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ABSTRACT

No-Reference (NR) video quality assessment (VQA) mod-
els are gaining popularity as they offer scope for broader
applicability to user-uploaded video-centric services such as
YouTube and Facebook, where the pristine references are un-
available. However, there are few, well-performing NR-VQA
models owing to the difficulty of the problem. We propose
a novel NR video quality predictor that solely relies on the
‘quality-aware’ natural statistical models in the space-time
domain. The proposed quality predictor called Self-reference
based LEarning-free Evaluator of Quality (SLEEQ) consists
of three components: feature extraction in the spatial and
temporal domains, motion-based feature fusion, and spatial-
temporal feature pooling to derive a single quality score for a
given video. SLEEQ achieves higher than 0.9 correlation with
the subjective video quality scores on tested public databases
and thus outperforms the existing NR VQA models.

Index Terms— Perceptual video quality, objective qual-
ity assessment, H.264 compression, scaling artifacts.

1. INTRODUCTION

With the pervasiveness of visual media, measuring and im-
proving the quality of images and videos is receiving consid-
erable attention. Digital videos often contain visual distor-
tions that are introduced during capture, storage, or transmis-
sion. These distortions often detract from a viewer’s qual-
ity of experience (QoE). The visual quality of the consumed
video content as perceived by human observers is termed as
‘perceptual quality.’ Understanding and objectively determin-
ing human observers’ subjective perception of video quality
is of great importance to camera designers, video streaming
services such as Netflix and YouTube, network and content
providers and many more visual-media-driven services. Thus,
the development of automatic objective methods that accu-
rately quantify the impact of visual distortions on perception
has greatly accelerated.

The goal of no-reference (NR) objective video quality as-
sessment (VQA) algorithms is the following: given an in-
put video and no additional information, accurately predict
its perceptual quality. Though the full-reference (FR) qual-
ity predictors such as SSIM [1], VQM [2], and PSNR are

fast and accurate, they require a pristine reference video sig-
nal with respect to which the quality of the distorted video
is assessed. In the context of cloud video transcoding sys-
tems such as YouTube, these FR metrics consider the original
uploaded video as a reference video. The videos transcoded
at different bitrates and resolutions (in order to tailor to the
plethora of consumer display devices) are considered as dis-
torted videos and their quality is measured with respect to
the uploaded video. Considering a user-uploaded video to
be pristine, i.e., void of any naturally occurring distortions
is a highly incorrect assumption, since, a large fraction of
the uploaded videos are certainly compressed prior to up-
loading on YouTube. Thus, the resulting signal fidelity mea-
sured against the uploaded video does not reflect the true per-
ceived quality of the transcoded videos and could lead to in-
correct transcoding choices. On the other hand, having an ac-
curate and fast NR-VQA model that could detect the quality
of the uploaded and transcoded videos could assist in design-
ing ‘quality-aware’ encoding processes such as perceptually
choosing the appropriate encoding bitrates. Such strategies
could in turn help ensure that end users enjoy satisfactory lev-
els of QoE. NR VQA models can also aid in identifying and
culling low quality videos stored on digital devices, designing
and verifying suitable video quality-enhancement processes,
and so on.

Nowadays, video streaming services are typically lever-
aging HTTP-based adaptive streaming protocols such as Dy-
namic Adaptive Streaming over HTTP (DASH) and HTTP
Live Streaming (HLS). Thus, packet losses and bit errors are
no longer the main sources of visual impairments in the trans-
mitted videos. However, videos need to be downsampled and
compressed at different bitrates to adapt to client-side net-
work bandwidth and display devices. This subsequently
introduces compression and scaling artifacts in the video de-
livered to viewers. Thus, we focus exclusively on designing a
no-reference quality predictor for videos afflicted with H.264
compression and scaling artifacts.
Related Work: Video quality assessment is an active area
of research, and several VQA algorithms have been designed
recently to separately address compression and upscaling
artifacts [3, 4, 5, 6]. V-BLIINDS [7], V-CORNIA [8], and
VIIDEO [9] are some of the recent top-performing distortion-
agnostic NR VQA algorithms. To the best of our knowledge,



Netflix’s recently introduced full-reference model VMAF
[10] is the only VQA algorithm designed for videos where
compression and scaling artifacts occur simultaneously. Due
to space constraints, we refer the reader to [9] for a thorough
review of the state-of-the-art VQA algorithms.

Given that video and subjective data collection is a
laborious and a time-consuming process, most existing
video datasets are typically smaller in size (only 40 H.264
compressed videos in LIVE VQA Database [11] and 70
publicly-available distorted videos in Netflix’s database [12]).
Training-based VQA models could thereby lead to over-
fitting to these small-sized datasets and might not generalize
well over real-world videos uploaded in YouTube. Thus,
designing an accurate and a training-free model that would
generalize across databases and video contents is highly de-
sirable.

