
generates a 
feature

Prod rollout
Incompatible 
binaries result 
in errors ⇒ 
feature = -1
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An example of data failure

● No new features or data, same training and serving logic
● Model performance goes south
● Issues propagate through the system (bad serving data ⇒ bad training data ⇒  

bad models)
● Re-training can be expensive ⇒ Catching errors early is important

Prod rollout
Incompatible 
binaries result 
in errors ⇒ 
feature = -1
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Refactor 
backend that 
generates a 
feature



Life of an ML pipeline: Validating data

Prepare

Evaluate

Validate

- Which data properties affect significantly the 
quality of the model?
- Any dependencies to other 
data/infrastructure?

Training 
Input 
Data

Serving 
Input 
Data

Prepare
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Tracking training/serving skew

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

- What are possible deviations between 
training and serving data? 
- Are they important?

Prepare
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Alerting on data errors

Prepare

Evaluate

Validate

- How to formulate alerts so that 
they are understandable and 
actionable?
- What is the sensitivity for alerts?

Training 
Input 
Data

Serving 
Input 
Data

Prepare
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Fixing data

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

Prepare
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Data Train Model Serving 

DataServeModel
- Will fixing the data improve the model?
- Which part of the data is problematic? 
- What is the fix?
- How to backfill the data with the fix?



Everything in place

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

Prepare
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Now we can 
launch!



Several weeks (and 
production fires) later...
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Life of an ML pipeline: The cycle starts over

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

I want to add 
data, features, 
models...

Prepare
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1st dimension: High-level data activities

Fixing

Understanding

Preparation

Validation
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2nd dimension: Users

ML Expert SWE SRE

Broad knowledge of 
ML. Knows how to 
create models and 
how to use statistics. 
Advises on dozens of 
pipelines.

Understands the 
problem domain. Most 
ML experience is with 
this product.
Coding is world class.

Problem fixer. On-call 
for possibly hundreds  
of pipelines. Can’t 
afford to know the 
details. Dealing with 
many issues 
simultaneously.

25



Rollback the 
pipeline to a 
working 
state

2nd dimension: Users

Fixing

Understanding

Preparation

Validation

Implement 
and babysit 
a backfill

Fix the 
quantization 
of price 26



Maintenance

3rd dimension: Time in the pipeline’s lifecycle

Fixing

Understanding

Preparation

Validation

Experiment

Launch

Refinement

...

27



Organization of the tutorial
Fixing

Understanding

Preparation

Validation

Part 1: Understanding

Part 2: Validation + Fixing

Part 3: Preparation

Driving questions:
● What previous work is relevant?
● What is lacking in terms of ML?
● What are interesting research directions?

28



Backstory of this tutorial

● Influenced by our experience with infra for ML pipelines in production.

“The Anatomy of a Production-Scale Continuously-Training Machine Learning 
Platform”, to appear in KDD’17

● Presenters: three DB researchers and one ML researcher.
● DB folks have the technical background to deal with data problems but ML folks 

will provide important context, and vice versa.
29
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Data Understanding



Data understanding in ML pipeline

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix
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Data understanding in ML pipeline

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix
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Data understanding in ML pipeline

● Sanity checks before training the first model
● Other analyses during launch and iterate cycle

Train first model

Launch & Iterate

33



Sanity checks on expected shape before training first model

● Check a feature’s min, max, and most common value
○ Ex: Latitude values must be within the range [-90, 90] or [-π/2, π/2]

● The histograms of continuous or categorical values are as expected
○ Ex: There are similar numbers of positive and negative labels

● Whether a feature is present in enough examples
○ Ex: Country code must be in at least 70% of the examples

● Whether a feature has the right number of values (i.e., cardinality)
○ Ex: There cannot be more than one age of a person
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How do we know what to expect of the data?

● If we know exactly what we need, then just use SQL for checks
● However, features may not have clear ownership, which makes it hard to keep 

track of what to expect
● Visualization tools can help us understand of data shape by discovering 

surprising properties of data (and thus develop better sanity checks)
○ Visualization recommendations

■ SeeDB [VRS+ VLDB15]
■ ZenVisage [SKL+ VLDB16]

○ False discovery control with multi-hypothesis testing
■ QUDE [BSK+ CIDR17, ZSZ+ SIGMOD17]

35



SeeDB: Data-driven visualization

● Recommends “interesting” visualizations using a deviation-based metric
○ Provides insights to users on what to expect of the training data and subsequent ones
○ Zenvisage: Follow-up work on interactive visual analytics using ZQL [SKL+ PVLDB 16]

● Research question: what is the confidence of these visualizations?

