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Chiral ground-state currents of interacting
photons in a synthetic magnetic field
P. Roushan1*†, C. Neill2†, A. Megrant1†, Y. Chen1, R. Babbush3, R. Barends1, B. Campbell2, Z. Chen2,
B. Chiaro2, A. Dunsworth2, A. Fowler1, E. Je�rey1, J. Kelly1, E. Lucero1, J. Mutus1, P. J. J. O’Malley2,
M. Neeley1, C. Quintana2, D. Sank1, A. Vainsencher2, J. Wenner2, T. White1, E. Kapit4,5, H. Neven3

and J. Martinis1,2

The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries,
and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using
superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among
the essential elements for studying quantummagnetism and fractional quantumHall phenomena. The artificial magnetic fields
are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the
directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through
the creation of photon vacancies, or ‘holes’, which circulate in the opposite direction. The combination of these key elements
results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of
strongly interacting photons.

I t is commonly observed that when the number of particles in a
system increases, complex phases can emerge which were absent
in the system when it had fewer particles, that is, the ‘more is

different’1. This observation drives experimental efforts in synthetic
quantum systems, where the primary goal is to engineer and utilize
these emerging phases. However, it has generally been overlooked
that these sought-after phases can emerge only from simultaneous
realization and control of particle numbers, real-space arrange-
ments, external fields, particle interactions, state preparation, and
quantum measurement. The simultaneous realization of all these
ingredients makes synthesizing many-body phases a holistic task,
and hence constitutes a major experimental challenge. Engineering
these factors, in particular synthesizing magnetic fields, has been
performed in several platforms2–12. However, these ingredients have
not been jointly realized in any system thus far. To provide a tangible
framework, we discuss realization of these key elements in the con-
text of quantum Hall physics13,14, and show when these ingredients
come together they can construct a basic building block for creating
fractional quantum Hall (FQH) states.

The FQH states are commonly studied in two-dimensional
electron gases, a fermionic condensed matter system13,14. However,
many of the recent advancements in engineered quantum systems
are taking place in bosonic platforms2,15–19. Theoretical studies
suggest the existence of rich phases for bosonic FQH systems,
similar to their fermionic counterparts20–25. In particular, bosonic
FQH states are known to host non-Abelian anyons, which could
implement quantum logic operations through braiding26. Among
the prerequisites for realizing bosonic FQH states are: strong
artificial gauge fields, leading to nearly flat single-particle bands;
strong interactions; low disorder; and amechanism for accessing the
many-body ground state. In this work, we engineer a modular unit

cell consisting of three coupled qubits in a ring, which when tiled
can be used to realize FQH phases (Fig. 1a,b)27,28. At low (uniform)
flux densities, the single-particle band is nearly flat in this triangular
configuration. However, we note that to obtain a denser FQH
states, hopping beyond nearest neighbours is generally required to
ensure band flatness. We concurrently demonstrate tunable gauge
fields, strong interactions, and adiabatic ground-state preparation
in a platform with low loss and disorder, where we have full state
preparation and quantum correlation measurement capabilities.

Synthetic gauge fields
When electrons hop between lattice sites of a crystal placed in a
magnetic field, the wavefunction accumulates a path-dependent
phase. The interference of electrons travelling along different
paths is the fundamental origin of many rich many-body phases
seen in correlated systems. However, due to the charge neutrality
of photons, they are not affected by physical magnetic fields;
therefore, an effective magnetic field has to be synthesized for
quantum platforms with bosonic excitations2–6,29–32. One practical
idea, proposed in various settings, suggests that artificial magnetic
fields can be created by periodic modulation of the photon hopping
strength between the lattice sites24,33,34. When the on-site energies
of two lattice sites differ by ∆, then sinusoidal modulation of a
tunnelling termwith frequency∆ and phase ϕ results in an effective
complex hopping,where the photon’swavefunction picks up phaseϕ
(Fig. 1c). This phase is analogous to the Peierls phase e

∮
A ·dr that

is accumulated by a particle of charge e tunnelling in an external
magnetic vector potential A. This idea can be implemented in a
superconducting qubit platform, where qubits play the role of the
lattice sites, andmodulating the strength of the inter-qubit couplings
g sets the microwave photon hopping rate.
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Figure 1 | The unit cell for FQH and synthesizing magnetic fields. a, A schematic illustration of how qubits and their couplers can be tiled to create a
two-dimensional lattice. The 3-qubit unit cell of this lattice, which is realized in this work, is highlighted. b, An optical image of the superconducting circuit
made by standard nano-fabrication techniques. It consist of three superconducting qubits Qj connected via adjustable couplers CPjk . Together, they form a
triangular closed loop. c, A parametric modulation approach is used for synthesizing magnetic fields. If the frequency di�erence of two qubits is∆, then the
sinusoidal modulation of the coupler connecting them with frequency∆ and phase ϕ results in an e�ective resonance hopping (∆=0) with a complex
hopping amplitude between the two qubits.