Unlike most existing VQA algorithms, our proposed
model called Self-reference based LEarning-free Evaluator
of Quality (SLEEQ) is ‘opinion-unaware’ and is thus ‘com-
pletely blind.’ Specifically, SLEEQ uses natural scene statis-
tics (NSS) based models that characterize natural videos in
spatial and temporal domains to extract a single quality-
informative feature, thus not requiring any form of training
on video datasets. These virtues combined with SLEEQ’s
accurate quality predictions offer a significant advantage over
existing FR and learning-based NR-VQA models.

We now proceed to discuss the details of our NR VQA
model SLEEQ in Sec. 2 and report its performance and other
FR/NR VQA models on public VQA databases in Sec. 3.

2. DETAILS OF THE PROPOSED ALGORITHM

2.1. Natural Video Statistics

Current efficient NR Image Quality Assessment (IQA) algo-
rithms [13, 14] use natural scene statistics (NSS) based mod-
els to capture the ‘statistical naturalness’ of images that are
not distorted [15]. NSS models rely on the fundamental ob-
servation that suitably normalized coefficients of good qual-
ity real-world photographic images follow a Gaussian distri-
bution [16], which the distorted images deviate from. This
deviation from statistical regularity holds information about
the underlying distortions afflicting these images [13]. More
recently, similar statistical regularities and irregularities were
observed to be exhibited in the temporal domain by the frame
differences of the consecutive frames in videos [17, 7, 9].
Therefore, in our work, we effectively quantify both spatial
and temporal scene statistics to extract quality-aware features
and combine them to be able to make predictions regarding
the perceptual quality of videos.

Specifically, given an input I of sizeM ×N , which could
either be the luminance component1 of a frame (fn) or dif-
ference between the luminance components of consecutive

1The chroma components of a video frame are not considered in our work.

frames (dn = fn+1 − fn), where n is a frame index, a di-
visive normalization operation can be applied on I , which is
defined as follows:

N(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
, (1)

where

µ(i, j) =
K∑

k=−K

L∑
`=−L

wk,`I(i− k, j − `) (2)

and

σ(i, j) =

√√√√ K∑
k=−K

L∑
`=−L

wk,` [I(i− k, j − `)− µ(i− k, j − `)]2 (3)

where i ∈ {1, 2, · · · ,M}, j ∈ {1, 2, · · · , N} are spatial in-
dices and w = {wk,l|k = −K, ...,K, l = −L, ...L} is a
2D circularly-symmetric Gaussian weighting function (with
K = L = 3, and thus standard deviation = 1.16). It was
found that a generalized Gaussian distribution (GGD) effec-
tively models the statistics of these mean subtracted and con-
trast normalized (MSCN) coefficients [13]. A GGD with zero
mean is given by:

f(x;α, s2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
, (4)

where

β = s

√
Γ(1/α)

Γ(3/α)
(5)

and Γ(.) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (6)

The two parameters of the GGD distribution: shape (α) and
standard deviation (s) can be estimated using an efficient
moment-matching based approach [18].

In our algorithm, we partition I (both fn and dn) into non-
overlapping patches and compute GGD-shape (α) values for
all the patches of I across alternate frames of a video, which
are later average pooled (see complete details in Sec. 2.4).

2.2. Content Dependency problem with the NSS-features

Though Gaussianity is exhibited by most pristine video
frames (and frame differences), we empirically found that
the deviation from Gaussianity exhibited by distorted videos
is not consistent across videos with different contents. To
illustrate this behavior, in Fig. 1 (Left), along the X-axis,
we plot the average of the GGD shape α computed across
all the patches of all the frames of 50 videos2 from LIVE
VQA Database [11]. Along the Y-axis, we plot the ground
truth quality scores, i.e., the Difference Mean Opinion Scores
(DMOS) associated with each video. A lower value of DMOS
indicates better quality of the video. Each color and marker

2We considered only 40 videos afflicted with H.264 compression and their
pristine counterparts (10 videos), thus making a total of 50 videos.



in this plot correspond to a different video content (pristine
video and its corresponding distorted variants).

From this plot, it can be observed that these video fea-
tures mostly take similar values (>= 2.0) for all ten pristine
videos (with DMOS = 0) as has already been observed in the
case of pristine images in [13, 14]. However, in the case of
distorted videos, these features take different values for dif-
ferent video contents. Despite the consistent monotonicity
between the video features and DMOS for a given video con-
tent, these feature values are not consistent across different
contents that have similar DMOS scores. For instance, for
videos with DMOS values between 30 − 40, the feature val-
ues varied between 1.6−2.6, which is highly undesirable. It is
probable that the interaction of the spatial and temporal con-
tent and compression artifacts is resulting in such inconsistent
feature values for different video contents. Similar content-
dependency concerns were reported in [7] in the DCT domain
as well, where the absolute parameter values were found to be
less reliable for quality prediction.