[VRM+ PVLDB15]
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(normalized)

Desktop

Mobile

<Interesting Visualization>

Female Male

<Uninteresting Visualization>



QUDE: Controlling false discoveries

● Provides automatic control of false discoveries (multiple hypothesis testing 
error) for visual, interactive data exploration

○ Traditional methods for controlling FWER (Bonferroni correction) or FDR (Benjamini-Hochberg 
procedure) assume “static” hypotheses and do not work for interactive data exploration

○ Proposes α-investing with control mFDR
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QUDE: Controlling false discoveries

● Provides automatic control of false discoveries (multiple hypothesis testing 
error) for visual, interactive data exploration

○ Traditional methods for controlling FWER (Bonferroni correction) or FDR (Benjamini-Hochberg 
procedure) assume “static” hypotheses and do not work for interactive data exploration

○ Proposes α-investing with control mFDR
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[BSK+ CIDR17, ZSZ+ SIGMOD17]
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Data understanding during launch and iterate

● Feature-based analysis
● Data lifecycle analysis
● Open questions

Launch & Iterate
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Feature-based analysis

● Types of ML analyses
○ Given a model, identify training data slices (based on features) that lead to high/low model quality

■ E.g., App recommendation model performs poorly for people in CJK countries
○ Given serving logs, detect any training-serving skew on certain slices

■ E.g., The gender ratio between the training data and serving logs is significantly different for 
people in the age range [20, 40].

● Data cube analysis is effective for analyzing “slices” of data, which are defined 
with features or feature crosses

○ MLCube [KFC HILDA16]
○ Intelligent roll-up [SS VLDB01]
○ Smart drill-down [JGP ICDE16]
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Visual exploration of ML results using data cube analysis

● Enables users to define slices using feature conditions and computes aggregate 
statistics and evaluation metrics over the slices

○ Helps understand and debug a single model or compare two models

● Research question: how to automatically prioritize user attention and identify 
what are the “important slices”?

[KFC HILDA16]
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Visual exploration of ML results using data cube analysis

● Enables users to define slices using feature conditions and computes aggregate 
statistics and evaluation metrics over the slices

○ Helps understand and debug a single model or compare two models

● Research question: how to automatically prioritize user attention and identify 
what are the “important slices”?

[KFC HILDA16]
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Visual exploration of ML results using data cube analysis

● Enables users to define slices using feature conditions and computes aggregate 
statistics and evaluation metrics over the slices

○ Helps understand and debug a single model or compare two models

● Research question: how to automatically prioritize user attention and identify 
what are the “important slices”?

[KFC HILDA16]
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Intelligent rollups in multidimensional OLAP data

● Automatically generalizes from a specific problem case in detailed data and 
return the broadest context in which the problem occurs

○ Can be used to find problematic slices in training data that positively/negatively affect model 
metric (e.g., loss, AUC, calibration)

○ More recent work, but using drill downs [JGP ICDE16]

● Research question: training data is mostly flat and noisy with no hierarchy, so 
we cannot always rely on clean hierarchies

[SS VLDB01]

44

Location Gender Age Nationality

Chicago Female [30, 40] Greek

Month Jan Feb Mar Apr

Loss 0.11 0.09 0.1 0.5



Intelligent rollups in multidimensional OLAP data

● Automatically generalizes from a specific problem case in detailed data and 
return the broadest context in which the problem occurs

○ Can be used to find problematic slices in training data that positively/negatively affect model 
metric (e.g., loss, AUC, calibration)

○ More recent work, but using drill downs [JGP ICDE16]

● Research question: training data is mostly flat and noisy with no hierarchy, so 
we cannot always rely on clean hierarchies

[SS VLDB01]
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Location Gender Age Nationality

G1 US * * Greek

E1.1 Seattle Male * Greek

G2 Chicago Female * *

Generalizations

Exceptions



Data understanding during launch and iterate

● Feature-based analysis
● Data lifecycle analysis
● Open questions

Launch & Iterate
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Data lifecycle analysis

● Types of ML analyses
○ Identify dependencies of features

■ E.g., how were the labels generated? Do they “leak” into any other feature?