We place three transmon superconducting qubits in a ring
(Fig. 1b), where each qubit is coupled to its neighbours via
an adjustable coupler that can be dynamically modulated on
nanosecond timescales35. The Hamiltonian of the system is

H(t)= h̄
3∑

j=1

ωj(n̂+1/2)+ h̄
∑
j,k

gjk(t)(a†
j ak+aja

†
k)+Hint (1)

where a†(a) are bosonic creation (annihilation) operators, ωj is
frequency of qubit Qj, n̂=a†

j aj is the particle number operator, and
gjk is the strength of the inter-qubit coupling between qubits Qj and
Qk. Hint captures the interaction between bosons and is set by the
nonlinearity of the qubits. This term does not affect the dynamics in
the single-photon manifold, and we will discuss its role in the two-
photonmanifold inmore detail later.Wemodulate g of each coupler
according to gjk(t)= g0 cos(1jkt + ϕjk), and choose 1jk to be the
difference between the frequencies of the two qubits that the coupler
connects, that is,1jk=ωj−ωk (Fig. 2b). If |gjk|<< |ωj−ωk|, then, in
the rotating frame, the effective Hamiltonian of the system becomes

Heff(ΦB)=
h̄
2
∑
j,k

g0(eiϕjka†
j ak+e

−iϕjkaja†
k) (2)

where ΦB ≡ ϕ12 + ϕ23 + ϕ31 is the effective magnetic flux and is
gauge-invariant. One can intuitively understand the origin of the
gauge invariance of ΦB by noting that the three qubits in our
case form a closed loop, and the accumulated phase needs to be
single-valued when going around this loop. In other words, if the
qubits’ loop were open, ΦB would not be gauge-invariant (see
Supplementary Information for details).

Single-photon circulation
Based on this idea, we construct a protocol (Fig. 2b) and study
the dynamics of single microwave photons in our system. At t=0,
we create a microwave photon which occupies Q1 (ψ0 = |100〉),
and measure PQj , the photon occupation probability of Qj, as
a function of time. As shown in the middle panel of Fig. 2c,
the photon has a symmetric evolution for ΦB = 0. It propagates
from Q1 to Q3 and Q2 simultaneously, then back to Q1, and then
repeats the pattern with no indication of any preferred circulation
direction (blue→ redgreen →blue→ ...). Setting ΦB=π/2 leads to
fundamentally different dynamics, where the photon propagation
shows a preferred circulation direction and marches in a clockwise
order from Q1, to Q3, to Q2, eventually back to Q1, and then
repeating the pattern (blue→green→red→blue→ ...). Choosing

ΦB = −π/2 leads to anticlockwise circulation, demonstrating
that the synthetic flux ΦB behaves fairly similarly to physical
magnetic flux.

The hallmark of magnetic fields in a system is the breaking
of time-reversal symmetry (TRS). Commonly, TRS preserving
evolution of the state is defined as ψ(t)=ψ(−t). Verifying TRS
breaking based on this relation in a real experiment can be difficult,
since reversing the flow of time is generally not feasible. However,
the dynamics considered here is periodic with period T = 280 ns
for ΦB =±π/2 and T = 170 ns for ΦB = 0 case. This periodicity
allows us to arrive at a practical definition for TRS, which is
ψ(t)=ψ(T− t); for example, one could follow the evolution of
state from t = T backwards and see if it is the same as going
forwards from t=0. It can be seen in Fig. 2c that TRS is preserved
for ΦB = 0 and is broken when ΦB =±π/2. These observations
establish TRS breaking for ΦB=±π/2 and further illustrate that
the synthetic flux ΦB indeed behaves akin to physical magnetic
flux. The quantum nature of the circulation is manifested through
quantum correlation measurements which show entanglement
between qubits (see Supplementary Information for data). The
measured entanglement makes our experiment distinct from others
which are based on classical wave mechanics or those where the
timescales are much longer than the quantum coherence of the
system—that is, are in the semi-classical limit7–11,33,36–41.