2.3. ‘Self-Reference’-based Feature Extraction

As a way to tackle this content-dependency issue, we propose
the following solution. Given a frame (fn) and a frame dif-
ference image (dn), we apply a low-pass filter to them and
construct their blur partners f ′n and d′n. We then extract the
features described in Sec. 2.1 from the patches of the original
frames (and frame differences) and their blur variants, and
compute an absolute difference of these features. We then
take an average of these values over all the video frames and
use this as our video quality feature (more details in Sec. 2.4).

Our motivation to construct a blur variant of a video
and use the given video itself as its reference (hence called
self-referencing) was the following: though the deviation
in Gaussianity is content-dependent (as observed in Fig. 1
(Left)), we hypothesized that the difference in the deviation
from Gaussianity between the given video and its blur vari-
ant might be consistent across different video contents. This
self-referencing technique thus could effectively capture the
relative inter-dependency between the NSS features of the
given video and its blur variant and could potentially aid in
reducing the content-dependency issue.

Figure 1 (Right) illustrates the benefit of adopting self-
referencing technique. Here, along the X-axis are the self-
referenced video quality features Q (defined in Sec. 2.4) of
the same 50 videos of the LIVE-VQA Database used in Fig.
1 (Left) and along the Y-axis are the corresponding DMOS
values. We can observe that the severe content dependency
observed in Fig. 1 (Left) has reduced to a great extent in Fig.
1 (Right). It can also be observed that the strong monotonic-
ity between the quality features and DMOS values persists
independent of the video content.
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Fig. 1. Along the X-axis of these scatter plots are the (Left) aggregated
(GGD) shape features and (Right) self-referenced video quality features.
Along the Y-axis are the ground truth quality scores of 50 videos in the LIVE
VQA Database [11]

2.4. Feature Extraction, Fusion, and Pooling

Self-referencing technique is at the core of SLEEQ and to the
best of our knowledge has not been used in the quality as-
sessment literature. We now describe all the components of
our algorithm. As mentioned earlier, we consider the lumi-
nance component of every alternate frame (fn) and compute
a frame difference image (dn), where n is the frame index.
We apply a low-pass filter (a 2-D Gaussian smoothing ker-
nel with a standard deviation Bσ) to them and obtain their
blurred variants f ′n and d′n. We divide these four images into
patches of size P × P and apply the divisive normalization
operator (as defined in 1) on patches of all four images inde-
pendently. We extract a total of 4 GGD shape features from
each patch: αPs , α′P

s are the spatial features extracted from fn
and f ′n, and αPt , α′P

t are the temporal features extracted from
dn and d′n respectively. Further, as discussed in Sec. 2.3, we
compute an absolute difference of the spatial and temporal
GGD-parameters as follows:

∆αPs = |α′Ps − αPs |, (7)

∆αPt = |α′Pt − αPt | (8)

Weighting features based on the motion: Perceptual qual-
ity of a video depends on both spatial and temporal content
and their interactions with the distortions afflicting them. As
a way to combine the spatial and temporal quality-aware fea-
tures (defined in (7) - (8)), we adopted the following strategy:
In parts of the video where there is little motion, we assigned
more importance to spatial features (∆αPs ). In such scenar-
ios, since the frame differences do not contain sufficient in-
formation to capture structural regularity (or irregularity) due
to distortions, we hypothesized that the spatial quality would
dominate a viewer’s perception. Conversely, in parts of the
video where there is significant motion, the presence of vi-
sual distortions could further degrade its perceived quality.
Therefore, we assigned more importance to temporal features
(∆αPt ) as temporal distortions could dominate a viewer’s per-
ceived quality. This weighing scheme is formulated as below.

Qp = (1−mp) ·∆αPs +mp ·∆αPt , (9)

where mp is simply the normalized average frame difference
in a given patch P , and ∆αs and ∆αt are the spatial and



temporal features computed on the patch P .
Spatial-temporal pooling: Since humans appear to more
heavily weight their judgments of image quality from the
sharp image regions [19], more salient quality measurements
can be made from sharp patches. We thus use a simple
technique to preferentially select from amongst a collection
of patches per frame, those that are richest in spatial infor-
mation. Towards this end, we compute an average standard
deviation (defined in (3)) of every patch in fn and f ′n, denoted
as σ̄p and σ̄′

p respectively. We then compute a difference of
the average standard deviation per patch given by,

∆σ̄p = |σ̄′p − σ̄p|. (10)

We exclude patches whose ∆σ̄p value is below n-th percentile
of all the ∆σ̄p values of a given video. Following this, we
average-pool the motion-weighted features (Qp) from the fil-
tered patches of a frame and across all the frames in a given
video and compute a single final quality score (Q).