○ Identify sources of data errors
■ E.g., some examples were dropped because a data source was unavailable

● Provenance and metadata analysis tools are effective
○ Coarse-grained

■ GOODS [HKN+ SIGMOD16]
○ Fine-grained

■ ProvDB [MAD ArXiv16]
■ ModelHub [MLD+ ICDE17]
■ Ground [HSG+ CIDR17]
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Google Data Search (GOODS)

● A system to help users discover, understand, share, and track datasets post-hoc.
● Research question: how to track fine-grained provenance of features?

[HKN+ SIGMOD16]
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ProvDB: A system for lifecycle management

● A unified provenance and metadata management system to support lifecycles 
of complex collaborative data science workflows

○ ModelHub: lifecycle management for deep neural networks [MLD+ ICDE2017]
○ Ground: similar goal, but with a simple, flexible metamodel that is model agnosic [HSG+ CIDR17]

● Research question: how to minimize the maintenance overhead?

[MAD ArXiv16]

<Data Model><Architecture> 49



Data understanding during launch and iterate

● Feature-based analysis
● Data lifecycle analysis
● Open questions

Launch & Iterate
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Open questions for ML analysis

● Determine if the model is “fair” [RR KER13]
○ E.g., is a model prejudiced against certain classes of data?
○ Model is only as good as its training data, so need to understand if the data reflects reality

● Identify new kinds of “spam” [GSS ArXiv15]
○ E.g., are users abusing the system in an adversarial way
○ Need to apply adversarial testing on the training data

While SQL [MGL+ PVLDB10, AMP+ Eurosys13] is an “escape hatch” for analysis, can 
we do better?
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Data understanding summary

● Need data understanding for sanity checks and launch and iterate
● Existing tools (visualization, data cube analysis, provenance and metadata, and 

SQL) are helpful, but many ML challenges remain
price is out 
of range -- 
rollback the 
model

price is 
between 0 
and 100

price 
needs to be 
quantized

Train first model

Launch & Iterate
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Data Validation



What if...

● country goes from capitalized 
to lower case?

● Document age goes from days 
old to hours old?

● document_title simply 
disappears?
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[FH 76,ACD+16]Day 1
Data

Day 2
Data

Day 3
Data

Day 4
Data

All
Data

http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1976.10481472
http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf


What if country goes from capitalized to lower case?
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Monday
US
IN
BR
CN

Tuesday
US
IN
BR
CN
us
in
br
cn

Wednesday
US
IN
BR
CN
us
in
br
cn

Thursday
us
in
br
cn
US
IN
BR
CN

Two different countries

Unknown countries

Now rare

Rare feature values are hard to learn from.



Models and Data

country=”us” Pr[Click|country=”us”]=0.5

Models don’t answer unasked questions.

56

“us”? Oh, 
lowercase “US”.



Life of an ML pipeline: Validating Data

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

Prepare
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Life of an ML pipeline: Validating Data

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

Prepare
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Fix data here.

Observe issue here.

Transient

TransientConcrete



Age of Document
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Age of Document

60

All information lost!



Repair age?

61

Patchy repair: fix winsorization of “age”, and throw out all data before shift was 
made.

Proper repair: throw out “age”, and replace it with “age_in_hours”



“document_title” Missing

Prepare

Evaluate

Validate

Training 
Input 
Data

Serving 
Input 
Data

Fix

Prepare
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Missing here... ...or missing here?



How Do We Deal With These Problems?

● Automatically insert corrections at serving time (e.g. capitalize all countries)
● Create a new, clean field (e.g. age_in_hours)
● Find where a field disappeared (e.g. provenance or root cause analysis on field 

“document_title”) (see also Inspector Gadget [OR PVLDB11], Data X-Ray 
[WDM SIGMOD15], MacroBase [BGM+ SIGMOD17]) 

We need to detect problems, and in a lot of cases, we need to notify users to solve 
these problems.

63

http://infolab.stanford.edu/~olston/publications/vldb11.pdf
http://dl.acm.org/citation.cfm?id=2750549&CFID=734749007&CFTOKEN=61698824
http://dl.acm.org/authorize?N37647


Current Best Practice: Alert + Playbook

● “New values for the field `country’ have appeared. Check that the new values 
are valid, and where they came from.”

● “The field `age’ is being cropped in 99.99% of the examples. Has the scale of the 
field changed?”

● “The field `document_title’ is missing from all examples. Earlier, it was pulled 
in from the table XYZ. Has it been removed from that table?”

Playbooks are for 
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Outline-Data Validation

● Why Data Validation?
○ Models cannot answer questions they are not asked.
○ Automated fixes would be great, but are hard.
○ Current Best Practice: Alert + Playbook

● What about People?
● What Alerts?
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A Common Scenario
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DEFCON 1

Now I’m 
Safe...