Strongly interacting photons
We next focus on signatures of strong interactions, which are
vital for realizing FQH states, as the many-body gap is set by the
smaller of g and U . The typical weakness of interactions between
bosons makes studying many-body quantum phenomena a major
engineering challenge20. Superconducting qubits, however, naturally
overcome this challenge and provide a platform where microwave
photons can have strong interactions. Systems of coupled qubits
can be understood with a Bose–Hubbard model, where the on-site
interactionU originates from the expansion of the qubit’s confining
cosine potential:

Hint=−
U2

2
∑

j

n̂j(n̂j−1)+
U3

6
∑

j

n̂j(n̂j−1)(n̂j−2)+ ... (3)

In our system U2≈U3∼200MHz, which sets the energy difference
between single- and double-photon occupancy; for example, the
|200〉 to |110〉 transition. The hopping ‘bandwidth’ in each manifold
is set by g and is a few megahertz. Therefore U � g , and qubits
effectively form a hard core boson system.
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Figure 2 | Single-photon circulation resulting from the TRS breaking. a, Schematic of the three qubits and their couplers placed in a triangular closed loop.
b, The pulse sequence used for generating and circulating a microwave photon shows that the qubits’ frequencies ωj can be chosen to have arbitrary
values, but each coupler needs to modulate with frequency1jk , set to the di�erence in the qubit frequencies that it connects ωj−ωk . The periodic
modulation of each coupler can also have a phase ϕjk , whereΦB≡ϕ12+ϕ23+ϕ31. c, A microwave photon is created by applying a π-pulse to Q1, at t=0
(ψ0=|100〉). While applying the pulse sequence shown in b, the probability of a photon occupying each qubit PQj as a function of time is measured for
three values ofΦB=π/2,0,−π/2. We use g0=4 MHz, ω1=5.8 GHz, ω2=5.8 GHz, ω3=5.835 GHz,∆12=0,∆23=35 MHz,∆31=35 MHz, ϕ12=0,
ϕ23=0, and ϕ31 was used to setΦB.

The signature of strong interactions can be seen in the two-
photon circulation as shown in Fig. 3b. In the absence of interactions
one expects that two photons will circulate freely with the same
chirality as a single photon. However, two-photon circulation in our
system exhibits the opposite chirality, indicating that, as a result
of strong interactions, photons do not move freely. Consequently,
given that our system has three sites, when two photons are injected
it is more natural to consider the motion of the photon-vacancy.
Similar to the physics of holes in an electron band, the photon-
vacancies have the opposite ‘charge’, and hence circulate in the
opposite direction compared to photons.

Chiral ground states
In condensed matter systems, one is generally interested in finding
the ground state of a many-body system and probing its properties.
In particular, the key signature of FQH states is the appearance
of ground-state chiral edge currents. As the many-body Chern

number of FQH phases can be extracted from the d.c. conductivity
tensor, the capability to measure ground-state currents is especially
valuable. Although the evolution of |100〉 or |110〉, as discussed so
far, provides an intuitive understanding of the response of the system
to this synthetic gauge, these data do not directly reflect the ground-
state properties of the system, because these initial states are not
eigenstates of the Hamiltonian. To study ground-state properties,
we adiabatically prepare ground states of equation (2) and examine
breaking the TRS by measuring the chiral current in the ground
states (see Fig. 4a for pulse sequence). Analogous to the continuity
equation in classical systems, a current operator Î can be defined by
equating the current in and out of a qubit site to the change of the
photon number operator on that site (Îin− Îout=dn̂/dt). From the
continuity equations, we define the chiral current operator to be

Îchiral≡
∑
j,k

ÎQj→Qk= i
∑
j,k

(eiϕjka†
j ak−e

−iϕjkaja†
k) (4)
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Figure 3 | Signature of strong interaction. a, The single-photon circulation data forΦB=−π/2, which is shown in Fig. 2c, is partially shown for the ease of
comparison with the two-photon data shown in b. b, At t=0, two photons are created and are occupying Q1 and Q2 sites. They are generated by applying a
π-pulse to Q1 and Q2 and exciting them (ψ0=|110〉). The parameters used, pulse sequence, and the measurements are similar to Fig. 2. While the single
photon circulates in the anticlockwise direction, the photon-vacancy circulates in the clockwise direction. The counter circulation of the two-photon case
compared with the single-photon case is the direct consequence of strong interactions in the system. In the absence of interactions, the direction of
circulation would have been the same. These findings are schematically demonstrated in a. The yellow arrows indicate the direction of circulation of the
single-photon or single-vacancy case, where photons and vacancies are depicted by bright and dark disks, respectively, and shown on top of the optical
image of the circuit used.

Since Îchiral flips sign under TRS, we expect that its ground-state
expectation value will be zero whenever the Hamiltonian is TRS
preserving, and non-zero otherwise. This equilibrium current is
distinct from the commonly measured non-equilibrium particle
imbalance42–44, as experimentalmeasurement of Îchiral requires access
to the ground state.