3. EXPERIMENTAL RESULTS

This section reports the performance of our proposed self-
referenced algorithm SLEEQ and a few others on two dif-
ferent datasets - the 40 H.264 compressed videos (and the
10 pristine videos) all of resolution 768 × 432 in the LIVE
VQA Database [11] and the 79 publicly-available videos all
of resolution 1920× 1080 from the Netflix dataset [10]. The
publicly available source codes of different NR/FR VQA
models were used to extract features and train models on
the two databases. VMAF [20] and V-BLIINDS [7] require
training, thus, each dataset for every experiment was split
into content-independent, non-overlapping training and test
datasets: 80% of the content was used for training and the
remaining 20% was used for testing. To mitigate any bias
due to the division of data, all possible combinations of con-
tent splits were considered. VMAF and V-BLIINDS were
trained from scratch on 80% of the data and tested on the
remaining non-overlapping 20% test data. For VIIDEO [9]
and SLEEQ, no learning is required, yet, for a fairer com-
parison with the other learning-based models, we only report
the median correlations on 20% of the test data. Spearman’s
rank ordered correlation coefficient (SROCC) and Pearson’s
correlation coefficient (PLCC) between the predicted and the
ground truth quality scores are reported. A higher value of
each of these metrics indicates better performance in terms
of correlation with human opinions. We also report the aver-
age running time (in seconds) for extracting quality features
designed in each VQA algorithm computed over 5 random
chosen videos3 from both the databases. Scores predicted
from our model and that of VIIDEO were passed through
a 5 parameter non-linear logistic mapping function [21, 22]
before computing PLCC.

3The chosen videos from the LIVE VQA Database were composed of
450 frames, while those from the Netflix database had 150 frames.

Table 1. Performance on the 50 H.264 compressed videos of the LIVE
VQA Database [11]

VQA Type VQA Model Avg. Run Time SROCC PLCC
NR SLEEQ 25 sec. 0.90 0.96
NR VIIDEO [9] 93 sec. 0.76 0.89
NR V-BLIINDS [7] 307 sec. 0.79 0.88
FR VMAF [20] 25 sec. 0.96 0.97

Table 2. Performance on the 79 videos of the Netflix dataset [10].
VQA Type VQA Model Avg. Run Time SROCC PLCC

NR SLEEQ 96 sec. 0.93 0.91
NR VIIDEO [9] 500 sec. -0.49 -0.6
NR V-BLIINDS [7] 1545 sec. 0.92 0.90
FR VMAF [20] 95 sec. 0.95 0.95

The two parameters in the proposed algorithm, (a) n-th
percentile threshold for ∆σ̄p and (b) the blur kernel’s standard
deviationBσ , vary with a test video’s resolution. In particular,
for videos of larger resolution, higher values of these param-
eters improved the performance of our model. We found via
cross-validation that Bσ ∈ [1, 3] and n ∈ [5, 10] for videos
in LIVE VQA Database and Bσ ∈ [7, 11] and n = [35, 40]
for videos in Netflix’s database yielded a high overall perfor-
mance. In our experiments, we used a patch size of P = 72
for both the datasets, n = 5, Bσ = 1.16 for the LIVE VQA
Database and n = 35, Bσ = 11 for the Netflix Database.

From the results reported in Tables 1 and 2, we can ob-
serve that SLEEQ outperforms the state-of-the-art NR VQA
models on both the databases and competes very well with
the full-reference model VMAF. It can also be observed that
an unoptimized MATLAB implementation of SLEEQ with no
parallelization is much faster than the other NR VQA models,
and compare very well with the highly optimized implemen-
tation of VMAF. VIIDEO captures only temporal statistics
of natural videos and thus its performance suffers on Netflix
database which contain videos with rich spatial content and
mixtures of compression and scaling artifacts, in addition to
object motion and ego-motion. In summary, SLEEQ is much
faster than the existing NR-VQA models, training-free, and
has superior prediction performance.

4. CONCLUSION AND FUTURE WORK

We proposed a natural scene statistics-based VQA method
called SLEEQ for accurately predicting the perceived quality
of videos afflicted with H.264 compression and scaling arti-
facts. Every component of the proposed algorithm is compu-
tationally very simple and parallelizable and thus deployable
in real-world applications. While VMAF [20] also tackles
compression and scaling artifacts, it is a full-reference and
a learning-based model. SLEEQ, on the other hand, is no-
reference and training-free and yet serves as an excellent in-
dicator of video quality. We plan to optimize our feature ex-
traction process, evaluate our model on other datasets, and
extend our model to other distortions, primarily real-world
distortions that typically occur in the mobile videos [23, 24]
in the future.
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