DE
FC

O
N 

1 Ahh...quiet.

Garbage

DEFCON 1
Everyday! 
Make it 
Stop!!!

Oops
...

Balance Recall and Precision 



What is a “Good Catch”?

67

The question is not whether something is “wrong”. 
The question is whether it gets fixed.

age should have a 
Kolmogorov distance 
of less than 0.1 from 
the previous day..

age has 
Kolmogorov 
distance of 0.11

???



Question Everything 

68

Question the constraint AND the data.

[CM11,BIG+ICDE13]
Monday
US
IN
BR
CN

Tuesday
US
IN
BR
CN
SS

DE
FC

O
N 

1 Ahh...quiet.

Garbage

http://dblab.cs.toronto.edu/~fchiang/docs/icde11.pdf
http://ieeexplore.ieee.org/abstract/document/6544854/


● When there are multiple alerts, what do you do first? How do you decide if they 
are related, and if so what the root cause is?

● Combining repairs
○ Open area of research [ACD+PVLDB16]
○ Cost-Based Models [BFF+SIGMOD05] 
○ Conflict Hypergraph [KL ICDT09,CIP ICDE13]

Combining Alerts

69

http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf
http://dl.acm.org/citation.cfm?id=1066175
http://dl.acm.org/citation.cfm?id=1514901
https://cs.uwaterloo.ca/~x4chu/ICDE2013.pdf


Lifecycle of Fields
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alpha productionbeta deprecated

Focus on alerts for data that is used.



Impact

71

country

age

document
title

experimental
model

production
model

unused
feature

Open Problem: how do you estimate 
improvement without making a correction?

Big “improvement”

Little “improvement”



Combining Alerts

72

Rank alerts from most actionable to least actionable.

The field “document_title” is missing.

The distribution of values for the field “age” changed.

MORE ACTIONABLE

LESS ACTIONABLE

The field “country” has new values.



Outline-Data Validation

● Why Data Validation?
○ Models cannot answer questions they are not asked.
○ Automated fixes would be great, but are hard.
○ Current Best Practice: Alert + Playbook

● What about People?
○ Balance recall and precision.
○ A good catch is one that leads to a fix.
○ Understand how fields are being used.
○ Prioritize alerts by impact/actionability.

● What Alerts?
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Continuous Data Cleaning

Image from [VCSM ICDE14]
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http://www.cs.toronto.edu/~mvolkovs/icde14_data_cleaning.pdf


Generic Alerts are Hard To Design

75

http://funstuff.zinkevich.org

Click Here For Fun!
Click Here For More Fun!

https://www.google.com/search?q=fun
https://www.google.com/search?q=fun
https://www.google.com/search?q=more+fun
https://www.google.com/search?q=more+fun


Continuously Arriving Training Data

76

Day 1
Data

Day 2
Data

Day 3
Data

Day 4
Data

Day 5
Data

Day 6
Data

Day 7
Data

Day 8
Data

Day 9
Data

Day 10
Data

Day 11
Data

Day 12
Data

Day 13
Data

Day 14
Data

Give new data a priority



Continuously Arriving Training Data

77

Day 1
Data

Day 2
Data

Day 3
Data

Day 4
Data

Day 5
Data

Day 6
Data

Day 7
Data

Day 8
Data

Day 9
Data

Day 10
Data

Day 11
Data

Day 12
Data

Day 13
Data

Day 14
Data

Compare new data to old data

Control Treatment



Alerts Motivated By Engineering Problems

● Missing fields
● RPC Timeout
● Format changes

78



Alerts Motivated By Engineering Problems

● Missing fields
○ Check if a field that was present is now absent.

● RPC Timeout
○ Check the most common value is not more common than before.

● Format changes
○ Check if the domain of values has increased.

Use common software engineering problems to 
design baseline checks. 
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A Statistics Approach

● Homogeneity tests, Analysis of variance (ANOVA)
● Time series analysis, Change Detection

80

I’ll explain 
this to you

later.

???



Catch “all” Statistical Measures for Data as it Arrives

Chi-Squared test for 
homogeneity [P00]: reject the 
null hypothesis for the 
distributions being the same.
ANOVA: analysis of variance 
([F 21,F 25])

Sweet!

ML Expert
/Stats Expert
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https://digital.library.adelaide.edu.au/dspace/handle/2440/15169
http://psychclassics.yorku.ca/Fisher/Methods/


Problems with the Chi-Squared Statistic

● Statistically significant changes between days are common in big data.