To measure 〈Îchiral〉 in the single-photon manifold, initially we
prepare ψ0=|100〉, followed by a ramp up of the Hamiltonian pa-
rameters to generate equation (2) for variousΦB values (olive colour,
Fig. 4b). For preparing ground states in the two-photon manifold,
we initially create ψ0= |110〉 by exciting two qubits, followed by
a similar ramp and measurements (maroon colour, Fig. 4b). Note
that due to the large U/g ratio, the two-photon manifold with and
without double occupancies are almost entirely separate. Because
of the three-fold symmetry of the system, measuring the current
operator between any pair of qubits, for example, ÎQ1→Q2 , suffices for
knowing 〈Îchiral〉. The solid lines are from numerical computations
assuming perfect adiabaticity. For a given ΦB, the measured 〈Îchiral〉
on single- and two-photon manifolds show almost exactly opposite
values, indicating that photons and photon-vacancies have opposite
chiralities. On both manifolds and away from the origin, 〈Îchiral〉
rather abruptly becomes non-zero with opposite values for ΦB>0
and ΦB< 0, showing a quantum transition. Additional interesting
points are ΦB=±π, where 〈Îchiral〉 goes to zero on both one-photon
and two-photon manifolds, and in contrast toΦB=0, the measured
chiral current close toΦB=±π is smooth.

The vanishing of 〈Îchiral〉 at ΦB = 0,±π can be understood by
noticing that the Hamiltonian of the system is real at these points,
and hence cannot break the TRS, whereas for other values it is
irreducibly complex. Several features of the data can be understood

by computing the gap between the ground state and the first
excited state (background colour of Fig. 4b). For ΦB = 0, 〈Îchiral〉
is discontinuous, as the ground state is degenerate at ΦB= 0 and
any finite ΦB breaks this degeneracy and leads to chiral currents,
effectively producing a first-order phase transition. On the other
hand, forΦB=±π, the ground state is not degenerate and there is a
large gap to the excited states, and 〈Îchiral〉 must therefore smoothly
cross zero asΦB crosses±π. The origin of the oscillatory behaviour
close to ΦB= 0 is also due to gap closing, as a result of which the
adiabatic ramps become incapable of providing the correct results.

Towards realization of FQH states
Our experiment highlights the strengths of superconducting qubits
for synthesizing many-body phases of quantum matter. The
inherent simplicity of the coupling modulation method also played
a key role in this first demonstration of synthetic gauge fields with
superconducting qubits; frequently, synthetic gauge field proposals
for superconducting circuits demand challenging new architectures
and are susceptible to charge noise. The schemewe employed avoids
these issues, can be generally applied for other applications34, and
highlights a path forwards (see Supplementary Information for
details) beyond these proof-of-principle experiments to the direct
realization of FQH states. To realize FQH physics, the system must
be large compared to the magnetic length lB of the Hamiltonian.
If we choose the Kapit–Mueller Hamiltonian28 as a basis, a flux
per plaquette ΦB = 1/3 yields lB = 0.69, which suggests an L× L
lattice with L≥6 as an appropriate host for FQH physics. Further, a
2×L ladder with nearest and next-nearest neighbour hopping can
host a nearly exact Laughlin ground state that exhibits many of the
properties of its L×L parent state. These include a local excitation
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Figure 4 | Chiral currents in the ground state. a, The pulse sequence for adiabatically preparing the ground state of equation (2). For ground states in the
single-photon manifold, Q1 is excited at t=0 (ψ0=|100〉), and in the two-photon manifold, Q1 and Q2 are excited (ψ0=|110〉). To measure ÎQ1→Q2 at the
end of parameter ramping, Q1 and Q2 are rotated, allowing for measurements of 〈σX

Q1σ
Y
Q2〉 and 〈σY

Q1σ
X
Q2〉. b, The measured values of 〈Îchiral〉 in the

single-photon (olive colour) or two-photon manifolds (maroon colour). The solid lines are computations for Tadia→∞. The energy gap of the Hamiltonian
of the system (equation (2)) as a function ofΦB is numerically computed and is shown as the background of the data. The gap closes atΦB=0,±2π and
the ground state becomes degenerate (green regions). The maximum gap size is 3g0, which here is 12 MHz.

gap, fractionalized excitations and a topological degeneracy which
manifests as charge density wave order in ladder systems45. For both
host systems, the Laughlin ground state is resilient against local
phase noise, and it can be prepared through adiabatic evolution
or resonant sequential photon injection, or stabilized indefinitely
through engineered dissipation46–48. Thus, simply increasing the size
of our systemprovides a near-term experimental path for generating
FQH states of light.

Data availability
The data that support the plots within this Article and other findings
of this study are available from the corresponding author upon
reasonable request.
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