82

Could have 
happened yesterday

That’s
New!



Catch “all” Measures for Data as it Arrives

L1 Metric/total variance
L-infty Metric
Earth Mover’s Distance
[GS 02,VRM+ VLDB15]
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https://www.math.hmc.edu/~su/papers.dir/metrics.pdf
http://www.vldb.org/pvldb/vol8/p2182-vartak.pdf


Time Series Analysis/Change Detection

[BN 93,DTS+VLDB08,BGK+ 
AAS15]

84

Use on critical metrics of data,
(number of examples, number
of positives), not everything.

http://people.irisa.fr/Michele.Basseville/kniga/
http://www.cs.ucr.edu/~eamonn/vldb_08_Experimental_comparison_time_series.pdf
https://research.google.com/pubs/pub41854.html
https://research.google.com/pubs/pub41854.html
https://research.google.com/pubs/pub41854.html


Outline-Data Validation

● Why Data Validation?
○ Models cannot answer questions they are not asked.
○ Automated fixes would be great, but are hard.
○ Current Best Practice: Alert + Playbook

● What about People?
○ Balance recall and precision.
○ A good catch is one that leads to a fix.
○ Understand how fields are being used.
○ Prioritize alerts by impact/actionability.

● What Alerts?
○ Alerts motivated by engineering problems.
○ Alerts that bound drift, but acknowledge its existence.
○ Time series for critical metrics like the number of examples.
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Future Work

● What alerts are best?
● Impact Analysis: If I fix this, how will the system improve?
● Automatically Generated Playbooks + Automatically Generated Fixes

86



We need JUnit for Data Validation for 
Machine Learning

○ Quick to write alerts/playbooks
○ Easy to understand/update alerts
○ Useful enough to catch errors
○ Improves the overall speed of 

innovation

Future Work
Class IntegerTest {

  // Test that parsing “-4” yields -4.

  @Test

  void testParseInt() {

    int actual = Integer.parseInt(“-4”);

    // Throws AssertionError on failure.

    Assert.assertEquals(

      “Failed to parse negative” // message

      -4,                        // expected

      actual);                   // actual value
  }

}

○
87



Data Preparation



Life of an ML pipeline: Preparing the data

89

Prepare
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Validate

Training 
Input 
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Serving 
Input 
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What is data preparation?

● Feature engineering
○ “.. difficult, time consuming, requires expert knowledge.” -- Andrew Ng
○ Involves trial-and-error 

● Adding new attributes or examples to training data 
○ Looking for external data sources to complement training data
○ More data not necessarily good
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Feature Engineering
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Feature Engineering - An example
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Feature Engineering - An example

Objective: predict median housing price, at the granularity of city blocks.
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Tools and techniques - extract data programmatically

● Instead of generating a small 
high-quality dataset, programmatically 
generate a large low-quality dataset.

● Use feature engineers to tune 
extractors to improve quality.

[ESR+ HILDA16,RSS+ TCDE14]
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Feature Engineering - An example

Objective: predict median housing price, at the granularity of city blocks.
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Feature Engineering - An example

Objective: predict median housing price, at the granularity of city blocks.
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{
  latitude:             118.7
  longitude:            35.6
  households:           532
  housing_age:          43
  crime_rate:           LOW
  median_price:         872909
}

{
  latitude:     118.7
  longitude:            35.6
  households_bucket:          5
  housing_age:       43
  crime_rate_low:       1
  crime_rate_high:      0
  crime_rate_med:       0
  crime_rate_unknown:   0
  median_price:         872909
}

Bucketization
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Typical feature transforms 

● Standard set of techniques for feature transformation
○ Normalization
○ Bucketization
○ Winsorizing
○ One-hot encoding
○ Feature crosses
○ Use a pre-trained model or embedding to extract features [MCC+ ArXiv13] 

● Exact feature transform required depends on both data as well as the ML 
training algorithm

○ Some algorithms may be able to do some of the transforms natively
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Why not learn to engineer features?

● Feed training data directly to a deep neural network and let it figure out the 
features

○ Generally referred to as “representation learning” in the ML community
○ Some promising techniques like autoencoders, restricted Boltzmann Machines exist [BCV+ 

TPAMI13]

● Learning both the representations and the objective can require a lot of 
resources and data

○ Engineering features still required in most cases
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Takeaways 

● Feature engineering requires domain knowledge and involves trial-and-error
○ Invest in tools to make design and experimentation easier [RSS+ TCDE14, AC ICDE16, ESR+ HILDA16,]

● Designing good features is hard and time-consuming
○ Invest in tools and infrastructure that allow sharing, understanding, and maintenance of features

● Open question: Given an input set of features and the ML training algorithm, 
generate suitable feature transforms automatically

○ From our experience, this is “pain point” for users who do not necessarily understand the nuances 
of transforms 
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What is data preparation?

● Feature engineering
○ “.. difficult, time consuming, requires expert knowledge.” -- Andrew Ng
○ Involves trial-and-error 

● Adding new attributes or examples to training data 
○ Looking for external data sources to complement training data
○ More data not necessarily good
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Adding more features

Scenario:            wants to improve the prediction accuracy. She decides to add other 
features (average per capita income, population density, etc. ) to the training data.

Challenges for 

●      : Which features will improve model performance the most?
●      : How do I add a feature to an existing pipeline? Will it be available at serving 

time? Am I allowed to use it? What is the ROI for adding this feature?
●      : This introduces new dependency. How can I make sure that the pipeline is 

robust? What will be the effect on model size and prediction latency?
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Adding more features

Scenario:             wants to improve the prediction accuracy. She decides to add other 
features (average per capita income, population density, etc. ) to the training data.

Steps:

●         struggles to find data that she can “add” to her training data. She experiments and decides to add 
median_per_capita_income as an additional feature.

●        ensures that this feature is available for all training data as well as at serving time.
● Train an experimental model, evaluate it offline as well as online (on 1 % traffic)
● She also does model analysis to understand the impact of this feature
● She launches the new model!
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Add more examples

Scenario: You find your initial training data does not have good coverage for a slice 
of the data. You need more examples for that slice.

Challenges for 

● Where can I find training data for this slice? 
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Tools and techniques - Finding data

● Organizations often have a large number of datasets siloed within product 
areas.

GOODS Ground

[HKN+ SIGMOD16] [HSG+ CIDR17]
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Tools and techniques - Finding data

● Over the web, many scientific datasets are published independently by 
organizations but no central repository for searching.

Webtables

[CHW+ VLDB08]

Kaggle
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Add more examples

Scenario: Collecting training data may require manually extracting this information 
from raw data like images, video, speech, and text.

Challenges for 

● Where can I find training data for this slice? 
● How can I extract structured information easily from the raw data?
● Crowd-workers are expensive. How do I select and prioritize tasks?
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Tools and techniques - more labels or better labels

● Low-cost labeling can produce noisy data
● Improving label quality can give bigger boosts than more examples 

● Need tools to help decide whether to get more labels on new data, or multiple 
labels on the same data.

[SPI+ KDD08]

108



Tools and techniques - active learning

● Semi-supervised learning technique in which the learning procedure 
decides and interactively requests labels for examples

● Important when labeling task is complex and expensive
 

● Well-studied sub-field in machine learning
○ Tutorial on active learning [DL ICML09]
○ Active Learning Survey [S_12]
○ Active learning for NLP [O_09]
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Takeaways - adding more attributes and examples

● Adding new features to production machine learning pipelines is a complex 
process

○ When designing ML systems think of the user journey for feature addition
○ Help users avoid accumulate technical debt  [DHG+ SE4ML, KNP+ SIGMOD16]

● Collecting data from training can be hard and expensive
○ Better tooling to make it easier to find, share, and reuse collected data

● Important to help developers understand the trade-off between more data and 
higher quality data
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Parting Thoughts



Data management community has a lot to offer and a lot to learn from the machine 
learning community.

Lesson 1: Data problems beyond performance 
optimization

Data Flow Point of View

Data Flow Point of View
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Lesson 2: Be realistic about assumptions you make

● Data does not live in a DBMS; data often resides in multiple storage systems 
that have different characteristics

● Data life cycle in production ML pipelines is quite complex

● ML is moving fast; keep abreast and apply to the state-of-the-art in ML 
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Lesson 3: Production ML systems have a diverse set of 
users

ML Expert SWE SRE
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Lesson 4: Develop tools that integrate into workflow 
smoothly
● The launch and iterate cycle time for ML pipelines is small

● To ensure adoption of tools and techniques, it is critical to
○ integrate well into the development workflow
○ make long-term benefits of using it obvious
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Check out how we addressed some of these issues!

KDD’ 2017 

The Anatomy of a Production-Scale Continuously-Training Machine Learning 
Platform
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